M405 - HOMEWORK SET \#6- SOLUTIONS

4.1.1 Let $f: D \rightarrow \mathbb{R}$ be a function defined on a closed domain D. We show that f is continuous if and only if the inverse image of every closed set is closed.

Assume first that f is continuous and let $B \subset \mathbb{R}$ be closed. We would like to show that $f^{-1}(B)$ is closed. We will show that $f^{-1}(B)$ contains all its limit points. Let x be a limit point of $f^{-1}(B)$. Then there exists a sequence $\left\{x_{i}\right\}$ in $f^{-1}(B)$ converging to x. Since $\left\{x_{i}\right\}$ is also a sequence in D, which is closed, $x \in D$. Since f is continuous, the sequence $\left\{f\left(x_{i}\right)\right\}$ converges to $f(x)$. Since $f\left(x_{i}\right) \in B$ for all i and B is closed, $f(x)=\lim _{i \rightarrow \infty} f\left(x_{i}\right)$ is in B. Hence $x \in f^{-1}(B)$.

Assume that the preimage $f^{-1}(B)$ is closed for every closed $B \subset \mathbb{R}$. We show that f is continuous at every $x \in D$. Given $\frac{1}{n}$, let $B=\left(f(x)-\frac{1}{n}, f(x)+\frac{1}{n}\right)^{c}$ be the complement of the open interval centered at $f(x)$ of width $\frac{2}{n}$. The preimage $f^{-1}(B)$ is closed and hence the complement $\left(f^{-1}(B)\right)^{c}$ is open. Since $f(x) \notin B, x$ is contained in $\left(f^{-1}(B)\right)^{c}$. Therefore there exists an open interval $\left(x-\frac{1}{m}, x+\frac{1}{m}\right) \subset\left(f^{-1}(B)\right)^{c}$. This implies that for all $x \in\left(x-\frac{1}{m}, x+\frac{1}{m}\right)$, either $x \notin D$ or $f(x) \in\left(f(x)-\frac{1}{n}, f(x)+\frac{1}{n}\right)$. Hence for any $\frac{1}{n}$ there exists $\frac{1}{m}$ such that for all $y \in D$ with $|y-x|<\frac{1}{m},|f(x)-f(y)|<$ $\frac{1}{n}$. Hence f is continuous at x.
4.1.3 Define sets $A_{i}=f_{i}^{-1}([0, \infty])$. Since $[0, \infty]$ is closed, each set A_{i} is closed by exercise 1. The set A, of points x satisfying $f_{i}(x) \geq 0$ for all i, is the intersection of the sets A_{i}. Since the intersection of closed sets is closed, A is closed.

The sets $A_{i}^{\prime}=f_{i}^{-1}((0, \infty))$ on the other hand are open, being the preimages of open sets by a continuous function with open domain. The intersection of the sets A_{i}^{\prime} is open, being a finite intersection of open sets, and consists of points satisfying $f_{i}(x)>0$ for all i.
4.1.14 We show that an element x is contained in $f^{-1}(A \cup B)$ if and only if it is contained in $f^{-1}(A) \cup f^{-1}(B)$ by a series of equivalences:

$$
\begin{aligned}
x \in f^{-1}(A \cup B) & \Longleftrightarrow f(x) \in A \cup B \\
& \Longleftrightarrow f(x) \in A \text { or } f(x) \in B \\
& \Longleftrightarrow x \in f^{-1}(A) \text { or } x \in f^{-1}(B) \\
& \Longleftrightarrow x \in f^{-1}(A) \cup f^{-1}(B)
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
x \in f^{-1}(A \cap B) & \Longleftrightarrow f(x) \in A \cap B \\
& \Longleftrightarrow f(x) \in A \text { and } f(x) \in B \\
& \Longleftrightarrow x \in f^{-1}(A) \text { and } x \in f^{-1}(B) \\
& \Longleftrightarrow x \in f^{-1}(A) \cap f^{-1}(B)
\end{aligned}
$$

The analogous statements for images of sets instead of preimages of sets is true for the unions but not true for the intersection. Let $A, B \subset D$ be two subsets of the
domain of a function f. Then $f(A \cup B)=f(A) \cup f(B)$. Indeed,

$$
\begin{aligned}
y \in f(A \cup B) & \Longleftrightarrow \exists x \in A \cup B, f(x)=y \\
& \Longleftrightarrow(\exists x \in A, f(x)=y) \text { or }(\exists x \in B, f(x)=y) \\
& \Longleftrightarrow y \in f(A) \text { or } y \in f(B) \\
& \Longleftrightarrow y \in f(A) \cup f(B)
\end{aligned}
$$

