M405 - HOMEWORK SET \#8 - SOLUTIONS

5.3.1 An easy computation shows that

$$
f^{\prime}(x)= \begin{cases}k x^{k-1} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

which is a continuous function.
5.3.3 We first construct a C^{1} function f whose zero set is the complement of $(0,1)$. The idea is to integrate a piece-wise linear function. We will define f with the desired property such that

$$
f^{\prime}(x)= \begin{cases}2 x & 0<x \leq \frac{1}{4} \\ 1-2 x & \frac{1}{4}<x \leq \frac{3}{4} \\ -2+2 x & \frac{3}{4}<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

which is continuous. To be more explicit, define f by

$$
f(x)= \begin{cases}x^{2} & 0<x \leq \frac{1}{4} \\ -\frac{1}{8}+x-x^{2} & \frac{1}{4}<x \leq \frac{3}{4} \\ 1+x^{2}-2 x & \frac{3}{4}<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Given an open interval $I=(a, b)$, let f_{I} be the C^{1} function defined by $f_{I}(x)=f\left(\frac{x-a}{b-a}\right)$. The zero set of f_{I} is the complement of I.

Given a closed set A, the complement of A is a countable union of disjoint open intervals $\left\{I_{k}\right\}_{k \in K}$. The function

$$
g(x)=\sum_{k \in K} f_{I_{k}}(x)
$$

is a C^{1} function whose zero set is A. Notice that for each x, at most one $f_{I_{k}}(x)$ is non-zero, so the above sum does indeed define a function on \mathbb{R}.
5.3.7 The derivative of $g(x)=x^{k}$ is $g^{\prime}(x)=k \cdot x^{k-1}$ and hence for all $x>0, g^{\prime}(x)>0$. By the inverse function theorem, for any $0<a<b$, the restriction of g to (a, b) is invertible. Since $\lim _{x \rightarrow 0} x^{k}=0$ and $\lim _{x \rightarrow \infty} x^{k}=0 \infty$, for any $y>0$, there exist $a<b$ such that $a^{k}<y$ and $b^{k}>y$. Hence y is in the image of the restriction of g to (a, b) and there exists a unique $g^{-1}(y) \in(a, b)$ such that $g\left(g^{-1}(y)\right)=y$. The value $g^{-1}(y)$ clearly does not depend on the choice of (a, b). This defines g^{-1} on $(0, \infty)$. Since $x=0$ is the unique value such that $x^{k}=0$, defining $g^{-1}(0)=0$ defines the desired function $f(x)=x^{1 / k}$ on $[0, \infty]$. By the inverse function theorem, the derivative of g^{-1} is given by

$$
\left(g^{-1}\right)^{\prime}(y)=\frac{1}{g^{\prime}\left(g^{-1}(y)\right)}=\frac{1}{k \cdot\left(y^{1 / k}\right)^{k-1}}=\frac{1}{k} y^{-\frac{k-1}{k}}
$$

5.4.2 Assume that $f\left(x_{0}\right)=0$. If that is not the case, we can subtract $f\left(x_{0}\right)$ from f without affecting its derivatives or whether or not x_{0} is a local maximum or a local minimum.

Since f is $C^{n}, f^{(n)}$ is continuous. Since $f^{(n)}\left(x_{0}\right)>0$, there exists an open interval $\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ for some $\epsilon>0$ on which $f^{(n)}>0$. We first show that for all $x \in\left(x_{0}, x_{0}+\epsilon\right), f^{(k)}(x)>0$ for $k=0,1, \ldots, n$. We induct on k as k decreases from n to 0 . We already know the result for $k=n$. To prove the inductive step, assume that $f^{(k+1)}(x)>0$ for all $x \in\left(x_{0}, x_{0}+\epsilon\right)$. We also have $f^{(k)}\left(x_{0}\right)=0$. By the Mean Value Theorem, for any $x \in\left(x_{0}, x_{0}+\epsilon\right)$, there exists $x^{\prime} \in\left(x_{0}, x\right)$ such that

