pages	$1-3$	$4-6$	$7-8$	$9-10$	$11-13$	total
scores						

Exam \#2, November 19, Calculus III, Fall, 2007, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device. Name: \qquad Date: \qquad

TA Name and section:

NO CALCULATORS, NO PAPERS, SHOW WORK. (28 points total)

1. (2 points) Set up the triple integral for the volume of a cube (1 point), $0 \leq x, y, z \leq 1$ and evaluate it (1 point).
2. (2 points total) What region is the double integral, $\int_{0}^{1} \int_{0}^{-x+1} f(x, y) d y d x$, taken over? Sketch and label (1 point). Change the order of integration (1 point).
3. (1 points total) Consider the map $T(u, v)=\left(u,\left(1-\frac{u}{b}\right) v\right)$. Let D be the rectangular region $0 \leq u \leq b$, $0 \leq v \leq a$. What is the region $T(D)$? (Sketch and label.)
4. (2 points total) Set up a double integral on the region $T(D)$ from the previous problem to compute the area (1 point). Evaluate this integral to compute the area (1 point).
5. (3 points total) Use a change of variables to set up an integral on the region D to give the area of $T(D)$ from the previous problems. (1 point for the limits and 1 point for what is being integrated). Compute this integral over D to get the area of $T(D)$ (1 point).
6. (1 points) Let $f(x, y, z)=e^{x+y^{2}+z^{3}}$. Take the curve given by the path $c(t)=\left(t^{2}, t^{4}, t^{6}\right)$ from $t=0$ to $t=1$. Consider the vector field ∇f and compute $\int_{c} \nabla f \cdot \overrightarrow{d s}$.
7. (3 points) Define a function on the semi-circle $x^{2}+y^{2}=a^{2}, y \geq 0$, that takes a point on it to its y-coordinate. What is the average value of this function on the semi-circle? (2 points for setting up the integral (1 point for the limits and 1 point for what is integrated) and 1 point for getting the right answer using it.)
8. (3 points) Consider the curve that goes from $(0,0)$ to $(1,1)$ along $y=x^{2}$. Consider the vector field $F(x, y)=\left(x^{2} y, x y^{2}\right)$ in the $x y$-plane. Compute the line integral of F on this curve. (1 point for getting the path right, 1 for setting up the integral and 1 for evaluating it correctly.)
9. (3 points) Find the volume trapped between the graph of $f(x, y)=1-x^{2}-y^{2}$ and the $x y$-plane. (1 point for the limits on the integral, 1 point for what is being integrated, and 1 point for getting the right answer.)
10. (3 points) Find the surface area of the graph of $f(x, y)=1-x^{2}-y^{2}$ where it is above the $x y$-plane. (1 point for the limits on the integral, 1 point for the thing you integrate and 1 point for getting the correct answer.)
11. (1 point) What is the average height of $f(x, y)=1-x^{2}-y^{2}$ where it is above the $x y$-plane?
12. (2 points) Consider a function on the surface given by the graph of $f(x, y)=1-x^{2}-y^{2}$ where it is above the $x y$-plane that assigns the z-coordinate to a point on the surface. Set up the integral for the average height of this function. Do not integrate.
13. (2 points) Find a parameterization of the graph of $f(x, y)=1-x^{2}-y^{2}$ where it is above the $x y$-plane that starts $\Phi(r, \theta)=(r \cos (\theta),-,-)$. Be sure and give the limits on r and θ.
