pages	$1-5$	$6-9$	$10-15$	total
scores				

Exam \#2, October 28, Calculus I, Fall, 2006, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device. Name: \qquad Date: \qquad

TA Name and section:

NO CALCULATORS, NO PAPERS, SHOW WORK. (60 points total)
The $\sin ^{2}(u)$ isn't particuarly important in these first problems. The function $f(x)$ is always assumed to be continuous.

1. (3 points) Compute $\frac{d}{d x} \int_{0}^{x} \sin ^{2}(u) d u$.
2. (3 points) Compute $\frac{d}{d x} \int_{0}^{x^{2}} \sin ^{2}(u) d u$.
3. (3 points) Compute $\frac{d}{d x} \int_{x^{2}}^{0} \sin ^{2}(u) d u$.
4. (3 points) Compute $\frac{d}{d x} \int_{x^{2}}^{x^{3}} \sin ^{2}(u) d u$.
5. (3 points) Compute $\int_{0}^{1} \frac{d x}{1+x^{2}}$.
6. (3 points) Find the area under one hump of the curve $y=\sin (x)$.
7. (3 points) What is the average value of one hump of $\sin (x)$?
8. (3 points) What is $\int x^{n} d x$ for $n \neq-1$?
9. (3 points) What is $\int \frac{d x}{x}$?
10. (3 points) What is $\int \frac{d x}{\sqrt{x}}$?
11. (3 points) What is $\int \cos (2 x) d x$?
12. (3 points) If $f(x)>0$, what is the integral for the area under f and above the x-axis from a to b, $a<b$?
13. (3 points) If $f(x)>0$, what is the integral for the volume of the solid of revolution obtained by rotating the area under f and above the x-axis from a to $b, a<b$ about the x-axis?
14. (3 points) What is the area trapped between the function $f(x)$ and the x-axis between a and d, $a<d$.
15. (3 points) Set up the integral for the area inside a circle of radius a. (Do not try to integrate it.)
16. (3 points) What is the integral for the length of the curve $y=f(x)$ from a to $b, a<b$?
17. (3 points) Set up the integral for the length of $y=x^{2}$ from $x=0$ to $x=1$.
18. (3 points) Set up the integral for the solid of revolution for the area between $y=x$ and $y=x^{2}$ between $x=0$ and $x=1$ when it is rotated about the x-axis.
19. (3 points) Set up the integral for the solid of revolution for the area between $y=x$ and $y=x^{2}$ between $x=0$ and $x=1$ when it is rotated about the line $x=-1$.
20. (3 points) If your speed is given by $t^{3}-1$, how far do you go from time 1 to time 2 ?
