MATH 301: HOMEWORK 7

Problem 1.

a) Let $A=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b \neq 0\}$ be the set of pairs of integers (a, b) where $b \neq 0$. Show that the relation \sim on A given by

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \quad \text { if } \quad a b^{\prime}=a^{\prime} b
$$

is an equivalence relation.
b) Find a bijection between the set of rational numbers and the quotient set A / \sim

Problem 2. Let $f: X \rightarrow Y$ be a function. Define a relation \sim_{f} on X by

$$
x \sim_{f} y \quad \Leftrightarrow f(x)=f(y)
$$

a) Show that \sim_{f} is an equivalence relation.
b) Construct a function $g: X / \sim_{f} \rightarrow Y$ such that

$$
f=g \circ h
$$

where h is the quotient function $h: X \rightarrow X / \sim_{f}$ given by $h(x)=[x]_{\sim_{f}}$.
c) Show that g is an injection.

Problem 3. Let n be a natural number and define an equivalence relation \sim_{n} on \mathbb{Z} by

$$
a \sim_{n} b \text { if } n \mid(a-b) .
$$

We showed in class that \sim_{n} is an equivalence relation. Denote the quotient set \mathbb{Z} / \sim_{n} by C_{n}.
a) Show that the assignment

$$
[a]_{\sim_{n}}+[b]_{\sim_{n}}=[a+b]_{\sim_{n}}
$$

defines an addition function $+: C_{n} \times C_{n} \rightarrow C_{n}$. In other words, show that the equivalence class $[a+b]$ only depends on the equivalence classes $[a],[b]$ and not on the representatives a, b.
b) Similarly, show that the assignment

$$
[a]_{\sim_{n}} \cdot[b]_{\sim_{n}}=[a \cdot b]_{\sim_{n}}
$$

defines a multiplication function $\cdot: C_{n} \times C_{n} \rightarrow C_{n}$
c) Fill in the multiplication table for C_{4}.
d) Prove that for any integer m, the remainder of m^{2} when divided by 4 is not 3 .

Table 1. C_{4} Multiplication table

	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$				
$[1]$				
$[2]$				
$[3]$				

Problem 4. Let $\mathcal{U}=\left\{U_{i} \subset X \mid i \in I\right\}$ be a partition of a set X. Show that the relation $\sim_{\mathcal{U}}$ given by

$$
x \sim_{\mathcal{U}} y \quad \Leftrightarrow \quad \exists i \in I, x \in U_{i} \wedge y \in U_{i}
$$

is an equivalence relation.
Problem 5. Let X be a finite set with $|X|=n>1$. Let $a \in X$ and $b \notin X$. Prove that
a) $X \backslash\{a\}$ is finite and $|X \backslash\{a\}|=n-1$,
b) $X \cup\{b\}$ is finite and $|X \cup\{b\}|=n+1$.

Problem 6. Let X be a finite set and $U \subset X$. Prove that

$$
|X \backslash U|=|X|-|U| .
$$

Problem 7. Let X, Y be disjoint finite sets of size n and m respectively. Let $f:[n] \rightarrow X$ and $g:[m] \rightarrow Y$ be enumeration functions of X and Y. Prove that the function h defined by

$$
\begin{aligned}
h:[n+m] & \rightarrow X \cup Y \\
a & \mapsto \begin{cases}f(a) & a \leq n \\
g(a-n) & a>n\end{cases}
\end{aligned}
$$

is an enumeration of $X \cup Y$.
Problem 8. Let X, Y be finite sets of size n and m respectively. Find, with a proof, the number of relations from X to Y ?

