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6.1.8 The derivative of g, if it exists, equals

g′(x) = lim
h→0

1

h
(g(x+ h)− g(x))(1)

= lim
h→0

1

h

∫ 1

0

(f((x+ h)y)− f(xy)) y2dy(2)

Since f is C1, for any x, we have

f(x+ z) = f(x) + f ′(x)z +Rx(z)

for some error function Rx. Therefore

f((x+ h)y)− f(xy) = f ′(xy)hy +Rxy(hy)

and by (2)

g′(x) = lim
h→0

1

h

∫ 1

0

(f ′(xy)hy +Rxy(hy)) y
2dy

=

∫ 1

0

f ′(xy)y3dy + lim
h→0

1

h

∫ 1

0

Rxy(hy)y
2dy

We claim that the second term vanishes, which we now prove.
Let x be �xed and assume, for notational simplicity, that x > 0. We show that

lim
h→0

1

h

∫ 1

0

Rxy(hy)y
2dy = 0

Since f ′ is continuous, it is uniformly continuous on [0, x+1]. Given 1
m
, let 1

n
be such

that for |z0 − z1| < 1
n
|f ′(z0)− f ′(z1)| < 1

m
. For any y, h we have

f((x+ h)y)− f(xy) = f ′(z∗)(hy)

for some z∗ between xy and xy + hy. Therefore

Rxy(hy) = f((x+ h)y)− f(xy)− f ′(xy)hy
= (f ′(z∗)− f ′(xy))hy

If |h| < 1
n
, since |y| ≤ 1, we have |z∗ − xy| < h < 1

n
and hence

|Rxy(hy)| ≤
1

m
|h|y

It follows that if |h| < 1
n
,

|1
h

∫ 1

0

Rxy(hy)y
2dy| ≤ 1

m

∫ 1

0

y3dy.

Since
∫ 1

0
y3dy is a constant, it follows that

lim
h→0

1

h

∫ 1

0

Rxy(hy)y
2dy = 0.

1
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We showed that

g′(x) =

∫ 1

0

f ′(xy)y3dy.

It remains to show that g′ is continuous. Fix M > 0 and restrict the functions
f, f ′, g, g′ to [0,M ]. We show that g′ is uniformly continuous on [0,M ]. Since f ′ is
continuous on [0,M ], it is uniformly continuous. Given 1

m
, let 1

n
be such that for all

x1, x2 ∈ [0,M ], |f ′(x1)− f ′(x2)| < 1
m
. Then for all x1, x2 ∈ [0,M ] with |x1 − x2| < 1

n
we have

|g′(x1)− g′(x2)| = |
∫ 1

0

f ′(x1y)y
3dy −

∫ 1

0

f ′(x2y)y
3dy|

= |
∫ 1

0

(f ′(x1y)− f(x2y))y3dy|

≤
∫ 1

0

|(f ′(x1y)− f(x2y))|y3dy

=

∫ 1

0

1

m
y3dy =

1

4m
<

1

m

where we used the fact that 0 ≤ y ≤ 1 to deduce that |x1y − x2y| ≤ |x1 − x2| < 1
n
.

Or, you could have used Theorem 6.1.7 although we have not proved it.
6.1.14 a) Fix x ∈ (a, b) and assume that f(x) 6= 0. (If f(x) = 0 the statement follows

trivially). By the mean value theorem, there exist y1 < x < y2 such that

f(x) = f ′(y1)(x− a)
f(x) = f ′(y2)(x− b)

In particular, f ′(y1) and f
′(y2) have di�erent signs and therefore by the intermediate

value theorem, there exists z with y1 < z < y2 such that f ′(z) = 0. Since

|y1 − z|+ |y2 − z| = |y1 − y2| < b− a

either |y2 − z| ≤ |x− a| or |y1 − z| ≤ |x− b|. There are now two cases to check
Case 1 If |y2− z| ≤ |x− a|, then by the intermediate value theorem, there exists w such

that f ′(y2) = f ′′(w)(y2 − z) and hence

|f(x)| = |f ′(y2)(x− b)| = |f ′′(w)(y2 − z)(x− b)|
≤M2|y2 − z||x− b| ≤M2|x− a||x− b|

