pages	$2-4$	5	$6-7$	$8-9$	$10-11$	12	13	total
scores								

Exam \#2, November 7, Calculus III, Fall, 2006, Eugene Ha and W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device. Name: \qquad Date: \qquad

TA Name and section: \qquad

NO CALCULATORS, NO PAPERS, SHOW WORK. This exam may well be too long. Use your time wisely. (44 points total)

1. (3 points) Let Q be the rectangle $[0,1] \times[1,3]$. Compute the double integral $\iint_{Q}\left(\sqrt{y}-x+3 x y^{2}\right) d x d y$. Beware the order of integration and the limits.
2. (6 points total) Compute the volume of the region in \mathbf{R}^{3} bounded by the $x y$-plane and the surfaces $x=1, x=3$, and the part of $z=x^{2}-y^{2}$ above the $x y$-plane. (2 points for the region, 2 points for setting up the integral and 2 for getting the correct answer)

Next page more space for this problem.

More space for previous problem.
3. (6 points total) What region is the double integral $\int_{0}^{1} \int_{x^{2}}^{x} f(x, y) d y d x$ taken over? (3 points) Describe its boundary by means of a (precise) sketch. Express the integral as an interated integral in the other order ($d x$ first, then $d y$) (3 points).
4. (6 points total) Consider the hemisphere, $x^{2}+y^{2}+z^{2}=1, z \geq 0$. What is the average height (z-height, i.e. distance from the $x y$-plane) of points on this hemisphere? You can assume that the area of the circle of radius 1 is π. (3 points for setting up the integral and 3 for evaluation)

More paper for previous problem.
5. (6 points total) Consider the solid hemisphere, $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$ of uniform density. By symmetry the center of mass is on the z-axis. What is its z-coordinate? (Another way to look at this is that this is the average height of all the points in half a solid ball.) You may assume that the volume of the solid unit hemisphere is $\frac{2 \pi}{3}$. (3 points for setting up the integral and 3 for evaluation)

More paper for problem on previous page.
6. (2 points) Consider the mapping, $T(u, v)=(x, y)$ defined by the equations $x=u+v, y=v-u^{2}$. Compute the derivative of this function.
7. (2 points) Compute the Jacobian determinant $\partial(x, y) / \partial(u, v)$ of the function T in the previous problem.
8. (3 points) A triangle W in the $u v$-plane has vertices $(0,0),(0,1),(1,0)$. Describe, by means of a sketch, its image, S, in the $x y$-plane, under the mapping T from the previous page. (Hint: What is the image of the boundary of W ?)
9. (5 points total) Express the area of S (from the previous page) as an integral over S (3 points) and compute the integral (2 points).
10. (5 points total) Express the area of S (from the previous pages) as an integral over T (3 points) and compute the integral (2 points).

