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E(n) is |vp| = 2(2™ — 1) periodic.

ER(n) is |fuﬁ+1| = 2nt2(2n _ 1) periodic.

ER(n)*(X) B ER(n)*(X)

e

E(n)*(X)
The degree of z is —A\(n) = =227+l pont2_ 1

CU2n—|—1_1 —0
Forn=1|z|=-234+23—-1=—-1andz=n
because ER(1) = KO(y) and E(1) = KU y).
For n = 1 periodicity is 23(21 — 1) = 8.

KUy = E(1) is 2-periodic. Grade all over
7/(8).



Compute KO?Q) from KUE‘Q).
We know the answer: (Graded over Z/(8).)
Free Z5y on 1 in degree O.

Free Z5y on (B in degree —4.

Z,/(2) on n in degree —1.

n31 =0 nB8 =0 and B2 = 4.

Only 3 differentials because z = n has z3 =
Degree of d" is r + 1.

KUEKQ) is Zoy free on vi, 0<i< 4.

Set v{ = 1. |v1| = —2.
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Z(2)
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d3
v3 Z/(2)



Facts about ER(2). |z| = —17. z’ = 0.
E(2)* = Zpylv1,v3 ],

ER(2) is 48 periodic, so for E(2) we set v§ = 1.
(Recall |vp| = —6.) Index over Z/(48).
No vy in ER(2)* but there is an a € ER(2)32.
o — vgvl. Replace v1 with a € E(2)*.
E(2)* is Zyy free on vhal, 0<i <8, 0<j.

Compute ER(2)* from E(2)*.
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As differentials get harder, there is less to deal
with!

We want applications.

James says: If RP2" immerses (C) in R2F then
there exists an axial map:

Rrp2n « pp2"—2k-2 __ | pp2f-2n-2

Don Davis uses BP, or, really, BP{2)*(—).
BP(2)* ~ Zylv1,v2].

There is no v, torsion so we can invert v, and
use E(2)*(—).



E(z)*(RPQK—Qn—Q)

E(2)*(RP?")
®E(2)*

E(Q)*(RPQK—Qk—Q)

K-1__ . .
:c% " = 0 maps non-trivially for

n:m-'-()((’fﬂ)—l and
k=2m — a(m).

Don shows RP?™ ¢ R?F for these n and k.



To do same with FR(2)*(—) we will need
ER(2)*(RP?™).
E1l of spectral sequence is E(2)*(RP?")
v3aful in a 2-adic basis.
0<s<8
0<k
0<7<n
u IS not Don’s x».
There is a u € ER(2)16(RP?")
3

which maps to vyxzs.

We use this w.



dl is easy.

d3 follows from

RP27=2 _, Rp2n _, Rp2n/RP2n—2

Only have di1:3:57} pecause even degree.
After d3 have w1123} and v4ul12:3}
There is a known

d7 : v8ull:23} - (1,23}

Differentials are hard now, but not much left.
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For n =20,3,4,7 mod 8.
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Forn=1,2,5,6 mod 8.

V5U V5U
5 n
v3u

L
fugu”_l u fugu”

Element of interest:

wzakv5un = oFu" T £ 0.
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KU9(RP?™) has u" # 0 and «"t1 =0.

For n = 0,3 mod 4.

KO9(RP?") has u™ # 0 and u"t1 = 0.

For n=1,2 mod 4.

KOO9(RP?™) has w"t1 £ 0 and «"1t2 = 0.
E(2)16*(RP?") has oful 0 < j < n.

Theorem 1. ER(2)10*(RP?") consists of the
elements o*uJ, with 0 < k and 0 < j < n, and,
when

n =0 or 7 modulo 8, no others,

n=1 or 6 modulo 8, afunT1,

n =2 or 5 modulo 8, o*u"*tl and uw"T2,

n =3 or 4 modulo 8, u"tl w"T2 and w13,
13



We have, when n = 0,7 mod 8:

ER(2)16*(RP277,) ~ E(2)16*(Rp2n)

Purely algebraically, we have surjections

ER(2>16*(RP2n) N E(2)16*(Rp2n—|—2)

when n=1,2,5,6 mod 8.

