MATH 301: HOMEWORK 5

Problem 1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
(a) Show that if f and g are surjective, then $g \circ f$ is surjective.

Solution. Suppose that f, g are surjective and let $z \in Z$. We will show that there exists $x \in X$ with $g \circ f(x)=z$. Since g is surjective, there exists an element $y \in Y$ such that $g(y)=z$. Since f is surjective, there exists an element $x \in X$ such that $f(x)=y$. Then $g \circ f(x)=g(f(x))=g(y)=z$, as desired.
(b) Show that if $g \circ f$ is surjective, then g is surjective.

Solution. Suppose that $g \circ f$ is surjective and let $z \in Z$. We will show that there exists $y \in Y$ such that $g(y)=z$. Since $g \circ f$ is surjective, there exists an element $x \in X$ such that $g \circ f(x)=z$. Letting $y=f(x)$, we see that $g(y)=g(f(x))=g \circ f(x)=z$, as desired.

Problem 2. Let $f: X \rightarrow Y$ be a function and $V \subset Y$. Prove or find a counterexample for each of the following assertions.
(a) $g(V) \subset f^{-1}(V)$ for every left inverse g of f.

Solution. This statement is false. As a counterexample, let $X=\{1\}$ and $Y=\{1,2\}$. Define functions f, g by $f(x)=1$ and $g(y)=1$ for all $x \in X$ and $y \in Y$. It's easy to verify that g is a left inverse of f. Letting $V=\{2\}$, we have

$$
g(\{2\})=\{1\} \not \subset \emptyset=f^{-1}(\{2\})
$$

(b) $f^{-1}(V) \subset g(V)$ for every left inverse g of f.

Solution. This statement is true. Let $x \in f^{-1}(V)$; we will prove that $x \in g(V)$. By the definition of the preimage, we have $f(x) \in V$. By the definition of left inverse $x=g(f(x))$. Since $f(x) \in V$, we have $x \in g(V)$, as desired.
(c) $f^{-1}(V) \subset g(V)$ for every right inverse g of f.

Solution. This statement is false. As a counterexample, let $X=\{1,2\}$ and $Y=\{1\}$. Define functions f, g by $f(x)=1$ and $g(y)=1$ for all $x \in X$ and $y \in Y$. It's easy to verify that g is a right inverse of f. Letting $V=\{1\}$, we have

$$
f^{-1}(\{1\})=\{1,2\} \not \subset\{1\}=g(\{1\})
$$

(d) $g(V) \subset f^{-1}(V)$ for every right inverse g of f.

Solution. This statement is true. Let $x \in g(V)$; we will prove that $x \in f^{-1}(V)$. By definition of the set image, there exists $y \in V$ such that $g(y)=x$. By the definition of right inverse $y=f(g(y))$. Hence $f(x)=y$ and therefore $x \in f^{-1}(V)$.

Problem 3.

(a) Let $f: X \rightarrow Y$ be a function. Suppose that f has a left inverse g_{L} and a right inverse g_{R}. Show that $g_{L}=g_{R}$.
Solution. Let $y \in Y$. We have

$$
g_{L}(y)=g_{L}\left(f\left(g_{R}(y)\right)\right)=g_{R}(y)
$$

where the first equality follows from the fact that $y=f\left(g_{R}(y)\right)$, since g_{R} is a right inverse of f, and the second equality follows from the fact that g_{L} is a left inverse of f. Since $g_{L}(y)=g_{R}(y)$ for all $y \in Y$, the two functions are equal.
(b) Let $f: X \rightarrow Y$ be a bijection. Show that a function $g: Y \rightarrow X$ is a right inverse of f if and only if it is a left inverse of f. Moreover, show that such function is unique. In this case, we denote this function $f^{-1}: Y \rightarrow X$.

Solution. Since f is a bijection, it is both an injection and a surjection. By propositions 3.2.28 and 3.2.37, f has a left inverse g_{L} and a right inverse g_{R}. If g is a right inverse to f, then $g=g_{L}$ by part a) and hence also a left inverse. If g is a left inverse of f, then by part a), $g=g_{R}$ and therefore also a right inverse. Therefore g is a right inverse of f if and only if it is a left inverse of f.

There exists a left inverse of f, since g_{L} is a left inverse. If g, g^{\prime} are two left inverses of f, then by part a), $g=g_{R}$ and $g^{\prime}=g_{R}$. In particular, $g=g^{\prime}$. It follows that there is a unique left inverse of f.
(c) Let $f: X \rightarrow Y$ be a function. Show that if f has a two-sided inverse, then it is bijective.

Solution. If g is a two-sided inverse of f, then f is an injection since it has a left inverse and a surjection since it has a right inverse, hence it is a bijection.

