M405 - HOMEWORK SET \#4- SOLUTIONS

3.1.1.

x_{n}	sup	inf	limsup	lim inf	limit points
$1 / n+(-1)^{n}$	$3 / 2$	-1	1	-1	± 1
$1+(-1)^{n} / n$	$3 / 2$	0	1	1	1
$(-1)^{n}+1 / n+2 \sin n \pi / 2$	2	-3	1	-3	$1,-3$

3.1.2 No! For example $x_{n}=(-1)^{n}$ is a bounded non-convergent sequence but is the sum $x_{n}=y_{n}+z_{n}$ where $y_{n}=3 n$ is monotone increasing and $z_{n}=-3 n+(-1)^{n}$ is monotone decreasing.

If on the other hand $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are themselves bounded, then they are convergent and therefore so is their sum.
3.1.4 Since $\sup (A)$ is the least upper bound of A, to show that $\sup (A \cup B) \geq \sup (A)$, it suffices to show that $x=\sup (A \cup B)$ is an upper bound of A. We have that for all $y \in A \cup B, x \geq y$, hence in particular it is true for all $y \in A$ since $A \subset A \cup B$.

For the same reason, to show that $\sup (A \cap B) \leq \sup (A)$ it suffices to show that $x=\sup (A)$ is an upper bound of $A \cap B$. We have that for all $y \in A, x \geq y$. Since $A \cap B \subset A$, it in particular holds for all y in $A \cap B$ and hence x is an upper bound of $A \cap B$.
3.1.5 Recall the definition

$$
\lim \sup x_{i}=\lim _{m \rightarrow \infty} \sup \left\{x_{i} \mid i \geq m\right\}
$$

Hence for every $\frac{1}{n}$, there exists $m \in \mathbb{N}$ such that $\sup \left\{x_{i} \mid i \geq m\right\}<\lim \sup \left\{x_{n}\right\}+\frac{1}{2 n}$. By the same argument applied to the sequence $\left\{y_{i}\right\}$, we can pick m so that also $\sup \left\{y_{i} \mid i \geq m\right\}<\lim \sup \left\{y_{n}\right\}+\frac{1}{2 n}$. Hence for all $i \geq m$,

$$
\begin{aligned}
x_{i}+y_{i} & <\lim \sup \left\{x_{n}\right\}+\frac{1}{2 n}+\lim \sup \left\{y_{n}\right\}+\frac{1}{2 n} \\
& =\lim \sup \left\{x_{n}\right\}+\lim \sup \left\{y_{n}\right\}+\frac{1}{n}
\end{aligned}
$$

Therefore

$$
\lim \sup \left\{x_{i}+y_{i}\right\} \leq \lim \sup \left\{x_{n}\right\}+\lim \sup \left\{y_{n}\right\}+\frac{1}{n}
$$

for all $\frac{1}{n}$. By the Archimedean property of real numbers, we have

$$
\limsup \left\{x_{i}+y_{i}\right\} \leq \lim \sup \left\{x_{n}\right\}+\lim \sup \left\{y_{n}\right\}
$$

An example where the inequality is strict is $x_{i}=(-1)^{i}$ and $y_{i}=(-1)^{i+1}$. In this case, $\lim \sup \left\{x_{i}+y_{i}\right\}=0$ while $\lim \sup \left\{x_{n}\right\}+\limsup \left\{y_{n}\right\}=2$.
3.1.8 Let us recall the definition of ∞ being a limit point of a sequence.

Definition 1. Let $\left\{x_{i}\right\}$ be a sequence of real numbers. Then ∞ is a limit point of $\left\{x_{i}\right\}$ if for every $N \in \mathbb{N}$, there are infinitely many terms x_{i} satisfying $x_{i}>N$.

Let $\left\{x_{i}\right\}$ be a sequence of real numbers. Suppose that ∞ is a limit point of $\left\{x_{i}\right\}$. We construct a subsequence whose limit is ∞. We define an increasing function $k: \mathbb{N} \rightarrow \mathbb{N}$ inductively. Let $k(1) \in \mathbb{N}$ be such that $x_{k(1)}>1$. It exists since ∞ is a limit point of $\left\{x_{i}\right\}$. Suppose we have defined $k(i)$ for all $i \leq n$. Since ∞ is a limit point of $\left\{x_{i}\right\}$, there are infinitely many j so that $\left|x_{j}>n+1\right|$. In particular, there exists such j with $j>k(n)$. We let $k(n+1)=j$. This defines an increasing function, so $\left\{x_{k(i)}\right\}$ is a subsequence of $\left\{x_{i}\right\}$. Moreover, since $x_{k(i)}>i$, we have $\lim _{i \rightarrow \infty} x_{k(i)}=\infty$.

In the other direction, let $\left\{x_{i}\right\}$ be a sequence of real numbers, $k: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing function such that $\lim _{i \rightarrow \infty} x_{k(i)}=\infty$. We show that ∞ is a limit point of $\left\{x_{i}\right\}$. For $N \in \mathbb{N}$, let $m \in \mathbb{N}$ be such that for all $i>m, x_{k(i)}>N$, which exists since $\lim _{i \rightarrow \infty} x_{k(i)}=\infty$. In particular, $x_{k(i)}$ with $i>m$ constitute an infinite number of terms of $\left\{x_{i}\right\}$ with the property $x_{i}>N$.
3.1.9 No! If $1,1 / 2,1 / 3, \ldots$ are limit points of $\left\{x_{i}\right\}$, then 0 must also be a limit point of $\left\{x_{i}\right\}$, which we now demonstrate. Let $\left\{x_{i}\right\}$ be a sequence such that $1,1 / 2,1 / 3, \ldots$ are limit points. We construct a subsequence whose limit is 0 . We define an increasing function $k: \mathbb{N} \rightarrow \mathbb{N}$ inductively. Let $k(1)=1$. Suppose we have defined $k(i)$ for all $i<n$. Choose $k(n)>k(n-1)$ such that $\left|x_{k(n)}-\frac{1}{2 n}\right|<\frac{1}{2 n}$, which is possible since $\frac{1}{2 n}$ is a limit point of $\left\{x_{i}\right\}$. This defines a subsequence $\left\{x_{k(i)}\right\}$. Moreover, by triangle inequality, this subsequence satisfies

$$
\left|x_{k(i)}\right| \leq \frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}
$$

In particular, $\lim _{i \rightarrow \infty} x_{k(i)}=0$.
3.1.11 If x is a limit point of a row or a column, then in particular, there is a subsequence consisting of the elements of that row or column converging to x. Since such subsequence would also be a subsequence of the sequence obtained by diagonalizing, x is also a limit point of that sequence.

On the other hand, you don't necessary get all the limit points of the total sequence in this manner. For example, consider the case

$$
a_{i j}= \begin{cases}0 & i=j \\ 1 & \text { otherwise }\end{cases}
$$

The only limit point of every row and every column is 1 , but 0 is a limit point of the total sequence.

