pages	$1-2$	$3-4$	$5-6$	$7-8$	$9-10$	11	12	total
scores								

Exam \#1, October 17, Calculus III, Fall, 2006, Eugene Ha and W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device. Name: \qquad Date: \qquad

TA Name and section: \qquad

NO CALCULATORS, NO PAPERS, SHOW WORK. This exam may well be too long. Use your time wisely. (48 points total)
(1) (2 points) Let $f: R^{3} \rightarrow R^{3}$ be given by $f(x, y, z)=\left(x^{2}-y, x y+z, y^{2}-x z\right)$. Compute the divergence of f.
(2) (2 points) Compute the derivative of f in problem \# 1 .
(3) (2 points) Compute the curl of f in problem \# 1, $f(x, y, z)=\left(x^{2}-y, x y+z, y^{2}-x z\right)$.
(4) (2 points) Let $c: R \rightarrow R^{3}$ be the path given by $c(t)=\left(t^{3}-1, t^{3}+1, t^{2}+3\right)$. What is the velocity at t ?
(5) (2 points) Let c be the path in problem \# $4, c(t)=\left(t^{3}-1, t^{3}+1, t^{2}+3\right)$. What is the speed at $t=1$?
(6) (2 points) Let c be the path in problem \# 4. What is the acceleration at $t=1$?
(7) (2 points) Let c be the path in problem $\# 4, c(t)=\left(t^{3}-1, t^{3}+1, t^{2}+3\right)$. Set up the integral (but do not try to integrate) for the length of the curve $c(t)$ from $t=1$ to $t=3$.
(8) (2 points) Let c be the path in problem \# 4. Find an equation for the tangent line to $c(t)$ at $t=1$.
(9) (2 points) Let $g: R^{3} \rightarrow R$ be given by $g(x, y, z)=x^{2} y+y z+x-z$. Compute the Laplacian of g.
(10) (2 points) Compute the gradient of the function g of problem \# 9 .
(11) (2 points) Find the directional derivative of the function g of problem $\# 9, g(x, y, z)=x^{2} y+y z+x-z$, in the direction $\mathbf{j}=(0,1,0)$ at an arbitrary point (x, y, z).
(12) (2 points) Find the direction that the directional derivative of the function g of problem \# 9 is maximal at the point $(1,1,1)$.
(13) (2 points) Find the Taylor expansion of the function g of problem $\# 9, g(x, y, z)=x^{2} y+y z+x-z$, around $(0,0,0)$ up through the quadratic terms.
(14) (3 points) Find all of the critical points of the function g of problem \# 9 (2 points) and decide, if you can, if they are max $/ \mathrm{min}$ or saddle points (1 point). Give a reason for the later.
(15) (3 points) Find the maximum and minimum values of the function $f(x, y)=x / 3+y / 4$ subject to the constraint $x^{2}+y^{2}-1=0$. (Use Calc III and show your work.)
(16) (3 points) Let $f(x, y)=x^{2}+y^{2}$. Write an equation for the tangent plane to the graph at the point given by $(x, y)=(1,1)$.
(17) (3 points) Let $f(x, y, z)=a x y^{2}+b y z+c z^{2} x^{3}$. What must the constants a, b, and c be so that the maximal rate of change of f at the point $(1,2,-1)$, is 24 in the positive z-direction?
(18) (4 points) Let $z=f(x, y)$. Consider z as a function of the polar coordinates (r, θ) (i.e. $(x, y)=$ $(r \cos (\theta), r \sin (\theta)))$. Compute $\partial z / \partial r, \partial z / \partial \theta$, and $\partial^{2} z / \partial r \partial \theta$ in terms of the partials of f with respect to x and y.
(19) (6 points) Let $f(x, y, z)=x^{2}+y^{2}-z^{2}$. When this function is restricted to the ellipsoid, $x^{2}+4 y^{2}+$ $9 z^{2}=16$ it has 2 points that are maximums, 2 that are minimums, and 2 that are saddle points. Find all 6 such points and say which they are.

