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2.2.2 Let S0,1 be the set of sequences of 0s and 1s. We saw in class that S0,1
∼= 2N. We

show that R has the same cardinality as S0,1. We break up the proof into two smaller
steps:

Claim 1: The set [0, 1) ⊂ R has the same cardinality at S0,1, i.e., there is a bijection

φ : [0, 1)
∼−→ S0,1.

Claim 2: The set Z× S0,1 has the same cardinality as S0,1, i.e., there is a bijection

χ : Z× S0,1
∼−→ S0,1.

Assuming the two claims above, we get the desired bijection

R→ Z× [0, 1)
id×φ−−−→ Z× S0,1

χ−→ S0,1

where the left-most map is x 7→ (bxc, x− bxc) where bxc is the greatest integer less
than or equal to x.

Proof of Claim 1. The basic idea is simple: we can express any real number x ∈ [0, 1)
in binary expansion as "0." followed by a sequence of 0s and 1s. The detail in which
the devil lies is that for some x ∈ [0, 1), there are more ways than one to express x
in binary expansion. We �rst identify such x.
Let x1, x2, . . . and y1, y2, . . . be two distinct sequences of 0s and 1s such that the

corresponding real numbers 0.x1x2x3 . . . and 0.y1y2y3 are equal. We claim that up
to interchanging {xi} and {yi}, there exists n ∈ N such that

xi = yi for i < n

xn = 0; yn = 1

xi = 1; yi = 0 for i > m

In other words, two distinct sequences correspond to the same real number only if
they have trailing 0s and trailing 1s following some �nite sequence of 0s and 1s. For
example

0.10111111111 · · · = 0.11000000000 . . .

To see why that is true, note that the condition on the sequences translates to

∞∑
i=1

2−ixi =
∞∑
i=1

2−iyi

Let n be the �rst position where the sequences di�er and assume that xn = 0 and
yn = 1, which we can do by interchanging {xi} and {yi} if necessary. We then have

∞∑
i=n+1

2−ixi = 2−n +
∞∑

i=n+1

2−iyi.(1)
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Every term in the above equation is positive. Moreover, we have

∞∑
i=n+1

2−ixi ≤
∞∑

i=n+1

2−i = 2−n

with equality holding only if xi = 1 for all i ≥ n+ 1. The equality (1) can therefore
only hold if xi = 1 for i ≥ n+ 1 and

∑∞
i=n+1 2

−iyi = 0, i.e. yi = 0 for i ≥ n+ 1.
De�ne the following subsets A,B,C ⊂ S0,1

A = {(x1, x2, . . . ) ∈ S0,1| there exists n ∈ N s.t. for all i > n, xi = 0}
B = {(x1, x2, . . . ) ∈ S0,1| there exists n ∈ N s.t. for all i > n, xi = 1}
C = S0,1 − (A ∪B)

In words, A is the set of sequences with trailing 0s, B is the set of sequences with
trailing 1s, and C is the subset of all other sequences. We write down a bijection
between [0, 1) and A ∪ C.

[0, 1)→ A ∪ C(2)

x 7→ {xi} where xi = b2i · xc mod 2(3)

This is precisely the procedure for obtaining a binary representation of a real number.
Notice that it only results in sequences which do not have trailing 1s. Indeed, if
x ∈ [0, 1) can be represented by a sequence with trailing 1s, then by the above
analysis, x can be written as a �nite sum x =

∑n
i=1 2

−ix′i and thus in particular 2i ·x
is an even integer for i > n. The inverse to the map ρ is the map of exercise 6 from
section 2.1.
We showed that [0, 1) has the cardinality of A∪C. We still need to show that A∪C

has the same cardinality as S0,1. Note that the sets A and B are in�nitely countable.
Indeed, a sequence {xi} is speci�ed by the �nite sequence preceding the trailing 0s
and the set of �nite sequences of 0,1 is countable. Let φ1 : N → A and φ2 : N → B
be the corresponding bijections. Also, let φ3 be a bijection N× {0, 1} → N. We can
then write the desired bijection

S0,1 = A ∪B ∪ C → A ∪ C

x 7→


x x ∈ C
φ1 ◦ φ3((φ

−1
1 (x), 0)) x ∈ A

φ1 ◦ φ3((φ
−1
2 (x), 1)) x ∈ B

To summarize the above construction, since A and B are countably in�nite, A ∪ B
has the same cardinality as A. Therefore A∪B∪C has the same cardinality as A∪C.
This completes the proof of Claim 1. �

Proof of Claim 2. Let ρ : Z→ N ∪ {0} be a bijection. The desired bijection is

χ : Z× S0,1 → S0,1

(n, (x1, x2, x3, . . . )) 7→ (0, 0, . . . , 0︸ ︷︷ ︸
ρ(n) 0s

, 1, x1, x2, . . . )

�
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2.2.3 Let x be a real number. Assume �rst that x can be represented by a Cauchy sequence
{xn} of rational numbers so that xi < xi+1 for all i. Then for any n, x − xn is
represented by the sequence {xi − xn}i∈N and for all i > n, xi − xn > xn+1 − xn > 0.
In particular xn < x.
It remains to show that any x ∈ R can be represented by a strictly increasing

