pages	$1-2$	$3-4$	$5-6$	$7-8$	$9-10$	total
scores						

Exam \#1, October 16, Calculus III, Fall, 2007, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device. Name: \qquad Date: \qquad

TA Name and section: \qquad

NO CALCULATORS, NO PAPERS, SHOW WORK. (41 points total)

1. (2 points) Let $f: R^{2} \rightarrow R^{2}$ be given by $f(x, y)=\left(x^{3}+2 y, y^{3}+2 x\right)$. Compute the divergence of f.
2. (2 points) Compute the derivative of f in problem \# 1 .
3. (2 points) Compute the curl of $f: R^{3} \rightarrow R^{3}$ given by $f(x, y, z)=\left(x^{3}+2 y, y^{3}+2 x, 0\right)$.
4. (4 points) Let c be the path $c(t)=\left(t, t^{2}-1, t^{3}-2\right)$. Find the minimum and maximum speeds of $c(t)$ on $[0,1]$ and the points t that achieve them.
5. (2 points) Let c be the path $c(t)=\left(t, t^{2}-1, t^{3}-2\right)$. Give an equation for the tangent line at $t=0$.
6. (2 points) Let c be the path $c(t)=\left(t, t^{2}-1, t^{3}-2\right)$. Set up the integral (but do not try to integrate) for the length of the curve $c(t)$ from $t=0$ to $t=1$.
7. (2 points) Let $g: R^{3} \rightarrow R$ be given by $g(x, y, z)=x y z+x y+x z+y z+x+y+z$. Compute the gradient of g.
8. (2 points) Compute the Laplacian of the function g given by $g(x, y, z)=x y z+x y+x z+y z+x+y+z$.
9. (2 points) Find the directional derivative of the function $g, g(x, y, z)=x y z+x y+x z+y z+x+y+z$. in the direction $(1,1,0)$ at the point $(1,-1,1)$.
10. (2 points) Give an equation for the tangent plane of the surface given by $g(x, y)=-x y^{2}+x+y$ at the point $(1,0)$.
11. (6 points) Compute the two critical points (2 points) of the function $g(x, y)=-x y^{2}+x+y$. Compute the quadratic terms of the Taylor expansion for those two points (2 points). Decide if they are max/min or saddle points (2 points).
12. (3 points) Let $f(x, y, z)=a x y+b y z+c x z$. Find all values for a, b, and c so that the directional derivative of f in the direction $(0,1,0)$ at the point $(1,0,1)$ is 1 ?
13. (4 points) Let $z=f(x, y)$. Consider z as a function of the polar coordinates (r, θ) (i.e. $(x, y)=$ $(r \cos (\theta), r \sin (\theta)))$. Compute $\partial z / \partial r$ (1 point), and $\partial^{2} z /(\partial r)^{2}$ (3 points) in terms of the partials of f with respect to x and y.
14. (6 points) Use the Lagrange multiplier method to solve this problem. We want to build an enclosure that is a rectangle of length x with semi circles at each end of radius r (making the width of the rectangle $2 r)$. The enclosed area should be 300π square feet. The cost of straight fencing (for the rectangular part) is $\$ 1$ per foot and the cost of circular fencing for the semi circles is $\$ 2$ per foot. We want to minimize the cost of the enclosure. What should x and r be? (Another page for scrap.)
workspace
