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3.1.1.
Tn sup | inf | limsup | liminf | limit points
1/n+ (=1)" 3/2|—-1|1 -1 +1
1+ (—=1)"/n 3/2(0 |1 1 1
(=)™ 4+ 1/n+2sinnn/2 | 2 3001 -3 1,-3

3.1.2 No! For example z,, = (—1)" is a bounded non-convergent sequence but is the sum
Ty, = Yn+2, where y,, = 3n is monotone increasing and z, = —3n+(—1)" is monotone
decreasing.

If on the other hand {y,}, {z,} are themselves bounded, then they are convergent
and therefore so is their sum.

3.1.4 Since sup(A) is the least upper bound of A, to show that sup(A U B) > sup(A), it
suffices to show that x = sup(A U B) is an upper bound of A. We have that for all
y € AU B, x > vy, hence in particular it is true for all y € A since A C AU B.

For the same reason, to show that sup(A N B) < sup(A) it suffices to show that
x = sup(A) is an upper bound of AN B. We have that for all y € A, © > y. Since

AN B C A, it in particular holds for all y in AN B and hence x is an upper bound
of AN B.

3.1.5 Recall the definition
limsupz; = lim sup{z;|i > m}.
m—o0
Hence for every %, there exists m € N such that sup{z;|i > m} < limsup{z,} + 5.

By the same argument applied to the sequence {y;}, we can pick m so that also
sup{y;|i > m} < limsup{y,} + 5. Hence for all i > m,

1 1
z; +y; < limsup{z,} + o + limsup{y, } + n
1
= limsup{z, } + limsup{y,} + —
n
Therefore

1
lim sup{z; + y;} < limsup{z,} + limsup{y,} + —
n

for all % By the Archimedean property of real numbers, we have
limsup{x; + y;} < limsup{z,} + limsup{y,}

An example where the inequality is strict is z; = (—1)" and y; = (—1)""'. In this
case, limsup{x; + y;} = 0 while lim sup{z, } + limsup{y,} = 2.
3.1.8 Let us recall the definition of co being a limit point of a sequence.

Definition 1. Let {z;} be a sequence of real numbers. Then oo is a limit point of

{z;} if for every N € N, there are infinitely many terms z; satisfying z; > N.
1
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Let {z;} be a sequence of real numbers. Suppose that oo is a limit point of {x;}.
We construct a subsequence whose limit is co. We define an increasing function
k : N — N inductively. Let k(1) € N be such that x4y > 1. It exists since oo
is a limit point of {z;}. Suppose we have defined k(i) for all ¢ < n. Since oo is a
limit point of {z;}, there are infinitely many j so that |x; > n + 1|. In particular,
there exists such j with j > k(n). We let k(n + 1) = j. This defines an increasing
function, so {zy@)} is a subsequence of {z;}. Moreover, since xy; > 4, we have
hmiﬁoo L) = OQ.

In the other direction, let {z;} be a sequence of real numbers, k£ : N — N be an

increasing function such that lim; . ;) = co. We show that oo is a limit point of
{x;}. For N € N, let m € N be such that for all i > m, x; > N, which exists since
lim; o Tx(s) = 00. In particular, zy;) with ¢ > m constitute an infinite number of
terms of {z;} with the property z; > N.
No! If 1,1/2,1/3,... are limit points of {z;}, then 0 must also be a limit point of
{z;}, which we now demonstrate. Let {z;} be a sequence such that 1,1/2,1/3,... are
limit points. We construct a subsequence whose limit is 0. We define an increasing
function k£ : N — N inductively. Let k(1) = 1. Suppose we have defined k(i) for all
i < n. Choose k(n) > k(n — 1) such that |z — 55| < 5=, which is possible since
o is a limit point of {z;}. This defines a subsequence {zy;)}. Moreover, by triangle
inequality, this subsequence satisfies

< 1 1
ol < 5 5 =

In particular, lim;_,o ;) = 0.
If z is a limit point of a row or a column, then in particular, there is a subsequence
consisting of the elements of that row or column converging to x. Since such subse-
quence would also be a subsequence of the sequence obtained by diagonalizing, x is
also a limit point of that sequence.

On the other hand, you don’t necessary get all the limit points of the total sequence

in this manner. For example, consider the case

0 i=
Qij = .
1 otherwise
The only limit point of every row and every column is 1, but 0 is a limit point of the
total sequence.



