M405 - HOMEWORK SET #6- SOLUTIONS

4.1.1 Let $f: D \to \mathbb{R}$ be a function defined on a closed domain D. We show that f is continuous if and only if the inverse image of every closed set is closed.

Assume first that f is continuous and let $B \subset \mathbb{R}$ be closed. We would like to show that $f^{-1}(B)$ is closed. We will show that $f^{-1}(B)$ contains all its limit points. Let xbe a limit point of $f^{-1}(B)$. Then there exists a sequence $\{x_i\}$ in $f^{-1}(B)$ converging to x. Since $\{x_i\}$ is also a sequence in D, which is closed, $x \in D$. Since f is continuous, the sequence $\{f(x_i)\}$ converges to f(x). Since $f(x_i) \in B$ for all i and B is closed, $f(x) = \lim_{i \to \infty} f(x_i)$ is in B. Hence $x \in f^{-1}(B)$.

Assume that the preimage $f^{-1}(B)$ is closed for every closed $B \subset \mathbb{R}$. We show that f is continuous at every $x \in D$. Given $\frac{1}{n}$, let $B = (f(x) - \frac{1}{n}, f(x) + \frac{1}{n})^c$ be the complement of the open interval centered at f(x) of width $\frac{2}{n}$. The preimage $f^{-1}(B)$ is closed and hence the complement $(f^{-1}(B))^c$ is open. Since $f(x) \notin B$, x is contained in $(f^{-1}(B))^c$. Therefore there exists an open interval $(x - \frac{1}{m}, x + \frac{1}{m}) \subset (f^{-1}(B))^c$. This implies that for all $x \in (x - \frac{1}{m}, x + \frac{1}{m})$, either $x \notin D$ or $f(x) \in (f(x) - \frac{1}{n}, f(x) + \frac{1}{n})$. Hence for any $\frac{1}{n}$ there exists $\frac{1}{m}$ such that for all $y \in D$ with $|y-x| < \frac{1}{m}, |f(x)-f(y)| < \frac{1}{n}$. Hence f is continuous at x.

4.1.3 Define sets $A_i = f_i^{-1}([0, \infty])$. Since $[0, \infty]$ is closed, each set A_i is closed by exercise 1. The set A, of points x satisfying $f_i(x) \ge 0$ for all i, is the intersection of the sets A_i . Since the intersection of closed sets is closed, A is closed.

The sets $A'_i = f_i^{-1}((0,\infty))$ on the other hand are open, being the preimages of open sets by a continuous function with open domain. The intersection of the sets A'_i is open, being a finite intersection of open sets, and consists of points satisfying $f_i(x) > 0$ for all i.

4.1.14 We show that an element x is contained in $f^{-1}(A \cup B)$ if and only if it is contained in $f^{-1}(A) \cup f^{-1}(B)$ by a series of equivalences:

$$x \in f^{-1}(A \cup B) \iff f(x) \in A \cup B$$
$$\iff f(x) \in A \text{ or } f(x) \in B$$
$$\iff x \in f^{-1}(A) \text{ or } x \in f^{-1}(B)$$
$$\iff x \in f^{-1}(A) \cup f^{-1}(B)$$

Similarly, we have

$$x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B$$
$$\iff f(x) \in A \text{ and } f(x) \in B$$
$$\iff x \in f^{-1}(A) \text{ and } x \in f^{-1}(B)$$
$$\iff x \in f^{-1}(A) \cap f^{-1}(B)$$

The analogous statements for images of sets instead of preimages of sets is true for the unions but not true for the intersection. Let $A, B \subset D$ be two subsets of the domain of a function f. Then $f(A \cup B) = f(A) \cup f(B)$. Indeed,

$$y \in f(A \cup B) \iff \exists x \in A \cup B, f(x) = y$$
$$\iff (\exists x \in A, f(x) = y) \text{ or } (\exists x \in B, f(x) = y)$$
$$\iff y \in f(A) \text{ or } y \in f(B)$$
$$\iff y \in f(A) \cup f(B)$$

