M405 - HOMEWORK SET \#5- SOLUTIONS

3.2.1 Let $\left\{x_{1}, \ldots, x_{n}\right\} \subset A$ be a finite collection of points. Define $A_{n}=A-\left\{x_{n}\right\}=$ $A \cap\left(\mathbb{R}-\left\{x_{n}\right\}\right)$, which are open being the intersection of two open sets. Then

$$
A-\left\{x_{1}, \ldots, x_{n}\right\}=\bigcap_{i=1}^{n} A_{n}
$$

is open, being a finite intersection of open sets. It should now also be clear what might go wrong if we remove countable number of points from an open set: the the intersection above might not be open. For a concrete example, let $A=\mathbb{R}$ and $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ be a countable collection of point of A. We have that $A-\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ is not open since it contains 0 , but no open interval containing 0 .
3.2.2 Let x be a limit point of A. We define a subsequence of $\left\{x_{i}\right\}$ whose limit is x. Define an increasing function $k: \mathbb{N} \rightarrow \mathbb{N}$ as follows. Let $k(1)$ be such that $\left|x_{k(1)}-x\right|<1$. Such value exists since x is a limit point of A. Assuming we defined $k(i)$ for all $i<n$, we choose $k(n)>k(n-1)$ such that $\left|x_{k(n)}-x\right|<\frac{1}{n}$. There are infinitely many points of A satisfying this property which in particular means there are infinitely many terms of $\left\{x_{i}\right\}$ which satisfy this property, and therefore such $k(n)$ exists. It should be clear that $\left\{x_{k(i)}\right\}$ is a convergent subsequence of $\left\{x_{i}\right\}$ with limit x.

In the other direction, assume that no point of A occurs more than a finite number of times in the sequence and that x is a limit point of the sequence $\left\{x_{i}\right\}$. Let $\left\{x_{k(i)}\right\}$ be a subsequence of $\left\{x_{i}\right\}$ which converges to x. Assume by contradiction that x is not a limit point of A. Then there exists $\frac{1}{n}$ such that $A \cap\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$ is either empty or equals $\{x\}$. Since $\lim _{i \rightarrow \infty} x_{k(i)}=x$, there exists $m \in \mathbb{N}$ such that for all $i>m,\left|x_{k(i)}-x\right|<\frac{1}{n}$ and hence $x_{k(i)}=x$ for all $i>m$. This contradicts that no point of A occurs more than a finite number of times in the sequence.
3.2.6 Let $A \subset \mathbb{R}$. Define a subset

$$
B=\{(x, y) \in \mathbb{Q} \times \mathbb{Q} \mid \exists a \in A \text { s.t. } x<a<y\}
$$

The set B is countable since it is a subset of a countable set $\mathbb{Q} \times \mathbb{Q}$. Choose an element $a_{x, y} \in(x, y)$ for every $(x, y) \in B$ and let $A^{\prime} \subset A$ be the union of all $a_{x, y}$. The set A^{\prime} is countable since there is an onto map $B \rightarrow A^{\prime}$ sending (x, y) to $a_{x, y}$.

We claim that A^{\prime} is dense in A, i.e., that $A \subset \operatorname{closure}\left(A^{\prime}\right)$. The closure of A^{\prime} consists of A^{\prime} and all the limit points of A^{\prime}. We therefore have to show that for every $a \in A$, either $a \in A^{\prime}$ or it is a limit point of A^{\prime}. Let $a \in A-A^{\prime}$. We show that a is a limit point of A^{\prime}. Given $\frac{1}{n}$, choose $x \in\left(a-\frac{1}{n}, a\right) \cap \mathbb{Q}$ and $y \in\left(a, a+\frac{1}{n}\right) \cap \mathbb{Q}$. We have that $(x, y) \in B$ since $x<a<y$. Therefore there is $a_{x, y} \in A^{\prime}$ satisfying $\left|a_{x, y}-a\right|<\frac{1}{n}$. Moreover $a_{x, y} \neq a$ since $a \notin A^{\prime}$. It follows that a is a limit point of A^{\prime}.