Case 2 If |y1− z| ≤ |x− b|, then by the intermediate value theorem, there exists w such
that f ′(y1) = f ′′(w)(y1 − z) and hence

|f(x)| = |f ′(y1)(x− a)| = |f ′′(w)(y1 − z)(x− a)|
≤M2|y1 − z||x− a| ≤M2|x− b||x− a|

b) Let f be a function with |f ′′(x) ≤ M2 for all x. We would like to compare

the value of the integral
∫ b
a
f(x)dx with the trapezoidal rule approximation of the

integral with respect to some partition P = xi. Consider a particular interval in the
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partition [xi−1, xi]. The di�erence between the integral and the trapezoid gule over
this partition is ∫ xi

xi−1

f(x)dx− 1

2
(f(xi) + f(xi−1))(xi − xi−1).(3)

We can rewrite the second term as the integral of the linear function f(xi−1) +
f(xi)−f(xi−1))

xi−xi−1
x and hence (3) becomes∫ xi

xi−1

f(x)−
(
f(xi−1) +

f(xi)− f(xi−1))
xi − xi−1

x

)
dx(4)

In this equation, the integrand vanishes on the boundary points and its second de-
rivative coincides with the second derivative of f . By part a) of this quesion, the
integrand is bounded by M2(xi − x)(x− xi−1) and (4) is bounded by∫ xi

x−i
M2(xi − x)(x− xi−1)dx =M2

(xi − xi−1)3

6

To evaluate the integral, note that the result only depends on xi− xi−1, so assuming
xi−1 = 0, the integral simpli�es to∫ xi

0

(xix− x2)dx =
x3i
2
− x3i

3
=
x3i
6
.

Hence if P is a partition such that (xi − xi−1) < δ, we have∫ b

a

f(x)dx−
n∑
k=1

1

2
(f(xi) + f(xi−1)) (xi − xi−1)

≤
n∑
k=1

M2
(xi − xi−1)3

6
≤

n∑
k=1

M2δ
2 (xi − xi−1)

6

=
M2δ

2

6
(b− a)

6.2.1 Let f ∗ be the restriction of f to [a, b]. We show that Osc(f ∗, P ) → 0 as |P | → 0.
Since f is integrable, Osc(f, P ′) → 0 as |P ′| → 0. Given 1

m
, let 1

n
be such that

Osc(f, P ′) < 1
m

for all partitions P ′ of [a, c] such that |P ′| < 1
n
. For any partition P

of [a, b] such that |P | < 1
n
let P ′ be an extension of P to [a, c] such that |P ′| < 1

n
as

well. We have

Osc(f ∗, P ) ≤ Osc(f, P ′) <
1

n
6.2.4 Since f, g are Riemann integrable on [a, b], they are in particular bounded. Let

|f(x)| ≤M1 and |g(x)| < M2 for all x. The oscillation Osc(f · g, P ) is the sum of the
terms

sup
x∈[xi−1,xi]

f(x)g(x)− inf
x∈[xi−1,xi]

f(x)g(x)

multiplied by (xi − xi−1). These terms can equivalently be expressed as

sup
x,y∈[xi−1,xi]

|f(x)g(x)− f(y)g(y)|
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By triangle inequality,

sup
x,y∈[xi−1,xi]

|f(x)g(x)− f(y)g(y)|

= sup
x,y∈[xi−1,xi]

|f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|

= sup
x,y∈[xi−1,xi]

|f(x)||g(x)− g(y)|+ |g(y)|f(x)− f(y)|

≤M1 sup
x,y∈[xi−1,xi]

(g(x)− g(y)) +M2 sup
x,y∈[xi−1,xi]

(f(x)− f(y))

It follows that Osc(f ·g, P ) ≤M1Osc(g, P )+M2Osc(f, P ) from which it follows that
Osc(f · g, P )→ 0 when |P | → 0 if f and g are Riemann integrable.