For the intersection of images of sets, consider the following counterexample. Let f be the function $f(x)=x^{2}$ and let A, B be the sets

$$
A=(-2,-1) ; \quad B=(1,2)
$$

Then $A \cap B=\emptyset$ while

$$
f(A)=f(B)=f(A) \cap f(B)=(1,4)
$$

4.1.15 Let $f:(a, b) \rightarrow \mathbb{R}$ be a uniformly continuous function. We would like to extend f to the closed interval $[a, b]$ by defining $f(a)=\lim _{x \rightarrow a} f(x)$ and $f(b)=\lim _{x \rightarrow b} f(x)$. If these limits exist, then the resulting function is continuous since a function is continuous if and only if $f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} f(x)$ for all x_{0} limit points of the domain. By Theorem 4.1.1, the limit $\lim _{x \rightarrow a} f(x)$ exists if and only if for every sequence $\left\{x_{i}\right\}$ in (a, b) converging to a, the sequence $\left\{f\left(x_{i}\right)\right\}$ is convergent. We now show that in this case $\left\{f\left(x_{i}\right)\right\}$ is Cauchy, and hence convergent. Given $\frac{1}{n}$, since f is uniformly continuous, there exists $\frac{1}{m}$ such that for all $x, y \in(a, b)$ with $|x-y|<\frac{1}{m}$, we have $|f(x)-f(y)|<\frac{1}{n}$. Since $\left\{x_{i}\right\}$ is convergent, it is Cauchy. Therefore there exists $l \in \mathbb{N}$ such that for all $i, j>l,\left|x_{i}-x_{j}\right|<\frac{1}{m}$. We then have $\left|f\left(x_{i}\right)-f\left(x_{j}\right)\right|<\frac{1}{n}$ for all $i . j>l$ and hence $\left\{f\left(x_{i}\right)\right\}$ is Cauchy. The limit $\lim _{x \rightarrow b} f(x)$ exists by the same argument.

It remains to show that the extended function is uniformly continuous on the closed interval $[a, b]$. Given $\frac{1}{n}$, let $\frac{1}{m}$ be such that for all $x, y \in(a, b)$ with $|x-y|<\frac{1}{m}$ we have $|f(x)-f(y)|<\frac{1}{2 n}$. We claim that for all $x, y \in[a, b]$ such that $|x-y|<\frac{1}{m}$ we have $|f(x)-f(y)|<\frac{1}{n}$. The statement is clear if neither of the x, y lie on the boundary. Suppose $x=a$ and $y \in(a, b)$ and let $\left\{x_{i}\right\}$ be a sequence in (a, y) converging to a. Since $|a-y|<\frac{1}{m}$, also $\left|x_{i}-y\right|<\frac{1}{m}$ for all i. Therefore

$$
\left|f\left(x_{i}\right)-f(y)\right|<\frac{1}{2 n}
$$

Since limits preserve non-strict inequality, and the absolute value function is continuous, we have

$$
|f(a)-f(y)|=\left|\lim _{i \rightarrow \infty} f\left(x_{i}\right)-f(y)\right|=\lim _{i \rightarrow \infty}\left|f\left(x_{i}\right)-f(y)\right| \leq \frac{1}{2 n}<\frac{1}{n}
$$

We only case we have not considered yet is when both x, y are the end-points. We can avoid discussing this case by increasing the value of m if necessary so that $\frac{1}{m}<b-a$. In this case, if $|x-y|<\frac{1}{m}$, then x, y cannot be the the opposite endpoints of $[a, b]$.
4.2.3 For $a, b \in \mathbb{R}$, let $I_{a, b}$ be $[a, b]$ or $[b, a]$ according to whether $a \leq b$ or $b \leq a$. Intervals are sets A characterized by the property that if $a, b \in A$, then $I_{a, b} \subset A$. Suppose $f: D \rightarrow \mathbb{R}$ is a continuous function whose domain D is an interval. Let $a, b \in f(D)$ and let $x, y \in D$ be such that $f(x)=a, f(y)=b$. Since D is an interval, the closed
interval $I_{x, y} \subset D$ is contained in D. Applying the intermediate value theorem to f restricted to $I_{x, y}$, we obtain that $I_{a, b} \subset f\left(I_{x, y}\right) \subset f(D)$. Hence $f(D)$ is an interval.

If $D=(0,1)$ and $f(x)=x$, then clearly $f(D)$ is an open interval.
4.2.8 We will show that for some large value x_{0}, the values $f\left(x_{0}\right)$ and $f\left(-x_{0}\right)$ are non-zero and have opposite signs. In that case, applying the Intermediate value theorem to the restriction of f to $\left[-x_{0}, x_{0}\right]$ implies that there exists $x \in\left(-x_{0}, x_{0}\right)$ such that $f(x)=0$. To show the existence of x_{0}, we will use the fact that an odd degree polynomial $p(x)$ satisfies $\lim _{x \rightarrow \pm \infty}|p(x)|=\infty$ with the sign of $p(x)$ and $p(-x)$ being opposite for x large enough. Adding a bounded function to p does not change this property. We now present a more careful proof of that.

