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5.3.1 An easy computation shows that

f ′(x) =

{
kxk−1 if x ≥ 0

0 otherwise

which is a continuous function.

5.3.3 We �rst construct a C1 function f whose zero set is the complement of (0, 1). The

idea is to integrate a piece-wise linear function. We will de�ne f with the desired

property such that

f ′(x) =


2x 0 < x ≤ 1

4

1− 2x 1
4
< x ≤ 3

4

−2 + 2x 3
4
< x ≤ 1

0 otherwise

which is continuous. To be more explicit, de�ne f by

f(x) =


x2 0 < x ≤ 1

4

−1
8
+ x− x2 1

4
< x ≤ 3

4

1 + x2 − 2x 3
4
< x ≤ 1

0 otherwise

Given an open interval I = (a, b), let fI be the C
1 function de�ned by fI(x) = f(x−a

b−a ).
The zero set of fI is the complement of I.
Given a closed set A, the complement of A is a countable union of disjoint open

intervals {Ik}k∈K . The function

g(x) =
∑
k∈K

fIk(x)

is a C1 function whose zero set is A. Notice that for each x, at most one fIk(x) is
non-zero, so the above sum does indeed de�ne a function on R.

5.3.7 The derivative of g(x) = xk is g′(x) = k · xk−1 and hence for all x > 0, g′(x) > 0.
By the inverse function theorem, for any 0 < a < b, the restriction of g to (a, b) is
invertible. Since limx→0 x

k = 0 and limx→∞ x
k = 0∞, for any y > 0, there exist a < b

such that ak < y and bk > y. Hence y is in the image of the restriction of g to (a, b)
and there exists a unique g−1(y) ∈ (a, b) such that g(g−1(y)) = y. The value g−1(y)
clearly does not depend on the choice of (a, b). This de�nes g−1 on (0,∞). Since

x = 0 is the unique value such that xk = 0, de�ning g−1(0) = 0 de�nes the desired

function f(x) = x1/k on [0,∞]. By the inverse function theorem, the derivative of

g−1 is given by

(g−1)′(y) =
1

g′(g−1(y))
=

1

k · (y1/k)k−1
=

1

k
y−

k−1
k

1
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5.4.2 Assume that f(x0) = 0. If that is not the case, we can subtract f(x0) from f without

a�ecting its derivatives or whether or not x0 is a local maximum or a local minimum.

Since f is Cn, f (n) is continuous. Since f (n)(x0) > 0, there exists an open interval

(x0 − ε, x0 + ε) for some ε > 0 on which f (n) > 0. We �rst show that for all

x ∈ (x0, x0 + ε), f (k)(x) > 0 for k = 0, 1, . . . , n. We induct on k as k decreases from

n to 0. We already know the result for k = n. To prove the inductive step, assume

that f (k+1)(x) > 0 for all x ∈ (x0, x0 + ε). We also have f (k)(x0) = 0. By the Mean

Value Theorem, for any x ∈ (x0, x0 + ε), there exists x′ ∈ (x0, x) such that

f (k)(x) = f (k+1)(x′)(x− x0) > 0.

This completes the inductive step and we have thus showed that f(x) > 0 for x ∈
(x0, x0 + ε) We now prove an analogous statement for x ∈ (x0 − ε, x0). In particular,

we show that for k = 0, 1, . . . , n and x ∈ (x0 − ε, x0) we have f (k)(x) > 0 if n − k is

even and f (k)(x) < 0 if n− k is odd. We again induct on k as k decreases from n to

0. The case k = n is the base case and we prove the inductive step. Assume that for

all x ∈ (x0 − ε, x0), f (k+1)(x) > 0 if n − k − 1 is even and f (k+1) < 0 if n − k − 1 is

odd. By the Mean Value Theorem, for every x ∈ (x0 − ε, x0) there exists x′ ∈ (x, x0)
such that

f (k)(x) = f (k+1)(x′)(x− x0)

The sign of x− x0 is negative and therefore the sign of f (k)(x) is opposite of the sign
of f (k+1)(x′). In particular, f (k)(x) > 0 if n−k is even and f (k)(x) < 0 if n−k is odd.

This completes the inductive step. We have showed that if n is even, then f(x) > 0
for all x ∈ (x0 − ε, x0) and if n is odd, then f(x) < 0 for all x ∈ (x0 − ε, x0). This

shows that if n is even, then x0 is a local minimum and if n is odd, x0 is neither a

local maximum nor a local minimum.

