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5.3.1 An easy computation shows that

kb=t if x>0
0 otherwise

which is a continuous function.

5.3.3 We first construct a C' function f whose zero set is the complement of (0,1). The
idea is to integrate a piece-wise linear function. We will define f with the desired
property such that

21 0<z<i
f’(x): 1—2z i<l’§%
—242x %<x§1
0 otherwise

which is continuous. To be more explicit, define f by

x? 0<z<

1 2 1 3
1422 -2z 3<a<1
0 otherwise

fz) =

Given an open interval I = (a,b), let f; be the C"! function defined by f;(z) = f(5=2).
The zero set of f; is the complement of I.

Given a closed set A, the complement of A is a countable union of disjoint open
intervals {/j }rex. The function

g(@) =Y fu(z)

keK

is a C' function whose zero set is A. Notice that for each x, at most one fr, () is
non-zero, so the above sum does indeed define a function on R.

5.3.7 The derivative of g(x) = 2% is ¢'(z) = k- 2*~! and hence for all z > 0, ¢'(z) > 0.
By the inverse function theorem, for any 0 < a < b, the restriction of g to (a,b) is
invertible. Since lim,_,o ¥ = 0 and lim,_,~ ¥ = 0oo, for any y > 0, there exist a < b
such that a® < y and v* > y. Hence y is in the image of the restriction of g to (a,b)
and there exists a unique g~'(y) € (a,b) such that g(¢~'(y)) = y. The value g~'(y)
clearly does not depend on the choice of (a,b). This defines g=! on (0,00). Since
x = 0 is the unique value such that z* = 0, defining ¢g=*(0) = 0 defines the desired
function f(z) = 2'/¥ on [0,00]. By the inverse function theorem, the derivative of
g~ ! is given by
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5.4.2 Assume that f(xo) = 0. If that is not the case, we can subtract f(xg) from f without

affecting its derivatives or whether or not x is a local maximum or a local minimum.

Since f is C", f™ is continuous. Since f™(zy) > 0, there exists an open interval

(o — €,m + €) for some ¢ > 0 on which f™ > 0. We first show that for all

x € (zg, 0 +€), f¥(2) >0for k=0,1,...,n. We induct on k as k decreases from

n to 0. We already know the result for £ = n. To prove the inductive step, assume

that f*+D(z) > 0 for all 2 € (29,70 + €). We also have f*)(x) = 0. By the Mean
Value Theorem, for any x € (xg, 2o + €), there exists 2’ € (xg, z) such that

fO(x) = fED (@) (2 — 20) > 0.

This completes the inductive step and we have thus showed that f(z) > 0 for = €
(o, o + €) We now prove an analogous statement for x € (xy — €, x). In particular,
we show that for k = 0,1,...,n and x € (2o — €, 79) we have f*)(z) > 0if n — k is
even and f*)(z) < 0 if n — k is odd. We again induct on k as k decreases from n to
0. The case k = n is the base case and we prove the inductive step. Assume that for
all z € (zg — €,m0), fE)(2) > 0if n —k — 1is even and f&H) < 0ifn —k — 1 is
odd. By the Mean Value Theorem, for every x € (zq — €, xq) there exists 2’ € (x, x0)
such that

FB (@) = fED @) (@ — o)
The sign of © — g is negative and therefore the sign of f*)(z) is opposite of the sign
of f*+D (/). Tn particular, f* (z) > 0if n—k is even and f¥(z) < 0 if n—k is odd.
This completes the inductive step. We have showed that if n is even, then f(x) > 0
for all z € (xy — €,x0) and if n is odd, then f(z) < 0 for all x € (xo — €,20). This

shows that if n is even, then z, is a local minimum and if n is odd, xy is neither a
local maximum nor a local minimum.

5.4.3 Let
[z +h) = f(z)
Y .

gn() =
Note that

flx+h)—2f(x)+ f(x —h) _ gn(z) — gn(x — h)
h? h
By the Mean Value Theorem, there exists x; between x and x — h such that

)

Now

[+ h) — f'(z1)
h

and by the Mean Value Theorem applied to f’

gn(w1) = f"(22)

for some 5 between x; and x, + h. Since f” is continuous and z, — and h — 0, we
conclude that

gn(w1) =

h—0




5.4.4

1'(0)
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To simplify notation, assume that o = 0. We will not need to full strength of
the statement that f, g are C%; we will only use that f, g are thrice differentiable and
f", g"" are bounded in some neighborhood of 0. Let h(x) = %. Since ¢'(0) # 0, there

is some neighborhood U of 0 such that g does not vanish on U\{0}. In particular,
h is well defined on U\{0}. We first show that h(0) can be defined as the limit
lim, ,o A(z) which in fact equals % We will use the mean value theorem many
times in this argument, and in order to not introduce new symbols every time we
apply the mean value theorem, we will denote a "some point" between 0 and x by e.

For example, we have

F(&) = F0) + £ (0) + 51" (0) + 571" (0)

and the only thing we will use about f”'(e) is that it is bounded by some M > 0
which is independent of .