An example of a set A such that the intersection of A with the rational numbers is not dense in A is the set of irrational numbers $\mathbb{R}-\mathbb{Q}$. The intersection is in fact empty.
3.2.8 Let $\left\{x_{i}\right\}$ be a sequence and A be the set of limit points of $\left\{x_{i}\right\}$. We want to show that A is closed. We show that A contains all of its limit points. Let a be a limit
point of A. Then for any $\frac{1}{n}$, there exists $x \in A$ with $|x-a|<\frac{1}{2 n}$. Since $x \in A$, there are infinitely many terms x_{i} such that $\left|x_{i}-x\right|<\frac{1}{2 n}$. For every such term, by the triangle inequality, we have

$$
\left|x_{i}-a\right| \leq\left|x_{i}-x\right|+|x-a|<\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}
$$

Having infinitely many terms x_{i} satisfying this property for any $\frac{1}{n}$ means a is a limit point of $\left\{x_{i}\right\}$. In particular, $a \in A$ and hence A is closed.
3.2.13 Let $A \subset \mathbb{R}$ and let the derived set A^{\prime} be the set of limit points of A. We would like to show that A^{\prime} is closed. Let a be a limit point of A^{\prime}. We would like to show that $a \in A^{\prime}$, i.e., a is a limit point of A. We show that given any $\frac{1}{n}$, there is a point $x \in A$, $x \neq a$ such that $|x-a|<\frac{1}{n}$. Since a is a limit point of A^{\prime}, there exists $y \in A^{\prime}$, not equal to a such that $|y-a|<\frac{1}{2 n}$. Since y is a limit point of A, there exists a point $x \in A$ such that $|x-y|<|y-a| / 2$. Then

$$
|x-a| \leq|x-y|+|y-a|<\frac{|y-a|}{2}+\frac{1}{2 n}<\frac{1}{4 n}+\frac{1}{2 n}<\frac{1}{n}
$$

We additionally need to verify that $x \neq a$. For that, we apply the reverse triangle inequality

$$
|a-x| \geq|a-y|-|x-y| \geq|a-y|-|y-a| / 2=|y-a| / 2>0 .
$$

As per examples:

- $A=\{0\}$ is a closed set whose derived set is empty.
- Let $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Then $A^{\prime}=\{0\}$ and $A^{\prime \prime}=\emptyset$.
3.3.2 Let us give a name to the property which we would like to show is equivalent to compactness.

Definition 1. We say that a set A satisfies property B if for any collection \mathcal{B} of closed sets such that the intersection of any finite number of them contains a point of A, the intersection of all of them contains a point of A.

We now show that a set A is compact if and only if it satisfies property B .
Assume A satisfies property B. Let \mathcal{U} be a collection of open sets which covers A. Consider the collection $\mathcal{B}=\left\{U^{c} \mid U \in \mathcal{U}\right\}$ of the complements of the sets in \mathcal{U}. It is a collection of closed sets. We have

$$
\bigcap_{U \in \mathcal{U}} U^{c}=\left(\bigcup_{U \in \mathcal{U}} U\right)^{c} \subset A^{c}
$$

where the last inclusion follows from the fact that \mathcal{U} is a cover of A. In particular, the intersection of all elements of \mathcal{B} does NOT contain points of A. Since A satisfies property B , there must be a finite sub-collection $\left\{U_{1}^{c}, U_{2}^{c}, \ldots, U_{k}^{c}\right\}$ of \mathcal{B} such that $\bigcap_{i=1}^{k} U_{k}^{c}$ does not contain points of A. In other words

$$
\bigcap_{i=1}^{k} U_{i}^{c}=\left(\bigcap_{i=1}^{k} U_{i}\right)^{c} \subset A^{c}
$$

and hence the finite subcollection $\left\{U_{1}, U_{2}, \ldots, U_{k}\right\}$ of \mathcal{U} covers A.
Assume A is compact and let \mathcal{B} be a collection of closed sets such that the intersection of any finite subcollection of \mathcal{B} contains elements of A. Let $\mathcal{U}=\left\{B^{c} \mid B \in \mathcal{B}\right\}$.

