MATH 301: HOMEWORK 5

Problem 1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
(a) Show that if f and g are surjective, then $g \circ f$ is surjective.
(b) Show that if $g \circ f$ is surjective, then g is surjective.

Problem 2. Let $f: X \rightarrow Y$ be a function and $V \subset Y$. Prove or find a counterexample for each of the following assertions.
(a) $g(V) \subset f^{-1}(V)$ for every left inverse g of f.
(b) $f^{-1}(V) \subset g(V)$ for every left inverse g of f.
(c) $f^{-1}(V) \subset g(V)$ for every right inverse g of f.
(d) $g(V) \subset f^{-1}(V)$ for every right inverse g of f.

Problem 3.

(a) Let $f: X \rightarrow Y$ be a function. Suppose that f has a left inverse g_{L} and a right inverse g_{R}. Show that $g_{L}=g_{R}$.
(b) Let $f: X \rightarrow Y$ be a bijection. Show that a function $g: Y \rightarrow X$ is a right inverse of f if and only if it is a left inverse of f. Moreover, show that such function is unique. In this case, we denote this function $f^{-1}: Y \rightarrow X$.
(c) Let $f: X \rightarrow Y$ be a function. Show that if f has a two-sided inverse, then it is bijective.

Problem 4. Let X, Y, Z be sets. Find a bijection (with proof) between $X \times(Y \times Z)$ and $X \times Y \times Z$.

Problem 5. For each of the following pairs of sets X, Y, construct a bijective function (with proof) $f: X \rightarrow Y$.
(a) $X=\mathbb{Z}, Y=\mathbb{N}$
(b) $X=\mathbb{R}, Y=(-1,1)$

Problem 6. Let $f: X \rightarrow \mathcal{P}(X)$ be a function where $\mathcal{P}(X)$ is the power set of X. By considering the set $B=\{x \in X \mid x \notin f(x)\}$, prove that f is not surjective.

Problem 7. Given $m \in \mathbb{N}$, define m^{n} for all $n \in \mathbb{N}$ by recursion on n, and prove that $2^{2}=4$.