Cauchy sequence of rational numbers. Let {yi} be any sequence representing x. For
k ∈ N, let rk ∈ N be such that |yi − yj| < 2−k for all i, j ≥ rk. For simplicity, we
take the constants rk satisfying rk ≥ k and rk+1 > rk. De�ne a new sequence {xi}
by xk = yrk − 2−k+2. We claim that {xi} is a strictly increasing sequence which is
equivalent to {yi}.
We �rst show that {xi} is equivalent to {yi}. Given 1

n
, let m ∈ N be such that

2−m+2 < 1
2n

and for all i, j ≥ m we have |yi − yj| < 1
2n
. Then for all i > m we have

|xi − yi| = |yri − 2−i+2 − yi| ≤ |yni
− yi|+ 2−i+2 <

1

2n
+

1

2n
=

1

n

This proves that {xi} is equivalent to {yi}.
We now show that {xi} is strictly increasing. We have

xi+1 − xi = (yri+1
− 2−(i+1)+2)− (yri − 2−i+2) = (yri+1

− yri) + (2−i+2 − 2−i+1)

= (yri+1
− yri) + 2−i+1.

By the choice of the constant ri and the fact that ri+1 ≥ ri we have that |(yri+1
−yri) <

2−i. It follows that

xi+1 − xi = 2−i+1 + (yri+1
− yri) ≥ 2−i+1 − |yri+1

− yri | > 2−i+1 − 2−i = 2−i.

In particular, xi+1 − xi is strictly positive.
2.2.6 We �rst show that given any positive rational number y and 1

n
, there exist p, q ∈ N

such that

|y − p2

q2
| < 1

n
(4)

Fix q ∈ N. We claim that if y < p2

q2
then there exists p′ such that |y − p′2

q2
| ≤ 2p−1

q2
.

Indeed, in such case there exists p′ ≤ p such that

(p′ − 1)2

q2
≤ y ≤ (p′)2

q2
(5)

The di�erence between the outer terms of the above inequality is

(p′)2

q2
− (p′ − 1)2

q2
=

2p′ − 1

q2

and therefore

|y − p′2

q2
| ≤ 2p′ − 1

q2
≤ 2p− 1

q2

Fix p, q such that y < p2

q2
. For any m ∈ N, be have

y <
p2

q2
=

(np)2

(nq)2
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and therefore by the argument of the previous paragraph, there exists p′ with

|y − p′2

(mq)2
| ≤ mp− 1

(mq)2
=

1

m

p− 1
m

q2

The right hand side of this inequality can be made arbitrarily small by increasing m.

In particular, given 1
n
, let m be such that 1

m

p− 1
m

q2
< 1

n
. Then by the above argument,

there exists p′ such that

|y − p′2

(mq)2
| ≤ 1

m

p− 1
m

q2
<

1

n
.

Now, given any positive real number x, there is a Cauchy sequence {xi} of positive
rational numbers representing x. Let pi, qi ∈ N be such that |xi − p2i

q2i
| < 1

i
which we

just proved to exist. Then the sequence {pi
qi
} is the desired sequence.

2.2.9 Let us recall the de�nition of an ordered �eld.

De�nition 6. An order �eld is a �eld F with a strict total order < such that for all
x, y, z ∈ F
(a) If x < y, then x+ z < y + z.
(b) If x, y > 0, then xy > 0.

Lets us �rst derive few simple consequences.
Claim 1 For all y 6= 0, y > 0 if and only if −y < 0.

Proof. By property (a) of de�nition 6, y > 0 is equivalent to y+(−y) > 0+(−y)
which simpli�es to 0 > −y. �

Claim 2 For all y ∈ F , y2 ≥ 0

Proof. If y > 0, then y2 = y · y > 0 by property (b) of de�nition 6. If y < 0,
then −y > 0 by Claim 1 and again we have y2 = (−y) · (−y) > 0 by property
(b) of de�nition 6. The result clearly holds if y = 0. �

Claim 3: Let x 6= 0. Then x > 0 if and only if x−1 > 0.

Proof. We �rst note that 0 < 1 by Claim 2, since 1 = 12. Therefore by Claim 1,
−1 < 0. Assume by contradiction that there exists x ∈ F such that x > 0 and
x−1 < 0. Then

−1 = x · (−x−1) > 0

where the inequality follows from property (b) of de�nition 6. �

We now go back to the original problem.

a. If x 6= 0, then x2+y2

x2
≥ 1.

Proof. By Claim 2, we have y2 ≥ 0. Therefore

y2 ≥ 0
Def 6(a)
====⇒ y2 + x2 ≥ x2

Def 6(b)
======⇒
Claims 2&3

y2 + x2

x2
≥ 1

where the last implication is obtained by multiplying by (x2)−1 which is positive
by claims 2 and 3. �

b. 2xy ≤ x2 + y2.
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Proof. We have (x−y)2 = x2−2xy+y2 by the virtue of F being a �eld. Therefore
by Claim 2,

(x− y)2 = x2 − 2xy + y2 ≥ 0.