The condition on \mathcal{B} implies that for any finite subcollection $\left\{B_{1}^{c}, B_{2}^{c}, \ldots, B_{3}^{c}\right\}$ of \mathcal{U}, we have

$$
\bigcup_{i=1}^{k} B_{i}^{c}=\left(\bigcap_{i=1}^{k} B_{i}\right)^{c} \not \supset A
$$

since for $a \in A, a \in \bigcap_{i=1}^{k} B_{i}$ implies $a \notin\left(\bigcap_{i=1}^{k} B_{i}\right)^{c}$. Therefore $\left(\bigcap_{i=1}^{k} B_{i}\right)^{c} \not \supset A$. In particular, no finite subcollection of \mathcal{U} covers A. Since A is compact, we have that the entire collection \mathcal{U} also does not cover A, i.e.,

$$
\bigcup_{B \in \mathcal{B}} B^{c}=\left(\bigcap_{B \in \mathcal{B}} B\right)^{c} \not \supset A
$$

which then implies that $\bigcap_{B \in \mathcal{B}} B$ contains points of A. Therefore A satisfies property B.
3.3.4 If B_{1} and B_{2} are disjoint and $A \subset B_{1} \cup B_{2}$, then $A \cap B_{1}=A \cap B_{2}^{c}$. Assume A is compact and hence closed and bounded. Since B_{2}^{c} is closed, so is $A \cap B_{2}^{c}$. Since A is bounded, so is $A \cap B_{2}^{c}$. Therefore, $A \cap B_{2}^{c}$ is closed and bounded and hence compact.
3.3.6 Assume A is open and $a+b \in A+B$ with $a \in A, b \in B$. Since A is open, there exists an open interval $U \subset A$ containing a. Then the set $U+\{b\}$ is contained in $A+B$ and is an open interval, being a translation of U by b. Hence $A+B$ is open.

Assume A, B are compact. Let $\left\{x_{i}\right\}$ be a sequence in $A+B$. For each x_{i}, choose $a_{i} \in A$ and $b_{i} \in B$ such that $a_{i}+b_{i}=x_{i}$. Since A is compact, there exists a convergent subsequence $\left\{a_{k(i)}\right\}$ of $\left\{a_{i}\right\}$ with the limit in A. Since B is compact, there exists a convergent subsequence $\left\{b_{l(i)}\right\}$ of $\left\{b_{k(i)}\right\}$ with the limit in B. Then, since $\left\{a_{l(i)}\right\}$ is a subsequence of a convergent sequence $\left\{a_{k(i)}\right\}$, it is also convergent. We therefore have that $\left\{x_{l(i)}\right\}$ is a convergent sequence of $\left\{x_{i}\right\}$. Its limit is $\lim _{i \rightarrow \infty} a_{l(i)}+\lim _{i \rightarrow \infty} b_{l(i)} \in A+B$. Since an arbitrary sequence in $A+B$ has a convergent subsequence with the limit in $A+B$, the set $A+B$ is compact.

Let $A=\left\{\left.n+\frac{1}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$ and $B=\{-n \mid n \in \mathbb{N}\}$. Then both A and B are closed. On the other hand, the set $A+B$ contains elements $\frac{1}{n+1}$ for all $n \in \mathbb{N}$ but not 0 and therefore is not closed.

- Let \mathcal{U} be a collection of open sets which covers A. Then $\mathcal{U} \cup\left\{A^{c}\right\}$ covers B and therefore has a finite subcover $\left\{U_{1}, U_{2}, \ldots, U_{k}, A^{c}\right\}$. Since $A \subset B$, the collection $\left\{U_{1}, U_{2}, \ldots, U_{k}, A^{c}\right\}$ covers A. Moreover, since $A \cap A^{c}=\emptyset$, removing A^{c} from the collection, does not change the fact that it covers A. Therefore $\left\{U_{1}, \ldots, U_{k}\right\}$ is a finite subcover of \mathcal{U}. Hence A is compact.

