MATH 301: HOMEWORK 3

Problem 1. Prove that

$$
p \Leftrightarrow q \equiv(p \Rightarrow q) \wedge(\neg p \Rightarrow \neg q)
$$

What proof strategy does this equivalence suggest for proving a statement of the form $p \Leftrightarrow q$.
Problem 2. Prove using a truth table that $p \Rightarrow q \not \equiv q \Rightarrow p$. Give an example of propositions p, q such that $p \Rightarrow q$ is true but $q \Rightarrow p$ is false.

Problem 3. Maximally negate the following logical formula and then prove that it is true or prove that it is false

$$
\exists x \in \mathbb{R},\left[x>1 \wedge\left(\forall y \in \mathbb{R},\left[x<y \Rightarrow x^{2} \leq y\right]\right)\right]
$$

Problem 4. Let X be \mathbb{Z} or \mathbb{Q} and define a logical formula p by

$$
\forall x \in X, \exists y \in X,(x<y \wedge[\forall z \in X, \neg(x<z \wedge z<y)])
$$

Describe what p asserts about the set X. Find the maximally negated logical formula equivalent to $\neg p$. Prove that p is true when $X=\mathbb{Z}$ and false when $X=\mathbb{Q}$.
Problem 5. Which of the following formulas are equivalent?
a) $p \Rightarrow(q \Rightarrow r)$
b) $q \Rightarrow(p \Rightarrow r)$
c) $(p \Rightarrow q) \wedge(p \Rightarrow r)$
d) $(p \wedge q) \Rightarrow r$
e) $p \Rightarrow(q \wedge r)$

Problem 6. The set $\left\{x \in \mathbb{R} \mid x^{2}<x\right\}$ is equal to an interval. Find this interval and prove the equality of the two sets.
Problem 7. Identify the set

$$
\left\{r \in \mathbb{N} \mid 0 \leq r<3 \wedge\left[\exists n \in \mathbb{Z}, \exists q \in \mathbb{Z}, n^{2}=3 q+r\right]\right\}
$$

Problem 8. Prove that a natural number is divisible by 3 if and only if the sum of its base 10 digits is divisible by 3 . (Hint: You might need the fact that for a natural number n, $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)$. $)$