$$
f^{(k)}(x)=f^{(k+1)}\left(x^{\prime}\right)\left(x-x_{0}\right)>0
$$

This completes the inductive step and we have thus showed that $f(x)>0$ for $x \in$ $\left(x_{0}, x_{0}+\epsilon\right)$ We now prove an analogous statement for $x \in\left(x_{0}-\epsilon, x_{0}\right)$. In particular, we show that for $k=0,1, \ldots, n$ and $x \in\left(x_{0}-\epsilon, x_{0}\right)$ we have $f^{(k)}(x)>0$ if $n-k$ is even and $f^{(k)}(x)<0$ if $n-k$ is odd. We again induct on k as k decreases from n to 0 . The case $k=n$ is the base case and we prove the inductive step. Assume that for all $x \in\left(x_{0}-\epsilon, x_{0}\right), f^{(k+1)}(x)>0$ if $n-k-1$ is even and $f^{(k+1)}<0$ if $n-k-1$ is odd. By the Mean Value Theorem, for every $x \in\left(x_{0}-\epsilon, x_{0}\right)$ there exists $x^{\prime} \in\left(x, x_{0}\right)$ such that

$$
f^{(k)}(x)=f^{(k+1)}\left(x^{\prime}\right)\left(x-x_{0}\right)
$$

The sign of $x-x_{0}$ is negative and therefore the sign of $f^{(k)}(x)$ is opposite of the sign of $f^{(k+1)}\left(x^{\prime}\right)$. In particular, $f^{(k)}(x)>0$ if $n-k$ is even and $f^{(k)}(x)<0$ if $n-k$ is odd. This completes the inductive step. We have showed that if n is even, then $f(x)>0$ for all $x \in\left(x_{0}-\epsilon, x_{0}\right)$ and if n is odd, then $f(x)<0$ for all $x \in\left(x_{0}-\epsilon, x_{0}\right)$. This shows that if n is even, then x_{0} is a local minimum and if n is odd, x_{0} is neither a local maximum nor a local minimum.
5.4.3 Let

$$
g_{h}(x)=\frac{f(x+h)-f(x)}{h} .
$$

Note that

$$
\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=\frac{g_{h}(x)-g_{h}(x-h)}{h}
$$

By the Mean Value Theorem, there exists x_{1} between x and $x-h$ such that

$$
\frac{g_{h}(x)-g_{h}(x-h)}{h}=g_{h}^{\prime}\left(x_{1}\right) .
$$

Now

$$
g_{h}^{\prime}\left(x_{1}\right)=\frac{f^{\prime}\left(x_{1}+h\right)-f^{\prime}\left(x_{1}\right)}{h}
$$

and by the Mean Value Theorem applied to f^{\prime}

$$
g_{h}^{\prime}\left(x_{1}\right)=f^{\prime \prime}\left(x_{2}\right)
$$

for some x_{2} between x_{1} and $x_{1}+h$. Since $f^{\prime \prime}$ is continuous and $x_{2} \xrightarrow{x}$ and $h \rightarrow 0$, we conclude that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x)
$$

5.4.4 To simplify notation, assume that $x_{0}=0$. We will not need to full strength of the statement that f, g are C^{3}; we will only use that f, g are thrice differentiable and $f^{\prime \prime \prime}, g^{\prime \prime \prime}$ are bounded in some neighborhood of 0 . Let $h(x)=\frac{f(x)}{g(x)}$. Since $g^{\prime}(0) \neq 0$, there is some neighborhood U of 0 such that g does not vanish on $U \backslash\{0\}$. In particular, h is well defined on $U \backslash\{0\}$. We first show that $h(0)$ can be defined as the limit $\lim _{x \rightarrow 0} h(x)$ which in fact equals $\frac{f^{\prime}(0)}{g^{\prime}(0)}$. We will use the mean value theorem many times in this argument, and in order to not introduce new symbols every time we apply the mean value theorem, we will denote a "some point" between 0 and x by \bullet. For example, we have

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(\bullet)
$$

and the only thing we will use about $f^{\prime \prime \prime}(\bullet)$ is that it is bounded by some $M>0$ which is independent of x.

