
M405 - HOMEWORK SET #5- SOLUTIONS

3.2.1 Let {x1, . . . , xn} ⊂ A be a �nite collection of points. De�ne An = A − {xn} =
A ∩ (R− {xn}), which are open being the intersection of two open sets. Then

A− {x1, . . . , xn} =
n⋂

i=1

An

is open, being a �nite intersection of open sets. It should now also be clear what

might go wrong if we remove countable number of points from an open set: the

the intersection above might not be open. For a concrete example, let A = R and

{1
2
, 1
3
, 1
4
, . . . } be a countable collection of point of A. We have that A− {1

2
, 1
3
, 1
4
, . . . }

is not open since it contains 0, but no open interval containing 0.
3.2.2 Let x be a limit point of A. We de�ne a subsequence of {xi} whose limit is x. De�ne

an increasing function k : N → N as follows. Let k(1) be such that |xk(1) − x| < 1.
Such value exists since x is a limit point of A. Assuming we de�ned k(i) for all i < n,
we choose k(n) > k(n − 1) such that |xk(n) − x| < 1

n
. There are in�nitely many

points of A satisfying this property which in particular means there are in�nitely

many terms of {xi} which satisfy this property, and therefore such k(n) exists. It

should be clear that {xk(i)} is a convergent subsequence of {xi} with limit x.
In the other direction, assume that no point of A occurs more than a �nite number

of times in the sequence and that x is a limit point of the sequence {xi}. Let {xk(i)}
be a subsequence of {xi} which converges to x. Assume by contradiction that x is

not a limit point of A. Then there exists 1
n
such that A ∩ (x − 1

n
, x + 1

n
) is either

empty or equals {x}. Since limi→∞ xk(i) = x, there exists m ∈ N such that for all

i > m, |xk(i) − x| < 1
n
and hence xk(i) = x for all i > m. This contradicts that no

point of A occurs more than a �nite number of times in the sequence.

3.2.6 Let A ⊂ R. De�ne a subset

B = {(x, y) ∈ Q×Q|∃a ∈ A s.t. x < a < y}.

The set B is countable since it is a subset of a countable set Q × Q. Choose an

element ax,y ∈ (x, y) for every (x, y) ∈ B and let A′ ⊂ A be the union of all ax,y. The
set A′ is countable since there is an onto map B → A′ sending (x, y) to ax,y.
We claim that A′ is dense in A, i.e., that A ⊂ closure(A′). The closure of A′

consists of A′ and all the limit points of A′. We therefore have to show that for every

a ∈ A, either a ∈ A′ or it is a limit point of A′. Let a ∈ A−A′. We show that a is a

limit point of A′. Given 1
n
, choose x ∈ (a− 1

n
, a)∩Q and y ∈ (a, a+ 1

n
)∩Q. We have

that (x, y) ∈ B since x < a < y. Therefore there is ax,y ∈ A′ satisfying |ax,y−a| < 1
n
.

Moreover ax,y 6= a since a 6∈ A′. It follows that a is a limit point of A′.

An example of a set A such that the intersection of A with the rational numbers

is not dense in A is the set of irrational numbers R − Q. The intersection is in fact

empty.

3.2.8 Let {xi} be a sequence and A be the set of limit points of {xi}. We want to show

that A is closed. We show that A contains all of its limit points. Let a be a limit
1
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point of A. Then for any 1
n
, there exists x ∈ A with |x− a| < 1

2n
. Since x ∈ A, there

are in�nitely many terms xi such that |xi − x| < 1
2n
. For every such term, by the

triangle inequality, we have

|xi − a| ≤ |xi − x|+ |x− a| < 1

2n
+

1

2n
=

1

n
.

Having in�nitely many terms xi satisfying this property for any 1
n
means a is a limit

point of {xi}. In particular, a ∈ A and hence A is closed.

3.2.13 Let A ⊂ R and let the derived set A′ be the set of limit points of A. We would like

to show that A′ is closed. Let a be a limit point of A′. We would like to show that

a ∈ A′, i.e., a is a limit point of A. We show that given any 1
n
, there is a point x ∈ A,

x 6= a such that |x − a| < 1
n
. Since a is a limit point of A′, there exists y ∈ A′, not

equal to a such that |y − a| < 1
2n
. Since y is a limit point of A, there exists a point

x ∈ A such that |x− y| < |y − a|/2. Then

|x− a| ≤ |x− y|+ |y − a| < |y − a|
2

+
1

2n
<

1

4n
+

1

2n
<

1

n

We additionally need to verify that x 6= a. For that, we apply the reverse triangle

inequality

|a− x| ≥ |a− y| − |x− y| ≥ |a− y| − |y − a|/2 = |y − a|/2 > 0.