5.4.3 Let

gh(x) =
f(x+ h)− f(x)

h
.

Note that

f(x+ h)− 2f(x) + f(x− h)
h2

=
gh(x)− gh(x− h)

h

By the Mean Value Theorem, there exists x1 between x and x− h such that

gh(x)− gh(x− h)
h

= g′h(x1).

Now

g′h(x1) =
f ′(x1 + h)− f ′(x1)

h
and by the Mean Value Theorem applied to f ′

g′h(x1) = f ′′(x2)

for some x2 between x1 and x1 + h. Since f ′′ is continuous and x2
x−→ and h→ 0, we

conclude that

lim
h→0

f(x+ h)− 2f(x) + f(x− h)
h2

= f ′′(x)
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5.4.4 To simplify notation, assume that x0 = 0. We will not need to full strength of

the statement that f, g are C3; we will only use that f, g are thrice di�erentiable and

f ′′′, g′′′ are bounded in some neighborhood of 0. Let h(x) = f(x)
g(x)

. Since g′(0) 6= 0, there

is some neighborhood U of 0 such that g does not vanish on U\{0}. In particular,

h is well de�ned on U\{0}. We �rst show that h(0) can be de�ned as the limit

limx→0 h(x) which in fact equals
f ′(0)
g′(0)

. We will use the mean value theorem many

times in this argument, and in order to not introduce new symbols every time we

apply the mean value theorem, we will denote a "some point" between 0 and x by •.
For example, we have

f(x) = f(0) + xf ′(0) +
x2

2
f ′′(0) +

x3

3!
f ′′′(•)

and the only thing we will use about f ′′′(•) is that it is bounded by some M > 0
which is independent of x.
Having introduced this notation, the rest is fairly straight forward. For x 6= 0, we

have

h(x) =
f ′(0)x+ f ′′(•)

2
x2

g′(0)x+ g′′(•)
2
x2

where we have used that f(0) = g(0) = 0. Dividing by x, noting that g′′(•) and f ′′(•)
are bounded, and taking the limit as x→ 0, we get

lim
x→0

h(x) =
f ′(0)

g′(0)

which we de�ne to be the value of h(0).
We now evaluate h′(0). We have

h′(0) = lim
x→0

1

x
·

(
f ′(0)x+ f ′′(0)

2
x2 + f ′′′(•)

3!
x3

g′(0)x+ g′′(0)
2
x2 + g′′′(•)

3!
x3
− f ′(0)

g′(0)

)

= lim
x→0

1

x
·

(
g′(0)(f ′(0)x+ (f ′′(0)

2
x2 + f ′′′(•)

3!
x3))− f ′(0)(g′(0)x+ g′′(0)

2
x2 + g′′′(•)

3!
x3)

g′(0)(g′(0)x+ g′′(0)
2
x2 + g′′′(•)

3!
x3)

)

Noting that g′(0)f ′(0)x appears with both, a positive sign and a negative sign in the

numerator and that that is the only term with x raised to power 1, we get

h′(0) = lim
x→0

g′(0)f
′′(0)
2
− f ′(0)g

′′(0)
2

+ . . .

g′(0)2 + . . .
=

1

2
· g
′(0)f ′′(0)− f ′(0)g′′(0)

g′(0)2

where by . . . we denote the terms with non-zero power of x.
It remains to show that limx→0 h

′(x) = h′(0). By the quotient rule for derivatives,

we have

h′(x) =
g(x)f ′(x)− g′(x)f(x)

g(x)2
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We apply the mean value theorem to all 4 functions: f(x), g(x), f ′(x), g′(x) to get

h′(x) =
(g′(0)x+ g′′(0)

2
x2 + g′′′(•)

3!
x3)(f ′(0) + f ′′(0)x+ f ′′′(•)

2
x2)

(g′(0)x+ g′′(0)
2
x2 + g′′′(•)

3!
x3)2

−
(g′(0) + g′′(0)x+ g′′′(•)

2
x2)(f ′(0)x+ f ′′(0)

2
x2 + f ′′′(•)

3!
x3)

(g′(0)x+ g′′(0)
2
x2 + g′′′(•)

3!
x3)2

This expression is pretty horrid, but recall that we are interested in the limit as x→ 0
and so we are only interested in the lowest powers of x, which in this case is x2 since
g′(0)f ′(0)x cancels out in the numerator. We thus get

lim
x→0

h′(x) = lim
h→0

x2(g′(0)f ′′(0) + g′′(0)
2
f ′(0)− g′(0)f

′′(0)
2
− g′′(0)f ′(0))) + . . .

g′(0)2x2 + . . .