Adding 2xy to both sides gives the desired result. �

c. If x > 0 and 0 < y < 1, then x/y > x.

Proof. Let x, y ∈ F with x > 0 and 0 < y < 1. We then have

1 > y =⇒ x > xy =⇒ x

y
> x

where both implications follows from De�nition 6(b). In the �rst we use x > 0
and in the second, y−1 > 0 which in turn follows from Claim 3 and y > 0. �

2.3.2 Given x ∈ R, we construct two sequences {ai}, {bi} of real numbers such that
limi→∞ ai = limi→∞ b0, a

3
i ≤ x ≤ b3i for all i. Setting y = limi→∞ ai, we then have

y3 ≤ x ≤ y3 since limits preserve non-strict inequality, from which we can conclude
y3 = x.
We �rst pick a1, b1 such that a31 ≤ x ≤ b31 in the following manner: if −1 ≤ x ≤ 1,

we set a1 = −1; b1 = 1. If x > 1, we set a1 = 1; b1 = x3 and if x < 1, we set
a1 = x3; b1 = −1. We de�ne ai, bi inductively by the following rule. Suppose we
de�ned ai, bi for i ≤ n. Let m = an+bn

2
, be the midpoint between an and bn. If

m3 ≤ x, we set an+1 = m; bn+1 = bn. If m3 > x, we set an+1 = an; bn+1 = m. Note
that {ai} is a monotone increasing sequence bounded by b1 and therefore converges.

Moreover, we have |ai− bi| = |b1−a1|
2i−1 and therefore {bi} converges to the same limit y

as {ai}. By the argument in the previous paragraph, we have y3 = x.
To show uniqueness, suppose y′ ∈ R is another real number such that y′3 = x.

Then y3 − y′3 = 0. We factor the left hand side

y3 − y′3 = (y − y′)(y2 + yy′ + y′2) = 0.(7)

We claim that (y2 + yy′+ y′2) = 0 if and only if y′ = y = 0. Assume that (y2 + yy′+
y′2) = 0, then adding yy′ to both sides we obtain

(y′ + y)2 = (y2 + 2yy′ + y′2) = yy′.

On the other hand, subtracting yy′ from both sides we obtain

y2 + y′2 = −yy′.
Together, since the left hand sides of those equations are necessarily non-negative,
these imply that

y2 + y′2 = −yy′ = 0.

In particular, equation 7 implies y′ = y.
2.3.3 We �rst investigate partial sums of geometric series, i.e., we would like a closed

formula for
m∑
i=n

2−i. Denote this quantity by A. We have

2A =
m∑
i=n

2−(i−1) =
m−1∑
i=n−1

2−i = 2−(n−1) +
m∑
i=n

2−i − 2−m = 2−(n−1) + A− 2−m
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Subtracting A from both sides, we obtain

A =
m∑
i=n

2−i = 2−(n−1) − 2−m

Going back to the problem, we would like to show that the yn =
n∑
i=1

2−i is a Cauchy

sequence. Given 1
n
, let m be such that 2−m < 1

n
. Then for all i ≥ j > m we have

|yi − yj| = |
i∑

n=j+1

xn| ≤
i∑

n=j+1

|xn| ≤
i∑

n=j+1

2−n

= 2−j − 2−i < 2−j < 2−m <
1

n

2.3.7 We prove the contrapositive, i.e., if
√
b >
√
a, then b > a. The condition

√
b >
√
a is

equivalent to
√
b−
√
a > 0. Since R is an ordered �eld, and

√
b+
√
a is positive, we

get

(
√
b+
√
a)(
√
b−
√
a) = b− a > 0

which is equivalent to b > a.
2.3.10 We �rst show that there are irrational numbers arbitrarily close to 0. For example,

given 1
n
,
√
2

2n
is irrational, since the product of a rational and an irrational number is

irrational, and less than 1
n
since

√
2
2
< 1. Given x ∈ R and 1

n
, let y ∈ Q be such that

|x− y| < 1
2n

and let z ∈ R be irrational such that |z| < 1
2n
. Then y + z is irrational,

being a sum of an irrational number and a rational number, and moreover

|x− (y + z)| ≤ |x− y|+ |z| < 1

n
.

• Let limi→∞ xi = x and limi→∞ yi = y. LetM ∈ N be such that |xi| < M, |yi| < M for
all i which exists since {xi} and {yi} are convergent. Since limits preserve non-strict
inequalities, we also have |x| ≤ M and |y| ≤ M . We prove that limi→∞ xiyi = xy.
Given 1

n
, let m be such that for all i > m,

|x− xi| <
1

2Mn
and

|y − yi| <
1

2Mn
.

Then for all i > m we have

|xy − xiyi| = |x(y − yi) + yi(x− xi)| ≤ |x||y − yi|+ |yi||x− xi|

< |x| 1

2Mn
+ |yi|

1

2Mn
≤ M

2Mn
+

M

2Mn
=

1

n