Having introduced this notation, the rest is fairly straight forward. For z # 0, we
have

f/(())I + f”2(°) 72

hiz) = —
() g 0)x + ngxQ

where we have used that f(0) = ¢g(0) = 0. Dividing by z, noting that ¢”(e) and f”(e)
are bounded, and taking the limit as x — 0, we get

Y ) = £:§0§

which we define to be the value of h(0).
We now evaluate h'(0). We have
1 (02 + 5%+ 5 ()
g (0)z + g ( 9"(0) 1.2 + 9’”( )11:3 g'(0)
1_9«Mf<n+”§%-+” ) = ['(0)(g'(0)x + L2 + L)
7O O + L5002 + Z0)

Noting that ¢’(0)f'(0)x appears with both, a positive sign and a negative sign in the
numerator and that that is the only term with x raised to power 1, we get

oy SO FOTP . 1 g(0)f"(0) - £(0)g"(0)
R'(0) = lim = .
20 g0)2+ ... 2 g (0)?
where by ... we denote the terms with non-zero power of x.

It remains to show that lim, .o A'(z) = A’(0). By the quotient rule for derivatives,
we have

() — 90 @) = g @)f (@)

g(z)



M405 - HOMEWORK SET #8 - SOLUTIONS 4

We apply the mean value theorem to all 4 functions: f(z),g(z), f'(z), ¢ (x) to get

(/O + T2 + L) ((0) + 1/ (0 + L)
(g (O)x + g’ ( )x2 + g”’( )x3)2
($10) + 0 + L0 000 + L0 + L4
(g (O)x + g’ ( )zz + g’”( )x3)2

B (z) =

This expression is pretty horrid, but recall that we are interested in the limit as x — 0
and so we are only interested in the lowest powers of &, which in this case is 22 since
¢'(0)f(0)x cancels out in the numerator. We thus get

22(g/(0).f"(0) + 2 f/(0) — ¢/ (0) 52 — 7(0)£(0))) +

lim 2/(z) = lim

20 h—0 g'(0)222 + ...
_ 1400)f"(0) +¢"(0)f'0)
2 g'(0)?

5.4.13 Let f(x) = > 0 yar(z — 20)* + Ry(x — x0) and g(z) = >0 bi(y —y0) + Ry(y — o)
where both Ry and R, are o(|z|"). We then have

Z% Y+ Ry(f(x) — o)
—E:bE:%x—xd+4ﬁ@—de+RAﬂ@—uﬂ

This expression has all the terms we want, but also many that we don’t. It thus
suffices to show that the terms we don’t want are o(|z — zo|"). It’s clear for terms
that contain (x — () raised to a power greater than n and the terms which have
R¢(x — x¢) as a factor. The only remaining term is R,(f(z) — vo)-

Since f(z) —yo = a1(x —x¢) +o(x — ), for any a) such that a| > |a,], there exists
L such that |f(z) — yo| < af|z — x| for all z such that |z — zo| < L. We then have
that for all such z,

Re(f(x) —wo) _ Ry(f(x) —w0) [f(z) — w0l
|z — 20|" |f(z) — yol™ |z — 20|"
RF@ =) .,
<T@ —wl

Since (f(z) —yo) = 0 as x — 0, and R, = o(|z|"), it follows that

1o Ralf @)~ )

T—T0 |{L‘ — QL‘O|"

=0

and hence R,(f(x) —yo) = o(Jx — xo|™).
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5.4.20 Let f(x) = y/x and let us find the second order Taylor polynomial of f at 100. We

have
flz) =22
f(a) = 2o
2
1 s
f(z) = 7t
o) = Lo
and so
f(100) = 10
1
!/ 1 _
1
1 1 - __ -
f7(100) 4000
3
n 1 —
J7(100) 800000
So
1

1 1
100+ 1) = 10 + — — g
F(100+1) + 5 ~ 24000 T3/ &)

for some x’ between 100 and 101. The function f” is decreasing, so the maximal
value f”(2) can attain is f”'(100) = 55255 Therefore
1 1 1 3

1
104 — VI0L < 10 4 — —
20 2.4000 © <Yt 90 7 272000 T 200000

Pretty good estimate if you ask me.
6.1.2 The absolute value is a continuous function so it commutes with limits. Let P; be a
sequence of partitions such that |P;| — 0. Then

b
[ 7(@ydsl = Jim S(7, P i )

= lim | Y f(@])(@hs — Trio1)]
=1

k—o0

n

< lim Z |fx])|(2r — Tri1)

k—o00 4
=1

= klim SUf, Pr, {zy.})
—00

- [V

6.1.4 Since f is continuous on a compact domain [a,b], it attains its maximum M and
minimum m. Moreover, by the intermediate value theorem, f([a,b]) = [m, M], i.e.,
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every value between m and M is in the image of f. Since f(z) —m > 0 and
f(z) — M <0 we get

O§/abf(x)—mdx—/abf(x)d:r;—m(b—a)

< fabf(x)dx

~ b—a
Similarly,
b b
0> / f(z) — Mdx :/ flz)de — M(b—a)
b
Vs [ f(x)dx
- b—-a
Hence by the intermediate value theorem, there exists y € [a, b] such that
b
. f(x)dx
fly) = fb—
—a

6.1.5 We use Theorem 6.1.7 to compute

f@%ﬂm—@mw+/%mwﬁ:/ZWﬂt

F(@) = g(x).
Also
fmﬁi/m—omwwzo
ﬂwz/ﬁwwzo