For the intersection of images of sets, consider the following counterexample. Let f be the function $f(x) = x^2$ and let A, B be the sets

$$A = (-2, -1); \quad B = (1, 2).$$

Then $A \cap B = \emptyset$ while

$$f(A) = f(B) = f(A) \cap f(B) = (1, 4).$$

4.1.15 Let $f: (a, b) \to \mathbb{R}$ be a uniformly continuous function. We would like to extend f to the closed interval [a, b] by defining $f(a) = \lim_{x \to a} f(x)$ and $f(b) = \lim_{x \to b} f(x)$. If these limits exist, then the resulting function is continuous since a function is continuous if and only if $f(x_0) = \lim_{x \to x_0} f(x)$ for all x_0 limit points of the domain. By Theorem 4.1.1, the limit $\lim_{x \to a} f(x)$ exists if and only if for every sequence $\{x_i\}$ in (a, b) converging to a, the sequence $\{f(x_i)\}$ is convergent. We now show that in this case $\{f(x_i)\}$ is Cauchy, and hence convergent. Given $\frac{1}{n}$, since f is uniformly continuous, there exists $\frac{1}{m}$ such that for all $x, y \in (a, b)$ with $|x - y| < \frac{1}{m}$, we have $|f(x) - f(y)| < \frac{1}{n}$. Since $\{x_i\}$ is convergent, it is Cauchy. Therefore there exists $l \in \mathbb{N}$ such that for all i, j > l, $|x_i - x_j| < \frac{1}{m}$. We then have $|f(x_i) - f(x_j)| < \frac{1}{n}$ for all i.j > l and hence $\{f(x_i)\}$ is Cauchy. The limit $\lim_{x \to b} f(x)$ exists by the same argument.

It remains to show that the extended function is uniformly continuous on the closed interval [a, b]. Given $\frac{1}{n}$, let $\frac{1}{m}$ be such that for all $x, y \in (a, b)$ with $|x-y| < \frac{1}{m}$ we have $|f(x) - f(y)| < \frac{1}{2n}$. We claim that for all $x, y \in [a, b]$ such that $|x - y| < \frac{1}{m}$ we have $|f(x) - f(y)| < \frac{1}{n}$. The statement is clear if neither of the x, y lie on the boundary. Suppose x = a and $y \in (a, b)$ and let $\{x_i\}$ be a sequence in (a, y) converging to a. Since $|a - y| < \frac{1}{m}$, also $|x_i - y| < \frac{1}{m}$ for all i. Therefore

$$|f(x_i) - f(y)| < \frac{1}{2n}.$$

Since limits preserve non-strict inequality, and the absolute value function is continuous, we have

$$|f(a) - f(y)| = |\lim_{i \to \infty} f(x_i) - f(y)| = \lim_{i \to \infty} |f(x_i) - f(y)| \le \frac{1}{2n} < \frac{1}{n}.$$

We only case we have not considered yet is when both x, y are the end-points. We can avoid discussing this case by increasing the value of m if necessary so that $\frac{1}{m} < b - a$. In this case, if $|x - y| < \frac{1}{m}$, then x, y cannot be the the opposite endpoints of [a, b].

4.2.3 For $a, b \in \mathbb{R}$, let $I_{a,b}$ be [a, b] or [b, a] according to whether $a \leq b$ or $b \leq a$. Intervals are sets A characterized by the property that if $a, b \in A$, then $I_{a,b} \subset A$. Suppose $f: D \to \mathbb{R}$ is a continuous function whose domain D is an interval. Let $a, b \in f(D)$ and let $x, y \in D$ be such that f(x) = a, f(y) = b. Since D is an interval, the closed interval $I_{x,y} \subset D$ is contained in D. Applying the intermediate value theorem to f restricted to $I_{x,y}$, we obtain that $I_{a,b} \subset f(I_{x,y}) \subset f(D)$. Hence f(D) is an interval. If D = (0, 1) and f(x) = x, then clearly f(D) is an open interval.

4.2.8 We will show that for some large value x_0 , the values $f(x_0)$ and $f(-x_0)$ are non-zero and have opposite signs. In that case, applying the Intermediate value theorem to the restriction of f to $[-x_0, x_0]$ implies that there exists $x \in (-x_0, x_0)$ such that f(x) = 0. To show the existence of x_0 , we will use the fact that an odd degree polynomial p(x)satisfies $\lim_{x\to\pm\infty} |p(x)| = \infty$ with the sign of p(x) and p(-x) being opposite for xlarge enough. Adding a bounded function to p does not change this property. We now present a more careful proof of that.

