MATH 301: HOMEWORK 4

Problem 1. Let X and Y be sets. Prove that $X \subset Y$ if and only if $X \cup Y=Y$.
Problem 2. Let X, Y be sets. Prove that $X \backslash(X \backslash Y)=X \cap Y$.
Problem 3. Let U, V, W be sets. Prove
(a) $U \cap(V \cup W)=(U \cap V) \cup(U \cap W)$
(b) $U \cup(V \cap W)=(U \cup V) \cap(U \cup W)$
(Hint: Write out the logical formulas expressing that an element x belongs to each of the sets above)

Problem 4. Prove the De Morgan's laws for sets A, X, Y and a family of sets $\left\{X_{i} \mid i \in I\right\}$
(a) $A \backslash(X \cup Y)=(A \backslash X) \cap(A \backslash Y)$
(b) $A \backslash(X \cap Y)=(A \backslash X) \cup(A \backslash Y)$
(c) $A \backslash \bigcup_{i \in I} X_{i}=\bigcap_{i \in I}\left(A \backslash X_{i}\right)$
(d) $A \backslash \bigcap_{i \in I} X_{i}=\bigcup_{i \in I}\left(A \backslash X_{i}\right)$

Problem 5. Find a family of sets $\left\{X_{n} \mid n \in \mathbb{N}\right\}$ such that the following properties are satisfied
(a) $\bigcup_{n \in \mathbb{N}} X_{n}=\mathbb{N}$
(b) $\bigcap_{n \in \mathbb{N}} X_{n}=\emptyset$
(c) For all $i \neq j \in \mathbb{N}, X_{i} \cap X_{j}=\emptyset$.

Problem 6. For which of the following specifications of sets $X, Y, G \subset X \times Y$ is G a graph of a function?
(a) $X=\mathbb{R}, Y=\mathbb{R}, G=\left\{\left(a, a^{2}\right) \mid a \in \mathbb{R}\right\}$
(b) $X=\mathbb{R}, Y=\mathbb{R}, G=\left\{\left(a^{2}, a\right) \mid a \in \mathbb{R}\right\}$
(c) $X=\mathbb{R}_{\geq 0}, Y=\mathbb{R}_{\geq 0}, G=\left\{\left(a^{2}, a\right) \mid a \in \mathbb{R}_{\geq 0}\right\}$
(d) $X=\mathbb{Q}_{\geq 0}, Y=\mathbb{Q}_{\geq 0}, G=\left\{\left(a^{2}, a\right) \mid a \in \mathbb{Q}_{\geq 0}\right\}$
(e) $X=\mathbb{N}, Y=\mathbb{N}, G=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x$ divides $y\}$
(f) $X=\mathbb{N}_{\geq 1}, Y=\mathbb{N}, G=\left\{(x, y) \in \mathbb{N}_{\geq 1} \times \mathbb{N} \mid y\right.$ is the greatest power of 2 dividing $\left.x\right\}$

Problem 7. Let $f: X \rightarrow Y$ be a function. Prove or find a counterexample for the following assertions
(a) $U \subset f^{-1}(f(U))$ for all $U \subset X$
(b) $f^{-1}(f(U)) \subset U$ for all $U \subset X$
(c) $V \subset f\left(f^{-1}(V)\right)$ for all $V \subset Y$
(d) $f\left(f^{-1}(V)\right) \subset V$ for all $V \subset Y$

