MATH 301: HOMEWORK 8

Problem 1. Let $n, k \in \mathbb{N}$ with $k \leq n$. Find a bijection between $\binom{[n]}{k}$ and $\binom{[n]}{n-k}$ to deduce that $\binom{n}{k}=\binom{n}{n-k}$.
Problem 2. Use double counting to prove that

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

for all $n \in \mathbb{N}$.
Problem 3. Use the pigeonhole principle to show that given 100 integers, one can choose 15 of them such that the difference of any two is divisible by 7 .

Problem 4. For X a finite set and $m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{N}$, denote by $\binom{X}{m_{1} m_{2} \ldots}$ the set of k tuples $\left(U_{1}, \ldots, U_{k}\right)$ of pair-wise disjoint subsets of X with $\left|U_{i}\right|=m_{i}$. Let $n, k, m_{1}, \ldots, m_{k} \in \mathbb{N}$ be integers. Show that

$$
\left|\left(\begin{array}{cl}
{[n]} \\
m_{1} & m_{2} \ldots
\end{array}\right)\right|=\left\{\begin{array}{cl}
0 & m_{k}+\cdots+m_{k}>n \\
\frac{n!}{m_{1}!\cdot m_{2}!\cdots \cdots m_{k}!\cdot\left(n-m_{1}-m_{2}-\cdots-m_{k}\right)!} & \text { otherwise }
\end{array}\right.
$$

Problem 5.

a) Find the number of surjective maps from [5] to [4].
b) Find the number of injective maps from [3] to [4].

Problem 6. How many natural numbers less than 100 are multiples of 2,3 or 5 ?
Problem 7.
a) Let $n \in \mathbb{N}$. Show that the set of subsets of \mathbb{N} of size n is countable.
b) Show that the set of finite subsets of \mathbb{N} is countable.

Problem 8. Consider the set X of all subset $U \subset \mathbb{N}$ such that neither U nor $\mathbb{N} \backslash U$ is finite. Show that X is uncountable.

