
M405 - HOMEWORK SET #6- SOLUTIONS

4.1.1 Let f : D → R be a function de�ned on a closed domain D. We show that f is

continuous if and only if the inverse image of every closed set is closed.

Assume �rst that f is continuous and let B ⊂ R be closed. We would like to show

that f−1(B) is closed. We will show that f−1(B) contains all its limit points. Let x
be a limit point of f−1(B). Then there exists a sequence {xi} in f−1(B) converging to
x. Since {xi} is also a sequence in D, which is closed, x ∈ D. Since f is continuous,

the sequence {f(xi)} converges to f(x). Since f(xi) ∈ B for all i and B is closed,

f(x) = limi→∞ f(xi) is in B. Hence x ∈ f−1(B).
Assume that the preimage f−1(B) is closed for every closed B ⊂ R. We show

that f is continuous at every x ∈ D. Given 1
n
, let B = (f(x)− 1

n
, f(x) + 1

n
)c be the

complement of the open interval centered at f(x) of width 2
n
. The preimage f−1(B) is

closed and hence the complement (f−1(B))c is open. Since f(x) 6∈ B, x is contained in
(f−1(B))c. Therefore there exists an open interval (x− 1

m
, x+ 1

m
) ⊂ (f−1(B))c. This

implies that for all x ∈ (x− 1
m
, x+ 1

m
), either x 6∈ D or f(x) ∈ (f(x)− 1

n
, f(x) + 1

n
).

Hence for any 1
n
there exists 1

m
such that for all y ∈ D with |y−x| < 1

m
, |f(x)−f(y)| <

1
n
. Hence f is continuous at x.

4.1.3 De�ne sets Ai = f−1i ([0,∞]). Since [0,∞] is closed, each set Ai is closed by exercise

1. The set A, of points x satisfying fi(x) ≥ 0 for all i, is the intersection of the sets

Ai. Since the intersection of closed sets is closed, A is closed.

The sets A′i = f−1i ((0,∞)) on the other hand are open, being the preimages of

open sets by a continuous function with open domain. The intersection of the sets

A′i is open, being a �nite intersection of open sets, and consists of points satisfying

fi(x) > 0 for all i.
4.1.14 We show that an element x is contained in f−1(A ∪ B) if and only if it is contained

in f−1(A) ∪ f−1(B) by a series of equivalences:

x ∈ f−1(A ∪B)⇐⇒ f(x) ∈ A ∪B
⇐⇒ f(x) ∈ A or f(x) ∈ B
⇐⇒ x ∈ f−1(A) or x ∈ f−1(B)

⇐⇒ x ∈ f−1(A) ∪ f−1(B)

Similarly, we have

x ∈ f−1(A ∩B)⇐⇒ f(x) ∈ A ∩B
⇐⇒ f(x) ∈ A and f(x) ∈ B
⇐⇒ x ∈ f−1(A) and x ∈ f−1(B)

⇐⇒ x ∈ f−1(A) ∩ f−1(B)

The analogous statements for images of sets instead of preimages of sets is true

for the unions but not true for the intersection. Let A,B ⊂ D be two subsets of the
1
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domain of a function f . Then f(A ∪B) = f(A) ∪ f(B). Indeed,

y ∈ f(A ∪B)⇐⇒ ∃x ∈ A ∪B, f(x) = y

⇐⇒ (∃x ∈ A, f(x) = y) or (∃x ∈ B, f(x) = y)

⇐⇒ y ∈ f(A) or y ∈ f(B)

⇐⇒ y ∈ f(A) ∪ f(B)

For the intersection of images of sets, consider the following counterexample. Let

f be the function f(x) = x2 and let A,B be the sets

A = (−2,−1); B = (1, 2).

Then A ∩B = ∅ while

f(A) = f(B) = f(A) ∩ f(B) = (1, 4).

4.1.15 Let f : (a, b) → R be a uniformly continuous function. We would like to extend f
to the closed interval [a, b] by de�ning f(a) = limx→a f(x) and f(b) = limx→b f(x).
If these limits exist, then the resulting function is continuous since a function is

continuous if and only if f(x0) = limx→x0 f(x) for all x0 limit points of the domain.

By Theorem 4.1.1, the limit limx→a f(x) exists if and only if for every sequence {xi}
in (a, b) converging to a, the sequence {f(xi)} is convergent. We now show that in

this case {f(xi)} is Cauchy, and hence convergent. Given 1
n
, since f is uniformly

continuous, there exists 1
m

such that for all x, y ∈ (a, b) with |x − y| < 1
m
, we have

|f(x) − f(y)| < 1
n
. Since {xi} is convergent, it is Cauchy. Therefore there exists

l ∈ N such that for all i, j > l, |xi − xj| < 1
m
. We then have |f(xi) − f(xj)| < 1

n
for

all i.j > l and hence {f(xi)} is Cauchy. The limit limx→b f(x) exists by the same

argument.

It remains to show that the extended function is uniformly continuous on the closed

interval [a, b]. Given 1
n
, let 1

m
be such that for all x, y ∈ (a, b) with |x−y| < 1

m
we have

|f(x)− f(y)| < 1
2n
. We claim that for all x, y ∈ [a, b] such that |x− y| < 1

m
we have

|f(x) − f(y)| < 1
n
. The statement is clear if neither of the x, y lie on the boundary.

Suppose x = a and y ∈ (a, b) and let {xi} be a sequence in (a, y) converging to a.
Since |a− y| < 1

m
, also |xi − y| < 1

m
for all i. Therefore

|f(xi)− f(y)| <
1

2n
.

Since limits preserve non-strict inequality, and the absolute value function is contin-

uous, we have

|f(a)− f(y)| = | lim
i→∞

f(xi)− f(y)| = lim
i→∞
|f(xi)− f(y)| ≤

1

2n
<

1

n
.

