
M405 - HOMEWORK SET #7- SOLUTIONS

5.1.1 Assume f(x) = O(|x− x0|2) as x→ x0 and let 1
m

be given. Let c > 0 and 1
n
be such

that |f(x)| < c · |x − x0|2 whenever |x − x0| < 1
n
. Fix an integer n′ > max(n,mc).

Then for all x such that |x− x0| < 1
n′ we have

|f(x)| < c · |x− x0|2 < c · 1

mc
· |x− x0| =

|x− x0|
m

and hence f(x) = o(|x− x0|).
To see that the converse is not true, let f(x) = |x−x0|3/2. Then f(x) = o(|x−x0|)

but f(x) 6= O(|x− x0|2).
5.1.3 Assume that f(x) = O(|x − x0|k) and g(x) = o(|x − x0|j) and let 1

m
be given. Let

c > 0 and 1
n
be such that |f(x)| < c · |x− x0|k whenever |x− x0| < 1

n
. Let n′ be such

that |g(x)| < |x−x0|j
cm

whenever |x − x0| < 1
n′ . Let n′′ = max(n, n′). Then for all x

such that |x− x0| < 1
n′′ we have

|f(x)g(x)| < c · |x− x0|k ·
|x− x0|j

cm
=
|x− x0|k+j

m

In particular, f(x)g(x) = o(|x− x0|k+j).
5.1.9 By the de�nition of the derivative of f at x0, there exists a function R such that

f(x) = f(x0) + f ′(x0)(x− x0) +R(x− x0)(1)

and R(x) = o(|x|) as x→ 0. Let gM be the function whose graph is the zoom with the
magni�cation factor ofM of f at x0. Implicitly, it is de�ned by f(x0+x/M) = y0+

y
M
.

Solving for y in the above equation we obtain the explicit formula for gM :

gM(x) =Mf(x0 +
x

M
)−Mf(x0).

Plugging in equation 1, we get

gM(x) =M
(
f(x0) + f ′(x0)(

x

M
) +R(

x

M
)
)
−Mf(x0)

= f ′(x0)x+M ·R( x
M

)

The �rst term gives us precisely the equation of the straight line with slope f ′(x0).
We thus need to show M · R( x

M
) converges to 0 as M → ∞. We will discuss the

notion of the convergence of sequences of functions later in the semester in more
detail. For the purpose of this exercise, let's prove the point-wise convergence, i.e.
for a �xed x0 ∈ R, we will show that limM→∞M · R(x0M ) = 0. To that end, let 1

m
be

given. Let 1
n
be such that for all x such that |x| < 1

n
, we have |R(x)| < |x|

|x0|m . Let M
′

be such that x0
M ′ <

1
n
. Then for all M > M ′ we have x0

M ′ <
1
n
and hence

|M ·R(x0
M

)| < M ·
∣∣∣∣x0/Mm|x0|

∣∣∣∣ = 1

m

Hence limM→∞M ·R(x0M ) = 0.
1
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5.2.2 For any x0, we have∣∣∣∣f(x+ h)− f(x)
h

∣∣∣∣ ≤ M |h|α

|h|
=M |h|α−1

Since α > 1, limh→0 |h|α−1 = 0 and hence f ′(x0) = 0 for all x0. In particular, f is
constant.

5.2.3 The converse of the mean value theorem is not true. A counterexample is the function
f(x) = x3 and the point x0 = 0. We have f ′(x0) = 0 but since f is strictly increasing,

there are no distinct points x1, x2 such that f(x2)−f(x1)
x2−x1 = 0.

5.2.6 We will prove the contrapositive of the statement. Assume f ′(x) ≥ 0 on (a, b) but f
is not strictly increasing. We will show that f ′ vanishes on an interval in (a, b). Since
f is not strictly increasing, there exist points x1 < x2 in the domain of f such that
f(x1) ≥ x2. Since f ′(x) ≥ 0 for all x ∈ (a, b), by Theorem 5.2.2 a, f is monotone
increasing, and therefore f(x1) ≤ f(x2. We conclude that f(x1) = f(x2). Moreover,
since f is monotone increasing, for every x ∈ (x1, x2), we have

f(x1) ≤ f(x) ≤ f(x2)

and since f(x1) = f(x2), we also have f(x) = f(x1). In particular, f is constant on
(x1, x2) and hence f ′ vanishes on (x1, x2).

5.2.8 Since f ′ is continuous on the closed interval [c, d], it is uniformly continuous. In
particular, given 1

m
, there exists 1

n
such that if |x1−x2| < 1

n
, we have |f ′(x1)−f ′(x2)| <

1
m
. Let x, x0 be such that |x − x0| < 1

n
. By the mean value theorem, there exists x′

between x and x0 such that f(x) − f(x0) = f ′(x′)(x − x0). Since x′ lies between x
and x0, we also have |x0 − x′| < 1

n
. Putting all this together, we get

|f(x)− f(x0)− f ′(x0)(x− x0)| = |f ′(x′)(x− x0)− f ′(x0)(x− x0)|
= |f ′(x′)− f ′(x0)| · |x− x0|

<
1

m
· |x− x0|.

Which shows that f is uniformly di�erentiable on [c, d].


