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3.1.1 .

xn sup inf lim sup lim inf limit points

1/n+ (−1)n 3/2 −1 1 −1 ±1
1 + (−1)n/n 3/2 0 1 1 1

(−1)n + 1/n+ 2 sinnπ/2 2 -3 1 -3 1, -3

3.1.2 No! For example xn = (−1)n is a bounded non-convergent sequence but is the sum

xn = yn+zn where yn = 3n is monotone increasing and zn = −3n+(−1)n is monotone

decreasing.

If on the other hand {yn}, {zn} are themselves bounded, then they are convergent

and therefore so is their sum.

3.1.4 Since sup(A) is the least upper bound of A, to show that sup(A ∪ B) ≥ sup(A), it
su�ces to show that x = sup(A ∪ B) is an upper bound of A. We have that for all

y ∈ A ∪B, x ≥ y, hence in particular it is true for all y ∈ A since A ⊂ A ∪B.
For the same reason, to show that sup(A ∩ B) ≤ sup(A) it su�ces to show that

x = sup(A) is an upper bound of A ∩ B. We have that for all y ∈ A, x ≥ y. Since
A ∩ B ⊂ A, it in particular holds for all y in A ∩ B and hence x is an upper bound

of A ∩B.
3.1.5 Recall the de�nition

lim supxi = lim
m→∞

sup{xi|i ≥ m}.

Hence for every 1
n
, there exists m ∈ N such that sup{xi|i ≥ m} < lim sup{xn}+ 1

2n
.

By the same argument applied to the sequence {yi}, we can pick m so that also

sup{yi|i ≥ m} < lim sup{yn}+ 1
2n
. Hence for all i ≥ m,

xi + yi < lim sup{xn}+
1

2n
+ lim sup{yn}+

1

2n

= lim sup{xn}+ lim sup{yn}+
1

n

Therefore

lim sup{xi + yi} ≤ lim sup{xn}+ lim sup{yn}+
1

n

for all 1
n
. By the Archimedean property of real numbers, we have

lim sup{xi + yi} ≤ lim sup{xn}+ lim sup{yn}
An example where the inequality is strict is xi = (−1)i and yi = (−1)i+1. In this

case, lim sup{xi + yi} = 0 while lim sup{xn}+ lim sup{yn} = 2.
3.1.8 Let us recall the de�nition of ∞ being a limit point of a sequence.

De�nition 1. Let {xi} be a sequence of real numbers. Then ∞ is a limit point of

{xi} if for every N ∈ N, there are in�nitely many terms xi satisfying xi > N .
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Let {xi} be a sequence of real numbers. Suppose that ∞ is a limit point of {xi}.
We construct a subsequence whose limit is ∞. We de�ne an increasing function

k : N → N inductively. Let k(1) ∈ N be such that xk(1) > 1. It exists since ∞
is a limit point of {xi}. Suppose we have de�ned k(i) for all i ≤ n. Since ∞ is a

limit point of {xi}, there are in�nitely many j so that |xj > n + 1|. In particular,

there exists such j with j > k(n). We let k(n + 1) = j. This de�nes an increasing

function, so {xk(i)} is a subsequence of {xi}. Moreover, since xk(i) > i, we have

limi→∞ xk(i) =∞.

In the other direction, let {xi} be a sequence of real numbers, k : N → N be an

increasing function such that limi→∞ xk(i) =∞. We show that ∞ is a limit point of

{xi}. For N ∈ N, let m ∈ N be such that for all i > m, xk(i) > N , which exists since

limi→∞ xk(i) = ∞. In particular, xk(i) with i > m constitute an in�nite number of

terms of {xi} with the property xi > N .

3.1.9 No! If 1, 1/2, 1/3, . . . are limit points of {xi}, then 0 must also be a limit point of

{xi}, which we now demonstrate. Let {xi} be a sequence such that 1, 1/2, 1/3, . . . are
limit points. We construct a subsequence whose limit is 0. We de�ne an increasing

function k : N → N inductively. Let k(1) = 1. Suppose we have de�ned k(i) for all
i < n. Choose k(n) > k(n − 1) such that |xk(n) − 1

2n
| < 1

2n
, which is possible since

1
2n

is a limit point of {xi}. This de�nes a subsequence {xk(i)}. Moreover, by triangle

inequality, this subsequence satis�es

|xk(i)| ≤
1

2n
+

1

2n
=

1

n
.

In particular, limi→∞ xk(i) = 0.
3.1.11 If x is a limit point of a row or a column, then in particular, there is a subsequence

consisting of the elements of that row or column converging to x. Since such subse-

quence would also be a subsequence of the sequence obtained by diagonalizing, x is

also a limit point of that sequence.

On the other hand, you don't necessary get all the limit points of the total sequence

in this manner. For example, consider the case

aij =

{
0 i = j

1 otherwise

The only limit point of every row and every column is 1, but 0 is a limit point of the

total sequence.


