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6.1.8 The derivative of g, if it exists, equals

(1) () = lim =+ (g(x + h) — 9(x)
(2) =y / (z + h)y) = f(zy)) y*dy

Since f is O, for any x, we have
fo =)= f() + /(@)= + Rul)
for some error function R,. Therefore
f((@+h)y) = fzy) = f(zy)hy + Rey(hy)
and by

1

g'(x) = lim % (f"(zy)hy + Ray(hy)) y*dy

0
1 1
o / 3 — 2
_/0 f(xy)y dy+}1£>r(l]h/0 Ry, (hy)y“dy

We claim that the second term vanishes, which we now prove.
Let x be fixed and assume, for notational simplicity, that x > 0. We show that

1 1
lim — [ Ry, (hy)y*dy =0
h Jo

h—0

Since f’is continuous, it is uniformly continuous on [0,z +1]. Given -, let £ be such
that for |z — 21| < 2 |f"(20) — f'(z1)| < L. For any y, h we have

f((z+R)y) = flxy) = f/(27)(hy)

for some z* between xy and zy + hy. Therefore
Ray(hy) = f((x + h)y) = fxy) — [/(ay)hy
= (f'(z") = f(zy)) hy
If |n| < %, since |y| < 1, we have [2* — zy| < h < L and hence
1
| Ruy()| < ——Ihly
It follows that if || < £,

I ) 1t
- [ R hyydyé—/ydy.
| Ratmia < - |

Since [\ y3dy is a constant, it follows that
0

2
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We showed that
1
g'(x) =/ f(zy)y’dy.
0

It remains to show that ¢’ is continuous. Fix M > 0 and restrict the functions
f, ' g,d to [0, M]. We show that ¢’ is uniformly continuous on [0, M]. Since f’ is
continuous on [0, M], it is uniformly continuous. Given %, let % be such that for all
x1, 32 € [0, M], |f'(z1) — f'(z2)| < &. Then for all zy,z, € [0, M] with |z; — 25| < 2
we have

Ig’(xl)—g’(frz)|=|/0 f’(xly)ygdy—/o [ (@2y)y’dy|
=4A(N%w—ﬂmwm%m

§A|W@w%4@wa@
|

where we used the fact that 0 <y <1 to deduce that |z1y — zoy| < |21 — 22| < L.
Or, you could have used Theorem 6.1.7 although we have not proved it.
6.1.14 a) Fix = € (a,b) and assume that f(x) # 0. (If f(z) = 0 the statement follows
trivially). By the mean value theorem, there exist y; < z < ys such that

f@) = f(y)(z - a)
f(@) = f'(y2)(z = b)

In particular, f'(y;) and f'(y2) have different signs and therefore by the intermediate
value theorem, there exists z with y; < z < yo such that f’(z) = 0. Since
=zl +lye— 2| =1 — | <b—a

either |ys — z| < | —a| or |y; — z| < |x — b|. There are now two cases to check
Case 1 If |yo — z| < |z — a, then by the intermediate value theorem, there exists w such
that f'(y2) = f"(w)(y2 — 2) and hence

[f (@) = 1" (y2) (& = b)| = |f" (w)(y2 — 2)(x — b)]
< Malys — z[|x — b < Mol — allx — |

Case 2 If |y; — z| < |z — b|, then by the intermediate value theorem, there exists w such
that f'(y1) = f"(w)(y1 — 2) and hence

[f (@) = 1" (y)(x = a)| = [f"(w)(y — 2)(x — a))|
< Malyy — z[|zx — af < Malw —bl[z — df

b) Let f be a function with |f”(z) < M, for all z. We would like to compare

the value of the integral fab f(x)dx with the trapezoidal rule approximation of the
integral with respect to some partition P = x;. Consider a particular interval in the
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partition [x;_1,2;]. The difference between the integral and the trapezoid gule over
this partition is

/I flz)de = %(f(avz) + fzi)) (@i — 2i-1).

We can rewrite the Second term as the integral of the linear function f(z;_q1) +
Je)=fwiz)) ;- and hence (3) becomes

Ti—Ti—1

T

fz) — (ﬂxi_l)Jr f(ffz‘)‘—f(ffz‘ 1) )da:

Ti—1

In this equation, the integrand vanishes on the boundary points and its second de-
rivative coincides with the second derivative of f. By part a) of this quesion, the
integrand is bounded by Ms(x; — x)(x — x;_1) and (4)) is bounded by

X5 o 3
/ Mg(l’z — l’)(l’ — CCifl)d.fL' = MQ<IZ+_1)

To evaluate the integral, note that the result only depends on x; — x;_1, so assuming
x;—1 = 0, the integral simplifies to
3 3

Ti 3 ; ;
/0 (xix—xQ)d:c:m—Q’—%:%.

