M405 - HOMEWORK SET \#7- SOLUTIONS

5.1.1 Assume $f(x)=O\left(\left|x-x_{0}\right|^{2}\right)$ as $x \rightarrow x_{0}$ and let $\frac{1}{m}$ be given. Let $c>0$ and $\frac{1}{n}$ be such that $|f(x)|<c \cdot\left|x-x_{0}\right|^{2}$ whenever $\left|x-x_{0}\right|<\frac{1}{n}$. Fix an integer $n^{\prime}>\max (n, m c)$. Then for all x such that $\left|x-x_{0}\right|<\frac{1}{n^{\prime}}$ we have

$$
|f(x)|<c \cdot\left|x-x_{0}\right|^{2}<c \cdot \frac{1}{m c} \cdot\left|x-x_{0}\right|=\frac{\left|x-x_{0}\right|}{m}
$$

and hence $f(x)=o\left(\left|x-x_{0}\right|\right)$.
To see that the converse is not true, let $f(x)=\left|x-x_{0}\right|^{3 / 2}$. Then $f(x)=o\left(\left|x-x_{0}\right|\right)$ but $f(x) \neq O\left(\left|x-x_{0}\right|^{2}\right)$.
5.1.3 Assume that $f(x)=O\left(\left|x-x_{0}\right|^{k}\right)$ and $g(x)=o\left(\left|x-x_{0}\right|^{j}\right)$ and let $\frac{1}{m}$ be given. Let $c>0$ and $\frac{1}{n}$ be such that $|f(x)|<c \cdot\left|x-x_{0}\right|^{k}$ whenever $\left|x-x_{0}\right|<\frac{1}{n}$. Let n^{\prime} be such that $|g(x)|<\frac{\left|x-x_{0}\right|^{j}}{c m}$ whenever $\left|x-x_{0}\right|<\frac{1}{n^{\prime}}$. Let $n^{\prime \prime}=\max \left(n, n^{\prime}\right)$. Then for all x such that $\left|x-x_{0}\right|<\frac{1}{n^{\prime \prime}}$ we have

$$
|f(x) g(x)|<c \cdot\left|x-x_{0}\right|^{k} \cdot \frac{\left|x-x_{0}\right|^{j}}{c m}=\frac{\left|x-x_{0}\right|^{k+j}}{m}
$$

In particular, $f(x) g(x)=o\left(\left|x-x_{0}\right|^{k+j}\right)$.
5.1.9 By the definition of the derivative of f at x_{0}, there exists a function R such that

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+R\left(x-x_{0}\right) \tag{1}
\end{equation*}
$$

and $R(x)=o(|x|)$ as $x \rightarrow 0$. Let g_{M} be the function whose graph is the zoom with the magnification factor of M of f at x_{0}. Implicitly, it is defined by $f\left(x_{0}+x / M\right)=y_{0}+\frac{y}{M}$. Solving for y in the above equation we obtain the explicit formula for g_{M} :

$$
g_{M}(x)=M f\left(x_{0}+\frac{x}{M}\right)-M f\left(x_{0}\right)
$$

Plugging in equation 1, we get

$$
\begin{aligned}
g_{M}(x) & =M\left(f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\frac{x}{M}\right)+R\left(\frac{x}{M}\right)\right)-M f\left(x_{0}\right) \\
& =f^{\prime}\left(x_{0}\right) x+M \cdot R\left(\frac{x}{M}\right)
\end{aligned}
$$

The first term gives us precisely the equation of the straight line with slope $f^{\prime}\left(x_{0}\right)$. We thus need to show $M \cdot R\left(\frac{x}{M}\right)$ converges to 0 as $M \rightarrow \infty$. We will discuss the notion of the convergence of sequences of functions later in the semester in more detail. For the purpose of this exercise, let's prove the point-wise convergence, i.e. for a fixed $x_{0} \in \mathbb{R}$, we will show that $\lim _{M \rightarrow \infty} M \cdot R\left(\frac{x_{0}}{M}\right)=0$. To that end, let $\frac{1}{m}$ be given. Let $\frac{1}{n}$ be such that for all x such that $|x|<\frac{1}{n}$, we have $|R(x)|<\frac{|x|}{\left|x_{0}\right| m}$. Let M^{\prime} be such that $\frac{x_{0}}{M^{\prime}}<\frac{1}{n}$. Then for all $M>M^{\prime}$ we have $\frac{x_{0}}{M^{\prime}}<\frac{1}{n}$ and hence

$$
\left|M \cdot R\left(\frac{x_{0}}{M}\right)\right|<M \cdot\left|\frac{x_{0} / M}{m\left|x_{0}\right|}\right|=\frac{1}{m}
$$

Hence $\lim _{M \rightarrow \infty} M \cdot R\left(\frac{x_{0}}{M}\right)=0$.
5.2.2 For any x_{0}, we have

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq \frac{M|h|^{\alpha}}{|h|}=M|h|^{\alpha-1}
$$

Since $\alpha>1, \lim _{h \rightarrow 0}|h|^{\alpha-1}=0$ and hence $f^{\prime}\left(x_{0}\right)=0$ for all x_{0}. In particular, f is constant.
5.2.3 The converse of the mean value theorem is not true. A counterexample is the function $f(x)=x^{3}$ and the point $x_{0}=0$. We have $f^{\prime}\left(x_{0}\right)=0$ but since f is strictly increasing, there are no distinct points x_{1}, x_{2} such that $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=0$.
5.2.6 We will prove the contrapositive of the statement. Assume $f^{\prime}(x) \geq 0$ on (a, b) but f is not strictly increasing. We will show that f^{\prime} vanishes on an interval in (a, b). Since f is not strictly increasing, there exist points $x_{1}<x_{2}$ in the domain of f such that $f\left(x_{1}\right) \geq x_{2}$. Since $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$, by Theorem 5.2.2 a, f is monotone increasing, and therefore $f\left(x_{1}\right) \leq f\left(x_{2}\right.$. We conclude that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Moreover, since f is monotone increasing, for every $x \in\left(x_{1}, x_{2}\right)$, we have

$$
f\left(x_{1}\right) \leq f(x) \leq f\left(x_{2}\right)
$$

and since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we also have $f(x)=f\left(x_{1}\right)$. In particular, f is constant on $\left(x_{1}, x_{2}\right)$ and hence f^{\prime} vanishes on (x_{1}, x_{2}).
5.2.8 Since f^{\prime} is continuous on the closed interval $[c, d]$, it is uniformly continuous. In particular, given $\frac{1}{m}$, there exists $\frac{1}{n}$ such that if $\left|x_{1}-x_{2}\right|<\frac{1}{n}$, we have $\left|f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{2}\right)\right|<$ $\frac{1}{m}$. Let x, x_{0} be such that $\left|x-x_{0}\right|<\frac{1}{n}$. By the mean value theorem, there exists x^{\prime} between x and x_{0} such that $f(x)-f\left(x_{0}\right)=f^{\prime}\left(x^{\prime}\right)\left(x-x_{0}\right)$. Since x^{\prime} lies between x and x_{0}, we also have $\left|x_{0}-x^{\prime}\right|<\frac{1}{n}$. Putting all this together, we get

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right| & =\left|f^{\prime}\left(x^{\prime}\right)\left(x-x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right| \\
& =\left|f^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(x_{0}\right)\right| \cdot\left|x-x_{0}\right| \\
& <\frac{1}{m} \cdot\left|x-x_{0}\right| .
\end{aligned}
$$

Which shows that f is uniformly differentiable on $[c, d]$.

