pages	$1-3$	$4-6$	$7-8$	total
scores				

Exam \#1, October 30, Calculus I, Fall, 2006, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device. Name: \qquad Date: \qquad

TA Name and section:

NO CALCULATORS, NO PAPERS, SHOW WORK. This exam may well be too long. Use your time wisely. (40 points total)
(1) (2 points) Compute: $\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2}}{2 x}$
(2) (2 points) Compute: $\lim _{x \rightarrow \infty} \frac{e^{-x}}{1-e^{-x}}$
(3) (2 points) Compute: ${ }_{x \rightarrow 0} \frac{\sin (x) \cos (x)}{x(1-x)}$
(4) (2 points) Compute: $\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)^{2}}{\sin ^{2}(x)}$
(5) (2 points) What is the equation for the tanget line to $y=x^{2}$ at $x=2$?
(6) (2 points) Let $y=\frac{f(x)}{x}$. What is $y^{\prime}=\frac{d y}{d x}$?
(7) (2 points) Let $y=\sqrt{1+f(x)^{2}}$. What is $y^{\prime}=\frac{d y}{d x}$?
(8) (2 points) Let $y=f(x)^{y}$. What is $y^{\prime}=\frac{d y}{d x}$ when $x=0$ and $y=3$ if $f(0)=2$ and $f^{\prime}(0)=4$?
(9) (2 points) Let $y=(1+\cos (x))^{3}$. What is $y^{\prime}=\frac{d y}{d x}$?
(10) (2 points) Let $y=2^{\sqrt{x^{2}-1}}$. What is $y^{\prime}=\frac{d y}{d x}$?
(11) (6 points) Sketch $y=f(x)=x\left(x^{2}-1\right)$. Label all important properties. Show work.
(12) (6 points) The surface area of a sphere of radius r is $4 \pi r^{2}$ and the volume of the sphere is $\frac{4}{3} \pi r^{3}$. You have 100 square inches of material to cover a sphere and a cube (with edge x). You want the minimal total volume enclosed by the sphere and the cube. What must r and x be? (Good partial credit for the ratio of r to x.)
(13) (8 points) Two idiots have been driving around the Cartesian plane. At time t, the first idiot is at point $(3 t, 4 t+4)$ and the second idiot is at $(t, 2 t)$. How fast are they moving towards each other (or away from each other) at time $t=0$? When are they closest to each other? How close are they and where are they when they are closest?