Problem 4. Let X, Y, Z be sets. Find a bijection (with proof) between $X \times(Y \times Z)$ and $X \times Y \times Z$.

Solution. Define functions

$$
f: X \times(Y \times Z) \rightarrow X \times Y \times Z
$$

and

$$
g: X \times Y \times Z \rightarrow X \times(Y \times Z)
$$

by the following formulas,

$$
\begin{array}{r}
f((x,(y, z)))=(x, y, z) \\
g((x, y, z))=((x,(y, z)))
\end{array}
$$

It is straightforward to verify that $f \circ g=i d$ and $g \circ f=i d$. Hence g is a two-sided inverse of f and by part c) of question $3, f$ is a bijection.

Problem 5. For each of the following pairs of sets X, Y, construct a bijective function (with proof) $f: X \rightarrow Y$.
(a) $X=\mathbb{Z}, Y=\mathbb{N}$

Solution. We will construct a function $f: \mathbb{Z} \rightarrow \mathbb{N}$ and prove that it is a bijection by exhibiting a two-sided inverse g of f. Define

$$
f(a)= \begin{cases}2 a & a \geq 0 \\ -2 a-1 & a<0\end{cases}
$$

$$
g(n)= \begin{cases}n / 2 & n \text { is even } \\ -\frac{n+1}{2} & n \text { is odd }\end{cases}
$$

We first show that $g \circ f(a)$ for all $a \in \mathbb{Z}$ and hence g is a left inverse of f. Let $a \in \mathbb{Z}$. If $a \geq 0$, then

$$
g(f(a))=g(2 a)=a
$$

If $a<0$, then $f(a)=-2 a-1$ is odd. Therefore

$$
g(f(a))=g(-2 a-1)=-\frac{-2 a-1+1}{2}=a
$$

In both cases, we have $g(f(a))=a$.
We now show that $f \circ g(n)=n$ for all $n \in \mathbb{N}$ and hence g is a right inverse of f. Let $n \in \mathbb{N}$. If n is even, then

$$
f(g(n))=f(n / 2)=n
$$

If n is odd, then

$$
f(g(n))=f\left(-\frac{n+1}{2}\right)=-2 \cdot-\frac{n+1}{2}-1=n .
$$

In both cases, we have $f(g(n))=n$.
(b) $X=\mathbb{R}, Y=(-1,1)$

Solution. We again construct a function $f: \mathbb{R} \rightarrow(-1,1)$ and then find its two-sided inverse g. Define functions f and g by $f(x)=\frac{x}{1+|x|}$ and $g(x)=\frac{y}{1-|y|}$. Note that $1+|x|>|x|$ and therefore $|f(x)|<1$ for all $x \in \mathbb{R}$ and hence defines a function with codomain $(-1,1)$. It is straight forward to verify that g is a two-sided inverse of f.

Problem 6. Let $f: X \rightarrow \mathcal{P}(X)$ be a function where $\mathcal{P}(X)$ is the power set of X. By considering the set $B=\{x \in X \mid x \notin f(x)\}$, prove that f is not surjective.

Solution. We claim that there does not exist an element $x \in X$ such that $f(x)=B$. Assume towards a contradiction that such element x exists. Then there are two cases, $x \in B$ or $x \notin B$.

- Case 1: Assume that $x \in B$. By definition of $B, x \notin f(x)$. Since $f(x)=B$, we have $x \notin B$. This is a contradiction.
- Case 2: Assume that $x \notin B$. By definition of $B, x \in f(x)$. Since $f(x)=B$, we have $x \in B$. This is again a contradiction.

Problem 7. Given $m \in \mathbb{N}$, define m^{n} for all $n \in \mathbb{N}$ by recursion on n, and prove that $2^{2}=4$.
Solution. We define

$$
m^{0}=1 ; \quad m^{s(n)}=m^{n} \cdot m
$$

where we use the fact that we already defined the multiplication function in class. Recall that $2=s(s(0))$ and $4=s(s(s(s(0))))$. We therefore have

$$
\begin{aligned}
2^{2}=s(s(0))^{s(s(0))} & =s(s(0))^{s(0)} \cdot s(s(0)) \\
& =\left(s(s(0))^{0} \cdot s(s(0))\right) \cdot(s(s(0))) \\
& =(1 \cdot s(s(0))) \cdot(s(s(0))) \\
& =s(s(0)) \cdot s(s(0))=s(s(s(s(0))))
\end{aligned}
$$

where in the last line we used that we already know that $1 \cdot n=n$ for all n and that $2 \cdot 2=4$. Equivalently, we can write the same computation as

$$
2^{2}=2^{1} \cdot 2=\left(2^{0} \cdot 2\right) \cdot 2=(1 \cdot 2) \cdot 2=(2) \cdot 2=4
$$