6.2.6 Consider h(x) = f(x)− g(x). We have h(x) = 0 for all but �nitely many x. Hence h
is Riemann integrable. Then g = f(x) − h(x) is Riemann integrable being the sum
of two Riemann integrable functions.

6.2.7 We will construct a partition P with an arbitrarily small value of Osc(g ◦ f, P ).
For simplicity, we will only consider equidistant partitions, i.e., for N ∈ N, we take
xi = a+ (b− a) · i

N
. Letting Mi,mi be the supremum and in�num of f over the ith

interval we have

Osc(f, P ) =
a− b
N

N∑
i=1

Mi −mi

and this quantity goes to 0 as N goes to in�nity since f is Riemann integrable. If
all of the di�erences Mi−mi got small as N increased then using uniform continuity
of g we could easily argue that Osc(g ◦ f, P ) also goes to 0 when N goes to in�nity.
In general though, some of the terms Mi −mi might remain large, for example if f
is discontinuous. Only few of the terms Mi − mi can remain large though and we
would need to bound contributions from those intervals separately. We will need a
quantitative measure of how many of the terms in Mi −mi might remain large.
Let M ′

i and m
′
i be the supremum and in�num of g ◦ f over the ith interval. Let

2|g(x)| ≤M for all x. Then |M ′
i −m′i| ≤M for all i. Given ε > 0, let δ > 0 be such

that if |y1−y0| < δ then |g(y1)−g(y2)| < ε
2
. Hence if for some i we haveMi−mi < δ,

then M ′
i −m′i < ε

2
.

Let K ∈ N be such that K > 2M
ε
. Let P be an equidistant partition of [a, b] with

NK subintervals such that

Osc(f, P ) =
a− b
NK

NK∑
i=1

Mi −mi <
(b− a)δ
K

This inequality implies that at most N of the terms Mi −mi can be bigger than δ
since otherwise the left hand side would add up to a number bigger than (b−a)δ

K
. The

corresponding terms in Osc(g ◦ f, P ) will contribute at most

N · a− b
NK

·M ≤ (b− a)ε
2

since there will be at most N terms each one of which will be of the form a−b
NK

(M ′
i−m′i)

and M ′
i −m′i < M . The remaining terms in Osc(g ◦ f, P ) will have (M ′

i −m′i) < ε
2
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since for those i, Mi −mi < δ. Those will contribute at most

NK · a− b
NK

· ε
2
=

(b− a)ε
2

Therefore
Osc(g ◦ f, P ) ≤ (b− a)ε

Since ε can be chosen arbitrarily small, the result follows.
6.2.10 Let limx→x+0

f(x) = f+(x0) which we assume exists. Then

lim
x→x+0

F (x)− F (x0)
x− x0

= lim
x→x+0

1

x− x0

∫ x

x0

f(t)dt

Since limx→x+0
f(x) = f+(x0) given any ε > 0 if x > x0 is su�ciently close to x0

then |f(x)− f+(x0)| < ε. For all such x we have

| 1

x− x0

∫ x

x0

f(t)dt− f+(x0)| = |
1

x− x0

∫ x

x0

f(t)− f+(x0)dt|

≤ 1

x− x0
(x− x0) · ε = ε

In other words, for x > x0 close enough to x0,
1

x−x0

∫ x
x0
f(t)dt is within ε of f+(x0).

We thus get

lim
x→x+0

F (x)− F (x0)
x− x0

= f+(x0)

Completely analogously, for f−(x0) = limx→x−0
, we have

lim
x→x−0

F (x)− F (x0)
x− x0

= f−(x0)

This shows that if f is continuous at x0, i.e. f
−(x0) = f+(x0) = f(x0), then F

′(x0) =
f(x0) and if f−(x0) 6= f+(x0), then the limit de�ning the derivative of F at x0 does
not exist.