We only case we have not considered yet is when both x, y are the end-points. We can

avoid discussing this case by increasing the value of m if necessary so that 1
m
< b−a.

In this case, if |x− y| < 1
m
, then x, y cannot be the the opposite endpoints of [a, b].

4.2.3 For a, b ∈ R, let Ia,b be [a, b] or [b, a] according to whether a ≤ b or b ≤ a. Intervals
are sets A characterized by the property that if a, b ∈ A, then Ia,b ⊂ A. Suppose

f : D → R is a continuous function whose domain D is an interval. Let a, b ∈ f(D)
and let x, y ∈ D be such that f(x) = a, f(y) = b. Since D is an interval, the closed
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interval Ix,y ⊂ D is contained in D. Applying the intermediate value theorem to f
restricted to Ix,y, we obtain that Ia,b ⊂ f(Ix,y) ⊂ f(D). Hence f(D) is an interval.

If D = (0, 1) and f(x) = x, then clearly f(D) is an open interval.

4.2.8 We will show that for some large value x0, the values f(x0) and f(−x0) are non-zero
and have opposite signs. In that case, applying the Intermediate value theorem to the

restriction of f to [−x0, x0] implies that there exists x ∈ (−x0, x0) such that f(x) = 0.
To show the existence of x0, we will use the fact that an odd degree polynomial p(x)
satis�es limx→±∞ |p(x)| = ∞ with the sign of p(x) and p(−x) being opposite for x
large enough. Adding a bounded function to p does not change this property. We

now present a more careful proof of that.

Without loss of generality, we may assume that the leading coe�cient of p is 1. If
it is not, we can divide f by the leading coe�cient. Let k odd be the degree of p.
We have

p(x) = xk + ck−1x
k−1 + . . . c1x+ c0

for some constants ci. We have

lim
x→±∞

|ck−1xk−1 + . . . c1x+ c0|
|xk|

= lim
x→±∞

|ck−1x−1 + . . . c1x
−k+1 + c0x

−k| = 0.

Let N be such that for all x such that |x| ≥ N we have

|ck−1xk−1 + . . . c1x+ c0|
|xk|

<
1

2

or equivalently

|ck−1xk−1 + . . . c1x+ c0| <
1

2
|xk|.

By the reverse triangle inequality, it follows that for all such x we have

|p(x)| ≥ |xk| − |ck−1xk−1 + . . . c1x+ c0|

> |xk| − 1

2
|xk| = 1

2
|xk|

Moreover, the sign of p(x) is the same as the sign of xk. Since g is bounded, there

exists M > 0 such that for all x ∈ R, |g(x)| < M . Let N ′ = max(N, k
√
4M). Then

for for all x with |x| ≥ N ′ we have

|p(x)| > 1

2
|xk| ≥ 1

2
4M = 2M.

Letting f(x) = p(x) + g(x), we have that for |x| ≥ N ′,

|f(x)| ≥ |p(x)| − |g(x)| > 2M −M =M

and moreover, the sign of f(x) is the same as the sign of p(x) which is the same as

the sign of xk. Since the sign of xk is di�erent for x = N ′ and x = −N ′, we are done.
4.2.13 Let f, g be continuous functions on [a, b] and [b, c] respectively. De�ne h(x) on [a, c]

by

h(x) =

{
f(x) a ≤ x ≤ b

g(x) b < x ≤ c

Suppose h(x) is continuous. Then limx→b h(x) exists and equals to both limx→b− h(x) =
limx→b f(x) = f(b) and limx→b+ h(x) = limx→b g(x) = g(b). Hence f(b) = g(b).
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For the other direction, assume that f(b) = g(b). It is clear that h(x) is continuous
at all x 6= b. To show continuity of h, it thus su�ces to show that h is continuous at b.
Given 1

n
let 1

m
be such that for all x ∈ [a, b] with |x−b| < 1

m
we have |f(x)−f(b)| < 1

n

and such that for all x ∈ [b, c] with |x− b| < 1
m
we have |g(x)− g(b)| < 1

n
. Then for

any x ∈ [a, c] such that |x− b| < 1
m
we have that either x ∈ [a, b], in which case

|(h(x)− h(b)| = |f(x)− f(b)| < 1

n
or x ∈ [b, c], in which case

|h(x)− h(b)| = |g(x)− g(b)| < 1

n
.

It follows that h is continuous at b.
4.2.17 The function

f(x) =

{
sin( 1

x
) x 6= 0

0 x = 0

satis�es the intermediate value property but is not continuous at 0.
A function having the intermediate value property can not have jump disconti-

nuities. Suppose f has a jump discontinuity at x0. Let limx→x−
0
f(x) = a and

limx→x+
0
f(x) = b Assume for concreteness that a < b and let δ = b − a. Let 1

n
be

such that for all x < x0 with |x0 − x| ≤ 1
n
we have

|f(x)− a| < δ/3

and such that for all x > x0 with |x− x0| ≤ 1
n
we have

|f(x)− b| < δ/3.

Then the restriction of f to [x0 − 1
n
, x0 +

1
n
] does not satisfy the intermediate value

property. Indeed,

f(x0 −
1

n
) ∈ [a− δ/3, a+ δ/3],

f(x0 +
1

n
) ∈ [b− δ/3, b+ δ/3],

but [a + δ/3, b − δ/3] is not in the image of f restricted to [x0 − 1
n
, x0 +

1
n
] except

possibly for f(x0). In other words, for any y ∈ [a + δ/3, b − δ/3] with y 6= f(x0),
there does not exist x ∈ [x0 − 1

n
, x0 +

1
n
] such that f(x) = y.


