M405 - HOMEWORK SET #7- SOLUTIONS

5.1.1 Assume f(z) = O(|z — x0|?) as & — ¢ and let - be given. Let ¢ > 0 and + be such
that |f(z)| < ¢- |z — xo|> whenever |z — zo| < 1. Fix an integer n’ > max(n, mc).
Then for all z such that |z — | < & we have

|z — x|

1
|f(95)|<C"$_330|2<C‘_‘|33—370’:
me m

and hence f(z) = o(|z — zo|).
To see that the converse is not true, let f(z) = |z —x0|*2. Then f(x) = o(|z — x(|)
but f(x) # O(|lz — xof*).
5.1.3 Assume that f(z) = O(|z — xo|") and g(z) = o(|z — 20|’) and let - be given. Let
¢ > 0 and < be such that |f(z)| < ¢- |z — 0| whenever |z — zo| < . Let n’ be such
that |g(z)| < % whenever |z — 29| < ;. Let n” = max(n,n’). Then for all z
such that |z — x| < =7 we have

k. |z — 2o _ |z — |

[f(2)g(@)] < c-|x— o

cm m
In particular, f(x)g(x) = o(|x — zo|*).
5.1.9 By the definition of the derivative of f at x(, there exists a function R such that

(1) f(@) = f(xo) + f'(20)(x — m0) + R(x — 20)

and R(z) = o(|x|) as x — 0. Let gy be the function whose graph is the zoom with the
magnification factor of M of f at 2. Implicitly, it is defined by f(zo+z/M) = yo+ 5.
Solving for y in the above equation we obtain the explicit formula for g,:

gar(x) = M f(zo + %) — M (o).

Plugging in equation [I we get

gui(x) = M (f(z0) + f(@0) () + R(57) ) = M (o)
= f(wo)e + M- R(1)

The first term gives us precisely the equation of the straight line with slope f’(zo).
We thus need to show M - R(y;) converges to 0 as M — oo. We will discuss the
notion of the convergence of sequences of functions later in the semester in more
detail. For the purpose of this exercise, let’s prove the point-wise convergence, i.e.
for a fixed 2y € R, we will show that limy; . M - R(57) = 0. To that end, let % be

given. Let £ be such that for all z such that |z| < L, we have |R(z)| < |m‘:||m. Let M’
be such that {7 < % Then for all M > M’ we have &% < % and hence

M

To xo/M 1
M-R(2) < M- ==
| (7)) mizol| = m

Hence limy; oo M - R(5%) = 0.
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5.2.2 For any z(, we have

h Ig
Since a > 1, limy, 5 |h|*"" = 0 and hence f’(xy) = 0 for all zy. In particular, f is

constant.

5.2.3 The converse of the mean value theorem is not true. A counterexample is the function
f(x) = 2® and the point 7o = 0. We have f'(x) = 0 but since f is strictly increasing,
there are no distinct points 1, x5 such that % = 0.

5.2.6 We will prove the contrapositive of the statement. Assume f'(x) > 0 on (a,b) but f
is not strictly increasing. We will show that f’ vanishes on an interval in (a,b). Since
f is not strictly increasing, there exist points x; < 5 in the domain of f such that
f(x1) > x5. Since f'(x) > 0 for all € (a,b), by Theorem 5.2.2 a, f is monotone
increasing, and therefore f(z) < f(xe. We conclude that f(z1) = f(z2). Moreover,

since f is monotone increasing, for every = € (x1,x3), we have

fla1) < f(@) < flas)

and since f(z1) = f(z2), we also have f(z) = f(x1). In particular, f is constant on
(x1,22) and hence f’ vanishes on (z1, xs).

5.2.8 Since f’ is Continuous on the Closed interval [c,d], it is uniformly continuous. In
partlcular given L, there exists £ such that if |21 —x5| < -, we have |f'(z1)—f'(22)] <
—. Let z,z¢ be such that |x — x0| < E By the mean Value theorem, there exists '
between x and z( such that f(z) — f(zo) = f'(2')(z — ). Since 2’ lies between x
and xo, we also have |zg — 2’| < 1. Putting all this together, we get

| (@) = f(zo) — f'(z0)(x — 20)| = [ f'(2")(x — 20) — f'(w0)(x — 20)|

= (=) = F'(@o)] - & — ol

1
< — - |x — 20
m

Which shows that f is uniformly differentiable on [c, d].