Without loss of generality, we may assume that the leading coefficient of p is 1. If it is not, we can divide f by the leading coefficient. Let k odd be the degree of p. We have

$$p(x) = x^k + c_{k-1}x^{k-1} + \dots + c_0$$

for some constants c_i . We have

$$\lim_{x \to \pm \infty} \frac{|c_{k-1}x^{k-1} + \dots + c_1x + c_0|}{|x^k|} = \lim_{x \to \pm \infty} |c_{k-1}x^{-1} + \dots + c_1x^{-k+1} + c_0x^{-k}| = 0.$$

Let N be such that for all x such that $|x| \ge N$ we have

$$\frac{|c_{k-1}x^{k-1} + \dots + c_1x + c_0|}{|x^k|} < \frac{1}{2}$$

or equivalently

$$|c_{k-1}x^{k-1} + \dots c_1x + c_0| < \frac{1}{2}|x^k|$$

By the reverse triangle inequality, it follows that for all such x we have

$$p(x)| \ge |x^k| - |c_{k-1}x^{k-1} + \dots + c_1x + c_0$$

> $|x^k| - \frac{1}{2}|x^k| = \frac{1}{2}|x^k|$

Moreover, the sign of p(x) is the same as the sign of x^k . Since g is bounded, there exists M > 0 such that for all $x \in \mathbb{R}$, |g(x)| < M. Let $N' = \max(N, \sqrt[k]{4M})$. Then for for all x with $|x| \ge N'$ we have

$$|p(x)| > \frac{1}{2}|x^k| \ge \frac{1}{2}4M = 2M.$$

Letting f(x) = p(x) + g(x), we have that for $|x| \ge N'$,

$$|f(x)| \ge |p(x)| - |g(x)| > 2M - M = M$$

and moreover, the sign of f(x) is the same as the sign of p(x) which is the same as the sign of x^k . Since the sign of x^k is different for x = N' and x = -N', we are done. 4.2.13 Let f, g be continuous functions on [a, b] and [b, c] respectively. Define h(x) on [a, c]by

$$h(x) = \begin{cases} f(x) & a \le x \le b\\ g(x) & b < x \le c \end{cases}$$

Suppose h(x) is continuous. Then $\lim_{x\to b} h(x)$ exists and equals to both $\lim_{x\to b^-} h(x) = \lim_{x\to b} f(x) = f(b)$ and $\lim_{x\to b^+} h(x) = \lim_{x\to b} g(x) = g(b)$. Hence f(b) = g(b).

For the other direction, assume that f(b) = g(b). It is clear that h(x) is continuous at all $x \neq b$. To show continuity of h, it thus suffices to show that h is continuous at b. Given $\frac{1}{n}$ let $\frac{1}{m}$ be such that for all $x \in [a, b]$ with $|x - b| < \frac{1}{m}$ we have $|f(x) - f(b)| < \frac{1}{n}$ and such that for all $x \in [b, c]$ with $|x - b| < \frac{1}{m}$ we have $|g(x) - g(b)| < \frac{1}{n}$. Then for any $x \in [a, c]$ such that $|x - b| < \frac{1}{m}$ we have that either $x \in [a, b]$, in which case

$$|(h(x) - h(b))| = |f(x) - f(b)| < \frac{1}{n}$$

or $x \in [b, c]$, in which case

$$|h(x) - h(b)| = |g(x) - g(b)| < \frac{1}{n}.$$

It follows that h is continuous at b. 4.2.17 The function

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

satisfies the intermediate value property but is not continuous at 0.

A function having the intermediate value property can not have jump discontinuities. Suppose f has a jump discontinuity at x_0 . Let $\lim_{x\to x_0^-} f(x) = a$ and $\lim_{x\to x_0^+} f(x) = b$ Assume for concreteness that a < b and let $\delta = b - a$. Let $\frac{1}{n}$ be such that for all $x < x_0$ with $|x_0 - x| \leq \frac{1}{n}$ we have

$$|f(x) - a| < \delta/3$$

and such that for all $x > x_0$ with $|x - x_0| \le \frac{1}{n}$ we have

$$|f(x) - b| < \delta/3$$

Then the restriction of f to $[x_0 - \frac{1}{n}, x_0 + \frac{1}{n}]$ does not satisfy the intermediate value property. Indeed,

$$f(x_0 - \frac{1}{n}) \in [a - \delta/3, a + \delta/3],$$

$$f(x_0 + \frac{1}{n}) \in [b - \delta/3, b + \delta/3],$$

but $[a + \delta/3, b - \delta/3]$ is not in the image of f restricted to $[x_0 - \frac{1}{n}, x_0 + \frac{1}{n}]$ except possibly for $f(x_0)$. In other words, for any $y \in [a + \delta/3, b - \delta/3]$ with $y \neq f(x_0)$, there does not exist $x \in [x_0 - \frac{1}{n}, x_0 + \frac{1}{n}]$ such that f(x) = y.