Exam \#1, Nov. 2, Fall 1999, Calculus II (Eng) 110.109, W. Stephen Wilson

No books, no calculators, no crib sheets, show all work!

Name: \qquad

0 . (2 points, 1 point for recognizability and 1 for last name spelled correctly)

TA Name:

1. (2 points) State the formula for integration by parts.
2. (3 points) Set up an integral (in Cartesian coordinates) for the area of the circle of radius a at the origin.
3. (3 points) Do the first substitution, simplify, but do not evaluate:

$$
\int \sqrt{r^{2}-x^{2}} d x
$$

4. (3 points) Give a brief sketch of $r=1-\cos (\theta)$ in polar coordinates.
5. (3 points) Do not use the half angle formula. Integrate:

$$
\int \cos ^{2}(x) d x
$$

6. (3 points) Find the point (in polar coordinates) where x is maximum and above the x-axis for $r=1-\cos (\theta)$.
7. (3 points) Set up the integral for the area enclosed by $r=1-\cos (\theta)$ above the x-axis. Do not integrate.
8. (3 points) Set up the integral for the length of the curve $r=1-\cos (\theta)$ above the x-axis. Do not integrate.
9. (3 points) Give parametric equations which give the circle $x^{2}+y^{2}=a^{2}$.
10. (3 points) As x goes to zero what is the limit of:

$$
\frac{e^{x}-1-x-x^{2} / 2}{x^{3}}
$$

Discuss and evaluate the following two integrals.
11. (3 points)

$$
\int_{0}^{1} \frac{d x}{x}
$$

12. (3 points)

$$
\int_{0}^{1} \frac{d x}{\sqrt{x}}
$$