Having introduced this notation, the rest is fairly straight forward. For $x \neq 0$, we have

$$
h(x)=\frac{f^{\prime}(0) x+\frac{f^{\prime \prime}(\bullet)}{2} x^{2}}{g^{\prime}(0) x+\frac{g^{\prime \prime}(\bullet)}{2} x^{2}}
$$

where we have used that $f(0)=g(0)=0$. Dividing by x, noting that $g^{\prime \prime}(\bullet)$ and $f^{\prime \prime}(\bullet)$ are bounded, and taking the limit as $x \rightarrow 0$, we get

$$
\lim _{x \rightarrow 0} h(x)=\frac{f^{\prime}(0)}{g^{\prime}(0)}
$$

which we define to be the value of $h(0)$.
We now evaluate $h^{\prime}(0)$. We have

$$
\begin{aligned}
h^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{1}{x} \cdot\left(\frac{f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime \prime}(\bullet)}{3!} x^{3}}{g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\frac{g^{\prime \prime \prime}(\bullet)}{} 3!} x^{3}-\frac{f^{\prime}(0)}{g^{\prime}(0)}\right) \\
& =\lim _{x \rightarrow 0} \frac{1}{x} \cdot\left(\frac{\left.g^{\prime}(0)\left(f^{\prime}(0) x+\frac{\left(f^{\prime \prime}(0)\right.}{2} x^{2}+\frac{f^{\prime \prime \prime}(\bullet)}{3!} x^{3}\right)\right)-f^{\prime}(0)\left(g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\frac{g^{\prime \prime \prime}(\bullet)}{3!} x^{3}\right)}{g^{\prime}(0)\left(g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\frac{g^{\prime \prime \prime}(\bullet)}{3!} x^{3}\right)}\right)
\end{aligned}
$$

Noting that $g^{\prime}(0) f^{\prime}(0) x$ appears with both, a positive sign and a negative sign in the numerator and that that is the only term with x raised to power 1 , we get

$$
h^{\prime}(0)=\lim _{x \rightarrow 0} \frac{g^{\prime}(0) \frac{f^{\prime \prime}(0)}{2}-f^{\prime}(0) \frac{g^{\prime \prime}(0)}{2}+\ldots}{g^{\prime}(0)^{2}+\ldots}=\frac{1}{2} \cdot \frac{g^{\prime}(0) f^{\prime \prime}(0)-f^{\prime}(0) g^{\prime \prime}(0)}{g^{\prime}(0)^{2}}
$$

where by ... we denote the terms with non-zero power of x.
It remains to show that $\lim _{x \rightarrow 0} h^{\prime}(x)=h^{\prime}(0)$. By the quotient rule for derivatives, we have

$$
h^{\prime}(x)=\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{g(x)^{2}}
$$

We apply the mean value theorem to all 4 functions: $f(x), g(x), f^{\prime}(x), g^{\prime}(x)$ to get

$$
\begin{aligned}
h^{\prime}(x)= & \frac{\left(g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\frac{g^{\prime \prime \prime}(\bullet)}{3!} x^{3}\right)\left(f^{\prime}(0)+f^{\prime \prime}(0) x+\frac{f^{\prime \prime \prime}(\bullet)}{2} x^{2}\right)}{\left(g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\frac{g^{\prime \prime \prime}(\bullet)}{3!} x^{3}\right)^{2}} \\
& -\frac{\left(g^{\prime}(0)+g^{\prime \prime}(0) x+\frac{g^{\prime \prime \prime}(\bullet)}{2} x^{2}\right)\left(f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(\bullet)}{3!} x^{3}\right)}{\left(g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\frac{g^{\prime \prime \prime}(\bullet)}{3!} x^{3}\right)^{2}}
\end{aligned}
$$

