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M405 - HOMEWORK SET #5- SOLUTIONS

Let {z1,...,2,} C A be a finite collection of points. Define 4, = A — {z,} =
AN (R — {x,}), which are open being the intersection of two open sets. Then

A—{xl,...,mn}:ﬁAn
i=1

is open, being a finite intersection of open sets. It should now also be clear what
might go wrong if we remove countable number of points from an open set: the
the intersection above might not be open. For a concrete example, let A = R and
5,3, } be a countable collection of point of A. We have that A —{3,3,1,...}
is not open since it contains 0, but no open interval containing 0.
Let x be a limit point of A. We define a subsequence of {z;} whose limit is x. Define
an increasing function k£ : N — N as follows. Let k(1) be such that |zq) — 2| < 1.
Such value exists since x is a limit point of A. Assuming we defined k(7) for all i < n,
we choose k(n) > k(n — 1) such that |zym) — 2| < +. There are infinitely many
points of A satisfying this property which in particular means there are infinitely
many terms of {z;} which satisfy this property, and therefore such k(n) exists. It
should be clear that {zy(;} is a convergent subsequence of {x;} with limit x.

In the other direction, assume that no point of A occurs more than a finite number
of times in the sequence and that x is a limit point of the sequence {x;}. Let {xy}
be a subsequence of {z;} which converges to x. Assume by contradiction that x is
not a limit point of A. Then there exists L such that AN (z — 2,2 + 2) is either
empty or equals {z}. Since lim; T4y = ¥, there exists m € N such that for all
i >m, e — ] < % and hence ;) = @ for all ¢ > m. This contradicts that no
point of A occurs more than a finite number of times in the sequence.

Let A C R. Define a subset

B={(z,y) e QxQ|Fa € As.t. x <a <y}

The set B is countable since it is a subset of a countable set Q x Q. Choose an
element a,, € (z,y) for every (x,y) € B and let A" C A be the union of all a,,. The
set A’ is countable since there is an onto map B — A’ sending (z,y) to a,,,.

We claim that A’ is dense in A, i.e., that A C closure(A’). The closure of A’
consists of A" and all the limit points of A’. We therefore have to show that for every
a € A, either a € A’ or it is a limit point of A’. Let a € A — A’. We show that a is a
limit point of A’. Given %, choose = € (a — %, a)NQand y € (a,a+ %) N Q. We have
that (z,y) € B since x < a < y. Therefore there is a,, € A’ satisfying |a,, —a| < *.
Moreover a,,, # a since a ¢ A’. Tt follows that @ is a limit point of A’.

An example of a set A such that the intersection of A with the rational numbers
is not dense in A is the set of irrational numbers R — Q. The intersection is in fact
empty.

Let {x;} be a sequence and A be the set of limit points of {x;}. We want to show

that A is closed. We show that A contains all of its limit points. Let a be a limit
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point of A. Then for any %, there exists x € A with |x —a| < % Since z € A, there
are infinitely many terms z; such that |r; — z| < in For every such term, by the

2
triangle inequality, we have

|z —al < |z —zx|+|r —a] < — i:l
- 2n  2n n
Having infinitely many terms z; satisfying this property for any % means a is a limit
point of {z;}. In particular, a € A and hence A is closed.
Let A C R and let the derived set A’ be the set of limit points of A. We would like
to show that A’ is closed. Let a be a limit point of A’. We would like to show that
a € A, ie., ais alimit point of A. We show that given any %, there is a point x € A,
xr # a such that |z —a| < % Since a is a limit point of A’, there exists y € A’, not
equal to a such that |y —a| < ﬁ Since y is a limit point of A, there exists a point
x € A such that |z —y| < |y — a|/2. Then
el <oyl +ly—al < L2 o Ly ]
- 2 2n  4n 2n  n

We additionally need to verify that x # a. For that, we apply the reverse triangle
inequality

la—x|>]a—yl—|z—yl>la—yl—|y—al/2=|y—al|/2>0.

As per examples:

— A ={0} is a closed set whose derived set is empty.

— Let A= {|n € N}. Then A’ = {0} and A" = 0.
Let us give a name to the property which we would like to show is equivalent to
compactness.

Definition 1. We say that a set A satisfies property B if for any collection B of
closed sets such that the intersection of any finite number of them contains a point
of A, the intersection of all of them contains a point of A.

We now show that a set A is compact if and only if it satisfies property B.
Assume A satisfies property B. Let U be a collection of open sets which covers A.
Consider the collection B = {U¢|U € U} of the complements of the sets in Y. It is a
collection of closed sets. We have
ve=(Ju)yca
veu veu
where the last inclusion follows from the fact that U is a cover of A. In particular,
the intersection of all elements of B does NOT contain points of A. Since A satisfies
property B, there must be a finite sub-collection {Uf,Us, ..., Ug} of B such that
ﬂle Ug does not contain points of A. In other words

k k
(Us = (U C A°
=1 =1

and hence the finite subcollection {Uy, Us, ..., Ux} of U covers A.
Assume A is compact and let B be a collection of closed sets such that the inter-
section of any finite subcollection of B contains elements of A. Let U = {B°|B € B}.
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The condition on B implies that for any finite subcollection {Bf, BS, ..., BS} of U,
we have

k k

UBi=(B) 24

i=1 i=1
since for a € A, a € (i, B; implies a & ((._, B:)°. Therefore (N, B;)* 7 A. In
particular, no finite subcollection of U covers A. Since A is compact, we have that
the entire collection U/ also does not cover A, i.e.,

UB=(Brz4

BeB BeB
which then implies that (.5 B contains points of A. Therefore A satisfies property
B.

3.34 If By and B, are disjoint and A C By U By, then AN By = AN BS. Assume A is
compact and hence closed and bounded. Since B is closed, so is AN BS. Since A is
bounded, so is AN BS. Therefore, AN BY is closed and bounded and hence compact.

3.3.6 Assume Aisopen and a+b € A+ B with a € A,b € B. Since A is open, there exists
an open interval U C A containing a. Then the set U + {b} is contained in A+ B
and is an open interval, being a translation of U by b. Hence A + B is open.

Assume A, B are compact. Let {x;} be a sequence in A + B. For each z;, choose
a; € A and b; € B such that a;+b; = x;. Since A is compact, there exists a convergent
subsequence {ax;} of {a;} with the limit in A. Since B is compact, there exists a
convergent subsequence {by;} of {bx)} with the limit in B. Then, since {a} is a
subsequence of a convergent sequence {ay; }, it is also convergent. We therefore have
that {x(;)} is a convergent sequence of {z;}. Its limit is zliglo ) +lli>r£10 bigy € A+ B.
Since an arbitrary sequence in A + B has a convergent subsequence with the limit in
A+ B, the set A+ B is compact.

Let A= {n+ —5|n € N} and B = {—n|n € N}. Then both A and B are closed,

On the other hand, the set A+ B contains elements #1 for all n € N but not 0 and
therefore is not closed.

e Let U be a collection of open sets which covers A. Then U U {A°} covers B and
therefore has a finite subcover {Uy, Us,..., Uy, A°}. Since A C B, the collection
{Uy,Us, ..., Uk, A%} covers A. Moreover, since AN A° = (), removing A° from the
collection, does not change the fact that it covers A. Therefore {U;,..., U} is a
finite subcover of Y. Hence A is compact.