Back to the axial maps.
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ER(Q)*(RPQK_Qn_Q) E(2)*(RP2K—2?’L—2)

ER(2)*(RP?") E(2)*(RP?")
R ER(2)* DE(2)*
ER(Q)*(RPQK—Qk—4) E(2>*(RP2K—2k—2)

When n = 0,7 mod 8, top two are isomor-
phisms.

When —k—2=1,2,5,6 mod 8, bottom is sur-
jection.

Now we mooch off of Don to show it is non-
zero in the tensor product.
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Theorem 2. When the pair (m,a(m)) is, mod-
U/O 8’ (277)’ (77 2)’ (673)’ (37 6)’ (77 1)’ (47 4)’
(3,5), or (0,0), then

Rp2(m+a(m)=1) g5es not immerse (Z)
in R2(2m—a(m)+1)

When the pair (m,a(m)) is, modulo 8, (4,3),
(1,6), (0,7), or (5,2), then

Rp2(m+a(m)) ¢ in rR22m—a(m)+1)

An improvement of 1 or 2 for half of the k's
and 1/4 of the n's, so for 1/8 of the cases he
deals with.
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(m,a(m)) = (6,3) mod 8.

RP16—|—2H‘1 91 R20+2i+2

RP*8 ¢ R84 RP8O ¢ R148 RP144 ¢ R276.

(m,a(m)) = (4,4) mod 8.

Rpp62+2 ¢ R106+42111
Rppl26 ¢ R234 Rpl90 ¢ R362
The pair (4,3) mod 8 gives
pplé+2tiqyoitl ¢ R12+42iF24-20+2

RPllO g R204 RP174 g R332.
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Unfortunately, the tensor product is not enough.

E(Q)*(RPQK—QTL—Q)

|

E(2)*(RP?™)
®E’(2)*

E(Q)*(RPQK_Qk_Q)

E(2)*(RP2?’L ¢ RPQK—Qk—Q)

For E(2)*(—) this last map is an injection from
C-F 1964.

Nothing like that for ER(2)*(—).

Two kinds of problems.
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First:
Perhaps image of u2" '~"is Z + zW. with Z
going to non-zero in E(2)*(—) but Z 4 zW

going to zero in ER(2)*(product).
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ER(2)*(RP>®)—— E(2)*(RP™)

ER(2)*(RP>) E(2)*(RP>)
Q®ER(2)* DE(2)*
ER(2)*(RP™) E(2)*(RP™)

These are all isomorphisms in degrees 16x.

We have Kunneth theorems for RP°° for both
FR(2)*(—=) and E(2)*(—).

There is no zW. The coproduct is exactly the
same for both theories.

This is very special to 16x.

2u+rpoau?+put =0
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Next we need to show that our obstruction is
non-zero when we map

ER(Q)*(RPQK_Q”_Q)

|

ER(2)*(RP?2"™)
R®ER(2)*

ER(Q)* (RPQK—Qk—4)

ER(2)*(RP2" x RP2"—2k—4)

But we have no map

ER(2)*(RP?" x RP2"—2k—4y _,

E(2>*(RP2n > RPQK—QIC—Q)
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Theorem 3. Let m < n, then
BP*(RP?™ A RP?™) ~
BP*(RP°™) @ gp» BP*(RP?™)

@ZQn_lBP*(RPQm)

Theorem 4. Let m < n, then
E(2)*(RP?™ A RP?™) ~
E(2)"(RP?™) ® 2y« E(2)"(RP?")

@Z_l6n_1E(2)*(RP2m)
represented by (2-adic basis)

vgakuaug 0<k O0<i:<m 0<s<38

.

viulul, O0<i<m 1<j<n 0<s<8
and

k

viafulz_16n_17 0<k 0<j<m 0<s<8.

22



Because of the map ER(2)*(-) — E(2)*(-)
we always have

for:<m and 1 <j <n.
For n=1,2,5,6 we also need uilug"'l.

By products, this would be
xzvguaug = u%ug_l_l

All we have to do is show that v3u}u% is not
in the image of d! or d<.

d! is easy. d? is odd degree and we now have
odd degree elements.

We show that z_q16,,—-17 IS a real element and
this prevents the d? hitting v3u} ul.
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