pages	$1-2$	$3-4$	5	$6-7$	$8-9$	10	total
scores							

Exam \#2, November 5, Calculus III, Fall, 2008, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device. Name: \qquad Date: \qquad

TA Name and section:

NO CALCULATORS, NO PAPERS, SHOW WORK. (23 points total)

1. (1 point) Evaluate $\int_{0}^{1} \int_{-1}^{1} x y d y d x$.
2. (2 points) Compute the volume trapped between the $x y$-plane and the graph of the function $f(x, y)=$ $x y$ on $0 \leq x \leq 1,-1 \leq y \leq 1$.
3. (1 point) Evaluate $\int_{0}^{1} \int_{x^{2}}^{x} x y d y d x$.
4. (3 points) Reverse the order of integration on $\int_{0}^{1} \int_{x^{2}}^{x} x y d y d x$ (2 points) and evaluate the new double integral (1 point).
5. (4 points) Evaluate $\int_{0}^{3} \int_{0}^{2} x y d y d x$ (1 point). Find a change of variables map $T(u, v)=(x, y)$ that changes this to a double integral of the form $\int_{0}^{1} \int_{0}^{1} g(u, v) d v d u$ (1 point). Find $g(u, v)$ (1 point). Evaluate the new integral (1 point).
6. (2 points) Use the map $T(u, v)=\left(u, u^{2}(1-v)+v u\right)$ to change the integral $\int_{0}^{1} \int_{x^{2}}^{x} x y d y d x$ to an integral $\int_{0}^{1} \int_{0}^{1} g(u, v) d v d u$. What is $g(u, v)$?
7. (1 point) Evaluate the new integral in the previous problem. This is a pain even though it is straightforward. Easy to make mistakes. Put it off till last is my recommendation.
8. (3 points) Set up the double integral for integrating the function $f(x, y)=x y$ on the region bounded by $y=0, y=1, y=x$ and $y=x-1$ in two ways. First with respect to x as the outer integral (1 point) and then with respect to y as the outer integral (1 point). Evaluate the last way. (1 point)
9. (3 points) Find a change of variable function so that the previous problem's integral can be evaluated over the region $0 \leq x \leq 1,0 \leq y \leq 1$. (1 point) Set up the integral (1 point), and evaluate (1 point).
10. (3 points) Consider the hemisphere, $x^{2}+y^{2}+z^{2}=1, z \geq 0$. What is the average height (z -height, i.e. distance from the $x y$-plane) of points on this hemisphere? You can use the fact that the area of the circle of radius 1 is π without having to compute it.