Hence if P is a partition such that (z; — z;_1) < d, we have

/ Fla)de =3 3 (F) + Flwi)) (i — i)

< ZM2 xz ) < ZM252—< 6%‘1)

2
_ M;é b—a)

Let f* be the restriction of f to [a,b]. We show that Osc(f* P) —> 0 as |P| — 0.
Since f is 1ntegrable Osc(f,P') — 0 as |P'| — 0. Given ;Z let = be such that
Osc(f, P') < =+ for all partitions P’ of [a, c] such that |P'| < . For any partition P

of [a,b] such that |P| < 1 let P’ be an extension of P to [a, ¢] such that [P'| < % as

well. We have

Osc(f*, P) < Osc(f, P') < %

Since f,g are Riemann integrable on [a,b], they are in particular bounded. Let
|f(z)] < My and |g(x)| < M, for all x. The oscillation Osc(f - g, P) is the sum of the
terms

sup  f(z)g(z) — inf f(z)g(x)

z€[zi_1,34) TE€[wi—1,24]

multiplied by (z; — x;_1). These terms can equivalently be expressed as

sup  |f(z)g(x) — f(y)g(y)]

x,YE[Ti—1,4
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By triangle inequality,
sup [ f(x)g(x) = f(y)g(y)]

Y E€[Ti—1,%4]

= sup |[f(x)g(x) — f(z)g(y) + f(z)9(y) — f(y)g(v)]

Y€ [Ti—1,2;)

= sup |f(@)llg(x) =9+ lgW)|f(z) = f(y)|

x,Y€[Ti_1,14]

<M sup (9(z) —g(y))+ M sup (f(z)— f(y))
T,YE[xi—1,24) T,YE€[xi—1,24)
It follows that Osc(f-g, P) < M10sc(g, P)+ MsOsc(f, P) from which it follows that
Osc(f - g,P) — 0 when |P| — 0 if f and ¢ are Riemann integrable.

6.2.6 Consider h(x) = f(z) — g(x). We have h(x) = 0 for all but finitely many x. Hence h
is Riemann integrable. Then g = f(x) — h(z) is Riemann integrable being the sum
of two Riemann integrable functions.

6.2.7 We will construct a partition P with an arbitrarily small value of Osc(g o f, P).
For simplicity, we will only consider equidistant partitions, i.e., for N € N, we take
ri=a+ (b—a)- % Letting M;, m; be the supremum and infinum of f over the ith
interval we have

N
—b
Osc(f,P):aN ZMi_mi

i=1

and this quantity goes to 0 as N goes to infinity since f is Riemann integrable. If
all of the differences M; —m,; got small as IV increased then using uniform continuity
of g we could easily argue that Osc(g o f, P) also goes to 0 when N goes to infinity.
In general though, some of the terms M; — m; might remain large, for example if f
is discontinuous. Only few of the terms M; — m; can remain large though and we
would need to bound contributions from those intervals separately. We will need a
quantitative measure of how many of the terms in M; — m; might remain large.

Let M! and m) be the supremum and infinum of g o f over the ith interval. Let
2|g(x)] < M for all . Then |M] —m}| < M for all i. Given € > 0, let 6 > 0 be such
that if |y, —yo| < 0 then |g(y1) —g(y2)| < 5. Hence if for some ¢ we have M; —m; < 0,
then M —mj < §.

Let K € N be such that K > % Let P be an equidistant partition of [a, b] with
N K subintervals such that

NK

a—>b (b—a)d
Osc(f, P) = M, —m; <

NK ZH K

This inequality implies that at most N of the terms M; — m; can be bigger than ¢
since otherwise the left hand side would add up to a number bigger than @. The
corresponding terms in Osc(g o f, P) will contribute at most

a—>b (b—a)e
N A2 < P
NK - 2

since there will be at most IV terms each one of which will be of the form %=2(M/—m})

and M{ —mj < M. The remaining terms in Osc(g o f, P) will have (M; —m;) < §
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since for those i, M; — m; < . Those will contribute at most
a—b ¢ (b—a)e

NK - =
NK 2 2

Therefore

Osc(go f,P) < (b—a)e
Since € can be chosen arbitrarily small, the result follows.
Let lim,_, + f(z) = f*(xo) which we assume exists. Then

lim Fla) = Flao) = lim ! /1‘ f(t)dt

:s—mg' Tr — Xo z—ma' r — Xy

zo
Since lim,_, + f(z) = f*(xo) given any e > 0 if & > zq is sufficiently close to o
then |f(z) — fT(x¢)| < e. For all such x we have

—— [ swde— )l =1 [ 10~ £

T — g T —
1

T —Zg)-€=¢€
_SIJ—IO( 0)

In other words, for x > x close enough to x, w_lmo f;) f(t)dt is within e of fT(xo).
We thus get

. F(z) = F(zo) .
i ST
Completely analogously, for f~(z) = lim, Sar s W have
tim 2@ @) _ e
Ty T — T

This shows that if f is continuous at zg, i.e. f~(z9) = fT(xg) = f(x0), then F'(zq) =
f(zo) and if f~(xg) # f1(xo), then the limit defining the derivative of F' at xy does
not exist.