This expression is pretty horrid, but recall that we are interested in the limit as $x \rightarrow 0$ and so we are only interested in the lowest powers of x, which in this case is x^{2} since $g^{\prime}(0) f^{\prime}(0) x$ cancels out in the numerator. We thus get

$$
\begin{aligned}
\lim _{x \rightarrow 0} h^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left.x^{2}\left(g^{\prime}(0) f^{\prime \prime}(0)+\frac{g^{\prime \prime}(0)}{2} f^{\prime}(0)-g^{\prime}(0) \frac{f^{\prime \prime}(0)}{2}-g^{\prime \prime}(0) f^{\prime}(0)\right)\right)+\ldots}{g^{\prime}(0)^{2} x^{2}+\ldots} \\
& =\frac{1}{2} \frac{g^{\prime}(0) f^{\prime \prime}(0)+g^{\prime \prime}(0) f^{\prime}()}{g^{\prime}(0)^{2}}
\end{aligned}
$$

5.4.13 Let $f(x)=\sum_{k=0}^{n} a_{k}\left(x-x_{0}\right)^{k}+R_{f}\left(x-x_{0}\right)$ and $g(x)=\sum_{j=0}^{n} b_{j}\left(y-y_{0}\right)^{j}+R_{g}\left(y-y_{0}\right)$ where both R_{f} and R_{g} are $o\left(|x|^{n}\right)$. We then have

$$
\begin{aligned}
g \circ f(x) & =\sum_{j=0}^{n} b_{j}\left(f(x)-y_{0}\right)^{j}+R_{g}\left(f(x)-y_{0}\right) \\
& =\sum_{j=0}^{n} b_{j}\left(\sum_{k=1}^{n} a_{k}\left(x-x_{0}\right)^{k}+R_{f}\left(x-x_{0}\right)\right)^{j}+R_{g}\left(f(x)-y_{0}\right)
\end{aligned}
$$

This expression has all the terms we want, but also many that we don't. It thus suffices to show that the terms we don't want are $o\left(\left|x-x_{0}\right|^{n}\right)$. It's clear for terms that contain $\left(x-x_{0}\right)$ raised to a power greater than n and the terms which have $R_{f}\left(x-x_{0}\right)$ as a factor. The only remaining term is $R_{g}\left(f(x)-y_{0}\right)$.

Since $f(x)-y_{0}=a_{1}\left(x-x_{0}\right)+o\left(x-x_{0}\right)$, for any a_{1}^{\prime} such that $a_{1}^{\prime}>\left|a_{1}\right|$, there exists $\frac{1}{n}$ such that $\left|f(x)-y_{0}\right|<a_{1}^{\prime}\left|x-x_{0}\right|$ for all x such that $\left|x-x_{0}\right|<\frac{1}{n}$. We then have that for all such x,

$$
\begin{aligned}
\frac{R_{g}\left(f(x)-y_{0}\right)}{\left|x-x_{0}\right|^{n}} & =\frac{R_{g}\left(f(x)-y_{0}\right)}{\left|f(x)-y_{0}\right|^{n}} \cdot \frac{\left|f(x)-y_{0}\right|^{n}}{\left|x-x_{0}\right|^{n}} \\
& \leq \frac{R_{g}\left(f(x)-y_{0}\right)}{\left|f(x)-y_{0}\right|^{n}} \cdot\left(a_{1}^{\prime}\right)^{n}
\end{aligned}
$$