As per examples:

� A = {0} is a closed set whose derived set is empty.

� Let A = { 1
n
|n ∈ N}. Then A′ = {0} and A′′ = ∅.

3.3.2 Let us give a name to the property which we would like to show is equivalent to

compactness.

De�nition 1. We say that a set A satis�es property B if for any collection B of

closed sets such that the intersection of any �nite number of them contains a point

of A, the intersection of all of them contains a point of A.

We now show that a set A is compact if and only if it satis�es property B.

Assume A satis�es property B. Let U be a collection of open sets which covers A.
Consider the collection B = {U c|U ∈ U} of the complements of the sets in U . It is a
collection of closed sets. We have⋂

U∈U

U c = (
⋃
U∈U

U)c ⊂ Ac

where the last inclusion follows from the fact that U is a cover of A. In particular,

the intersection of all elements of B does NOT contain points of A. Since A satis�es

property B, there must be a �nite sub-collection {U c
1 , U

c
2 , . . . , U

c
k} of B such that⋂k

i=1 U
c
k does not contain points of A. In other words

k⋂
i=1

U c
i = (

k⋂
i=1

Ui)
c ⊂ Ac

and hence the �nite subcollection {U1, U2, . . . , Uk} of U covers A.
Assume A is compact and let B be a collection of closed sets such that the inter-

section of any �nite subcollection of B contains elements of A. Let U = {Bc|B ∈ B}.
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The condition on B implies that for any �nite subcollection {Bc
1, B

c
2, . . . , B

c
3} of U ,

we have
k⋃

i=1

Bc
i = (

k⋂
i=1

Bi)
c 6⊃ A

since for a ∈ A, a ∈
⋂k

i=1Bi implies a 6∈ (
⋂k

i=1Bi)
c. Therefore (

⋂k
i=1 Bi)

c 6⊃ A. In

particular, no �nite subcollection of U covers A. Since A is compact, we have that

the entire collection U also does not cover A, i.e.,⋃
B∈B

Bc = (
⋂
B∈B

B)c 6⊃ A

which then implies that
⋂

B∈B B contains points of A. Therefore A satis�es property

B.

3.3.4 If B1 and B2 are disjoint and A ⊂ B1 ∪ B2, then A ∩ B1 = A ∩ Bc
2. Assume A is

compact and hence closed and bounded. Since Bc
2 is closed, so is A ∩Bc

2. Since A is

bounded, so is A∩Bc
2. Therefore, A∩Bc

2 is closed and bounded and hence compact.

3.3.6 Assume A is open and a+ b ∈ A+B with a ∈ A, b ∈ B. Since A is open, there exists

an open interval U ⊂ A containing a. Then the set U + {b} is contained in A + B
and is an open interval, being a translation of U by b. Hence A+B is open.

Assume A,B are compact. Let {xi} be a sequence in A + B. For each xi, choose

ai ∈ A and bi ∈ B such that ai+bi = xi. Since A is compact, there exists a convergent

subsequence {ak(i)} of {ai} with the limit in A. Since B is compact, there exists a

convergent subsequence {bl(i)} of {bk(i)} with the limit in B. Then, since {al(i)} is a
subsequence of a convergent sequence {ak(i)}, it is also convergent. We therefore have

that {xl(i)} is a convergent sequence of {xi}. Its limit is lim
i→∞

al(i) + lim
i→∞

bl(i) ∈ A+B.

Since an arbitrary sequence in A+B has a convergent subsequence with the limit in

A+B, the set A+B is compact.

Let A = {n + 1
n+1
|n ∈ N} and B = {−n|n ∈ N}. Then both A and B are closed.

On the other hand, the set A+B contains elements 1
n+1

for all n ∈ N but not 0 and

therefore is not closed.

• Let U be a collection of open sets which covers A. Then U ∪ {Ac} covers B and

therefore has a �nite subcover {U1, U2, . . . , Uk, A
c}. Since A ⊂ B, the collection

{U1, U2, . . . , Uk, A
c} covers A. Moreover, since A ∩ Ac = ∅, removing Ac from the

collection, does not change the fact that it covers A. Therefore {U1, . . . , Uk} is a

�nite subcover of U . Hence A is compact.