Without loss of generality, we may assume that the leading coefficient of p is 1 . If it is not, we can divide f by the leading coefficient. Let k odd be the degree of p. We have

$$
p(x)=x^{k}+c_{k-1} x^{k-1}+\ldots c_{1} x+c_{0}
$$

for some constants c_{i}. We have

$$
\lim _{x \rightarrow \pm \infty} \frac{\left|c_{k-1} x^{k-1}+\ldots c_{1} x+c_{0}\right|}{\left|x^{k}\right|}=\lim _{x \rightarrow \pm \infty}\left|c_{k-1} x^{-1}+\ldots c_{1} x^{-k+1}+c_{0} x^{-k}\right|=0
$$

Let N be such that for all x such that $|x| \geq N$ we have

$$
\frac{\left|c_{k-1} x^{k-1}+\ldots c_{1} x+c_{0}\right|}{\left|x^{k}\right|}<\frac{1}{2}
$$

or equivalently

$$
\left|c_{k-1} x^{k-1}+\ldots c_{1} x+c_{0}\right|<\frac{1}{2}\left|x^{k}\right| .
$$

By the reverse triangle inequality, it follows that for all such x we have

$$
\begin{aligned}
|p(x)| & \geq\left|x^{k}\right|-\left|c_{k-1} x^{k-1}+\ldots c_{1} x+c_{0}\right| \\
& >\left|x^{k}\right|-\frac{1}{2}\left|x^{k}\right|=\frac{1}{2}\left|x^{k}\right|
\end{aligned}
$$

Moreover, the sign of $p(x)$ is the same as the sign of x^{k}. Since g is bounded, there exists $M>0$ such that for all $x \in \mathbb{R},|g(x)|<M$. Let $N^{\prime}=\max (N, \sqrt[k]{4 M})$. Then for for all x with $|x| \geq N^{\prime}$ we have

$$
|p(x)|>\frac{1}{2}\left|x^{k}\right| \geq \frac{1}{2} 4 M=2 M
$$

Letting $f(x)=p(x)+g(x)$, we have that for $|x| \geq N^{\prime}$,

$$
|f(x)| \geq|p(x)|-|g(x)|>2 M-M=M
$$

and moreover, the sign of $f(x)$ is the same as the sign of $p(x)$ which is the same as the sign of x^{k}. Since the sign of x^{k} is different for $x=N^{\prime}$ and $x=-N^{\prime}$, we are done.
4.2.13 Let f, g be continuous functions on $[a, b]$ and $[b, c]$ respectively. Define $h(x)$ on $[a, c]$ by

$$
h(x)= \begin{cases}f(x) & a \leq x \leq b \\ g(x) & b<x \leq c\end{cases}
$$

Suppose $h(x)$ is continuous. Then $\lim _{x \rightarrow b} h(x)$ exists and equals to both $\lim _{x \rightarrow b^{-}} h(x)=$ $\lim _{x \rightarrow b} f(x)=f(b)$ and $\lim _{x \rightarrow b^{+}} h(x)=\lim _{x \rightarrow b} g(x)=g(b)$. Hence $f(b)=g(b)$.

For the other direction, assume that $f(b)=g(b)$. It is clear that $h(x)$ is continuous at all $x \neq b$. To show continuity of h, it thus suffices to show that h is continuous at b. Given $\frac{1}{n}$ let $\frac{1}{m}$ be such that for all $x \in[a, b]$ with $|x-b|<\frac{1}{m}$ we have $|f(x)-f(b)|<\frac{1}{n}$ and such that for all $x \in[b, c]$ with $|x-b|<\frac{1}{m}$ we have $|g(x)-g(b)|<\frac{1}{n}$. Then for any $x \in[a, c]$ such that $|x-b|<\frac{1}{m}$ we have that either $x \in[a, b]$, in which case

$$
\left\lvert\,\left(h(x)-h(b)\left|=|f(x)-f(b)|<\frac{1}{n}\right.\right.\right.
$$

or $x \in[b, c]$, in which case

$$
|h(x)-h(b)|=|g(x)-g(b)|<\frac{1}{n} .
$$

It follows that h is continuous at b.
4.2.17 The function

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

satisfies the intermediate value property but is not continuous at 0 .
A function having the intermediate value property can not have jump discontinuities. Suppose f has a jump discontinuity at x_{0}. Let $\lim _{x \rightarrow x_{0}^{-}} f(x)=a$ and $\lim _{x \rightarrow x_{0}^{+}} f(x)=b$ Assume for concreteness that $a<b$ and let $\delta=b-a$. Let $\frac{1}{n}$ be such that for all $x<x_{0}$ with $\left|x_{0}-x\right| \leq \frac{1}{n}$ we have

$$
|f(x)-a|<\delta / 3
$$

and such that for all $x>x_{0}$ with $\left|x-x_{0}\right| \leq \frac{1}{n}$ we have

$$
|f(x)-b|<\delta / 3
$$

Then the restriction of f to $\left[x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right]$ does not satisfy the intermediate value property. Indeed,

$$
\begin{gathered}
f\left(x_{0}-\frac{1}{n}\right) \in[a-\delta / 3, a+\delta / 3] \\
f\left(x_{0}+\frac{1}{n}\right) \in[b-\delta / 3, b+\delta / 3]
\end{gathered}
$$

but $[a+\delta / 3, b-\delta / 3]$ is not in the image of f restricted to $\left[x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right]$ except possibly for $f\left(x_{0}\right)$. In other words, for any $y \in[a+\delta / 3, b-\delta / 3]$ with $y \neq f\left(x_{0}\right)$, there does not exist $x \in\left[x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right]$ such that $f(x)=y$.