Since $\left(f(x)-y_{0}\right) \rightarrow 0$ as $x \rightarrow 0$, and $R_{g}=o\left(|x|^{n}\right)$, it follows that

$$
\lim _{x \rightarrow x_{0}} \frac{R_{g}\left(f(x)-y_{0}\right)}{\left|x-x_{0}\right|^{n}}=0
$$

and hence $R_{g}\left(f(x)-y_{0}\right)=o\left(\left|x-x_{0}\right|^{n}\right)$.
5.4.20 Let $f(x)=\sqrt{x}$ and let us find the second order Taylor polynomial of f at 100 . We have

$$
\begin{aligned}
f(x) & =x^{\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2} x^{-\frac{1}{2}} \\
f^{\prime \prime}(x) & =-\frac{1}{4} x^{-\frac{3}{2}} \\
f^{\prime \prime \prime}(x) & =\frac{3}{8} x^{-\frac{5}{2}}
\end{aligned}
$$

and so

$$
\begin{aligned}
f(100) & =10 \\
f^{\prime}(100) & =\frac{1}{20} \\
f^{\prime \prime}(100) & =-\frac{1}{4000} \\
f^{\prime \prime \prime}(100) & =\frac{3}{800000}
\end{aligned}
$$

So

$$
f(100+1)=10+\frac{1}{20}-\frac{1}{2 \cdot 4000}+\frac{1}{3!} f^{\prime \prime \prime}\left(x^{\prime}\right)
$$

for some x^{\prime} between 100 and 101. The function $f^{\prime \prime \prime}$ is decreasing, so the maximal value $f^{\prime \prime \prime}\left(x^{\prime}\right)$ can attain is $f^{\prime \prime \prime}(100)=\frac{3}{800000}$. Therefore

$$
10+\frac{1}{20}-\frac{1}{2 \cdot 4000}<\sqrt{101}<10+\frac{1}{20}-\frac{1}{2 \cdot 4000}+\frac{3}{800000}
$$

Pretty good estimate if you ask me.
6.1.2 The absolute value is a continuous function so it commutes with limits. Let P_{i} be a sequence of partitions such that $\left|P_{k}\right| \rightarrow 0$. Then

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) d x\right| & =\left|\lim _{k \rightarrow \infty} S\left(f, P_{k},\left\{x_{k, i}^{*}\right\}\right)\right| \\
& =\lim _{k \rightarrow \infty}\left|S\left(f, P_{k},\left\{x_{k, i}^{*}\right\}\right)\right| \\
& =\lim _{k \rightarrow \infty}\left|\sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(x_{k, i}-x_{k, i-1}\right)\right| \\
& \leq \lim _{k \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)\right|\left(x_{k, i}-x_{k, i-1}\right) \\
& =\lim _{k \rightarrow \infty} S\left(|f|, P_{k},\left\{x_{k, i}^{*}\right\}\right) \\
& =\int_{a}^{b}|f(x)| d x
\end{aligned}
$$

6.1.4 Since f is continuous on a compact domain $[a, b]$, it attains its maximum M and minimum m. Moreover, by the intermediate value theorem, $f([a, b])=[m, M]$, i.e.,
every value between m and M is in the image of f. Since $f(x)-m \geq 0$ and $f(x)-M \leq 0$ we get

$$
\begin{array}{r}
0 \leq \int_{a}^{b} f(x)-m d x=\int_{a}^{b} f(x) d x-m(b-a) \\
m \leq \frac{\int_{a}^{b} f(x) d x}{b-a}
\end{array}
$$

Similarly,

$$
\begin{array}{r}
0 \geq \int_{a}^{b} f(x)-M d x=\int_{a}^{b} f(x) d x-M(b-a) \\
M \geq \frac{\int_{a}^{b} f(x) d x}{b-a}
\end{array}
$$

Hence by the intermediate value theorem, there exists $y \in[a, b]$ such that

$$
f(y)=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

6.1.5 We use Theorem 6.1.7 to compute

$$
\begin{aligned}
f^{\prime}(x) & =(x-x) g(x)+\int_{a}^{x} g(t) d t=\int_{a}^{x} g(t) d t \\
f^{\prime \prime}(x) & =g(x) .
\end{aligned}
$$

Also

$$
\begin{aligned}
& f(a)=\int_{a}^{a}(a-t) g(g) d t=0 \\
& f^{\prime}(a)=\int_{a}^{a} g(t) d t=0
\end{aligned}
$$