=
1

2

g′(0)f ′′(0) + g′′(0)f ′()

g′(0)2

5.4.13 Let f(x) =
∑n

k=0 ak(x− x0)k +Rf (x− x0) and g(x) =
∑n

j=0 bj(y− y0)j +Rg(y− y0)
where both Rf and Rg are o(|x|n). We then have

g ◦ f(x) =
n∑

j=0

bj(f(x)− y0)j +Rg(f(x)− y0)

=
n∑

j=0

bj(
n∑

k=1

ak(x− x0)k +Rf (x− x0))j +Rg(f(x)− y0)

This expression has all the terms we want, but also many that we don't. It thus

su�ces to show that the terms we don't want are o(|x − x0|n). It's clear for terms

that contain (x − x0) raised to a power greater than n and the terms which have

Rf (x− x0) as a factor. The only remaining term is Rg(f(x)− y0).
Since f(x)−y0 = a1(x−x0)+o(x−x0), for any a′1 such that a′1 > |a1|, there exists

1
n
such that |f(x) − y0| < a′1|x − x0| for all x such that |x − x0| < 1

n
. We then have

that for all such x,

Rg(f(x)− y0)
|x− x0|n

=
Rg(f(x)− y0)
|f(x)− y0|n

· |f(x)− y0|
n

|x− x0|n

≤ Rg(f(x)− y0)
|f(x)− y0|n

· (a′1)n

Since (f(x)− y0)→ 0 as x→ 0, and Rg = o(|x|n), it follows that

lim
x→x0

Rg(f(x)− y0)
|x− x0|n

= 0

and hence Rg(f(x)− y0) = o(|x− x0|n).
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5.4.20 Let f(x) =
√
x and let us �nd the second order Taylor polynomial of f at 100. We

have

f(x) = x
1
2

f ′(x) =
1

2
x−

1
2

f ′′(x) = −1

4
x−

3
2

f ′′′(x) =
3

8
x−

5
2

and so

f(100) = 10

f ′(100) =
1

20

f ′′(100) = − 1

4000

f ′′′(100) =
3

800000

So

f(100 + 1) = 10 +
1

20
− 1

2 · 4000
+

1

3!
f ′′′(x′)

for some x′ between 100 and 101. The function f ′′′ is decreasing, so the maximal

value f ′′′(x′) can attain is f ′′′(100) = 3
800000

. Therefore

10 +
1

20
− 1

2 · 4000
<
√
101 < 10 +

1

20
− 1

2 · 4000
+

3

800000

Pretty good estimate if you ask me.

6.1.2 The absolute value is a continuous function so it commutes with limits. Let Pi be a

sequence of partitions such that |Pk| → 0. Then

|
∫ b

a

f(x)dx| = | lim
k→∞

S(f, Pk, {x∗k,i})|

= lim
k→∞
|S(f, Pk, {x∗k,i})|

= lim
k→∞
|

n∑
i=1

f(x∗i )(xk,i − xk,i−1)|

≤ lim
k→∞

n∑
i=1

|f(x∗i )|(xk,i − xk,i−1)

= lim
k→∞

S(|f |, Pk, {x∗k,i})

=

∫ b

a

|f(x)|dx

6.1.4 Since f is continuous on a compact domain [a, b], it attains its maximum M and

minimum m. Moreover, by the intermediate value theorem, f([a, b]) = [m,M ], i.e.,
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every value between m and M is in the image of f . Since f(x) − m ≥ 0 and

f(x)−M ≤ 0 we get

0 ≤
∫ b

a

f(x)−mdx =

∫ b

a

f(x)dx−m(b− a)

m ≤
∫ b

a
f(x)dx

b− a
Similarly,

0 ≥
∫ b

a

f(x)−Mdx =

∫ b

a

f(x)dx−M(b− a)

M ≥
∫ b

a
f(x)dx

b− a
Hence by the intermediate value theorem, there exists y ∈ [a, b] such that

f(y) =

∫ b

a
f(x)dx

b− a
6.1.5 We use Theorem 6.1.7 to compute

f ′(x) = (x− x)g(x) +
∫ x

a

g(t)dt =

∫ x

a

g(t)dt

f ′′(x) = g(x).

Also

f(a) =

∫ a

a

(a− t)g(g)dt = 0

f ′(a) =

∫ a

a

g(t)dt = 0.


