M405 - HOMEWORK SET \#3- SOLUTIONS

2.2.2 Let $S_{0,1}$ be the set of sequences of 0 s and 1 s . We saw in class that $S_{0,1} \cong 2^{\mathbb{N}}$. We show that \mathbb{R} has the same cardinality as $S_{0,1}$. We break up the proof into two smaller steps:
Claim 1: The set $[0,1) \subset \mathbb{R}$ has the same cardinality at $S_{0,1}$, i.e., there is a bijection

$$
\phi:[0,1) \xrightarrow{\sim} S_{0,1} .
$$

Claim 2: The set $\mathbb{Z} \times S_{0,1}$ has the same cardinality as $S_{0,1}$, i.e., there is a bijection

$$
\chi: \mathbb{Z} \times S_{0,1} \xrightarrow{\sim} S_{0,1}
$$

Assuming the two claims above, we get the desired bijection

$$
\mathbb{R} \rightarrow \mathbb{Z} \times[0,1) \xrightarrow{\mathrm{id} \times \phi} \mathbb{Z} \times S_{0,1} \xrightarrow{\chi} S_{0,1}
$$

where the left-most map is $x \mapsto(\lfloor x\rfloor, x-\lfloor x\rfloor)$ where $\lfloor x\rfloor$ is the greatest integer less than or equal to x.

Proof of Claim 1. The basic idea is simple: we can express any real number $x \in[0,1)$ in binary expansion as " 0. " followed by a sequence of 0 s and 1 s . The detail in which the devil lies is that for some $x \in[0,1)$, there are more ways than one to express x in binary expansion. We first identify such x.

Let x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots be two distinct sequences of 0 s and 1 s such that the corresponding real numbers $0 . x_{1} x_{2} x_{3} \ldots$ and $0 . y_{1} y_{2} y_{3}$ are equal. We claim that up to interchanging $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, there exists $n \in \mathbb{N}$ such that

$$
\begin{aligned}
x_{i} & =y_{i} \quad \text { for } i<n \\
x_{n} & =0 ; \quad y_{n}=1 \\
x_{i} & =1 ; \quad y_{i}=0 \quad \text { for } i>m
\end{aligned}
$$

In other words, two distinct sequences correspond to the same real number only if they have trailing 0 s and trailing 1 s following some finite sequence of 0 s and 1 s . For example

$$
0.10111111111 \cdots=0.11000000000 \ldots
$$

To see why that is true, note that the condition on the sequences translates to

$$
\sum_{i=1}^{\infty} 2^{-i} x_{i}=\sum_{i=1}^{\infty} 2^{-i} y_{i}
$$

Let n be the first position where the sequences differ and assume that $x_{n}=0$ and $y_{n}=1$, which we can do by interchanging $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ if necessary. We then have

$$
\begin{equation*}
\sum_{i=n+1}^{\infty} 2^{-i} x_{i}=2^{-n}+\sum_{i=n+1}^{\infty} 2^{-i} y_{i} \tag{1}
\end{equation*}
$$

Every term in the above equation is positive. Moreover, we have

$$
\sum_{i=n+1}^{\infty} 2^{-i} x_{i} \leq \sum_{i=n+1}^{\infty} 2^{-i}=2^{-n}
$$

with equality holding only if $x_{i}=1$ for all $i \geq n+1$. The equality (1) can therefore only hold if $x_{i}=1$ for $i \geq n+1$ and $\sum_{i=n+1}^{\infty} 2^{-i} y_{i}=0$, i.e. $y_{i}=0$ for $i \geq n+1$.

Define the following subsets $A, B, C \subset S_{0,1}$

$$
\begin{aligned}
& A=\left\{\left(x_{1}, x_{2}, \ldots\right) \in S_{0,1} \mid \text { there exists } n \in \mathbb{N} \text { s.t. for all } i>n, x_{i}=0\right\} \\
& B=\left\{\left(x_{1}, x_{2}, \ldots\right) \in S_{0,1} \mid \text { there exists } n \in \mathbb{N} \text { s.t. for all } i>n, x_{i}=1\right\} \\
& C=S_{0,1}-(A \cup B)
\end{aligned}
$$

In words, A is the set of sequences with trailing $0 \mathrm{~s}, B$ is the set of sequences with trailing 1s, and C is the subset of all other sequences. We write down a bijection between $[0,1)$ and $A \cup C$.

$$
\begin{align*}
{[0,1) } & \rightarrow A \cup C \tag{2}\\
x & \mapsto\left\{x_{i}\right\} \quad \text { where } x_{i}=\left\lfloor 2^{i} \cdot x\right\rfloor \quad \bmod 2 \tag{3}
\end{align*}
$$

This is precisely the procedure for obtaining a binary representation of a real number. Notice that it only results in sequences which do not have trailing 1s. Indeed, if $x \in[0,1)$ can be represented by a sequence with trailing 1 s , then by the above analysis, x can be written as a finite sum $x=\sum_{i=1}^{n} 2^{-i} x_{i}^{\prime}$ and thus in particular $2^{i} \cdot x$ is an even integer for $i>n$. The inverse to the map ρ is the map of exercise 6 from section 2.1.

We showed that $[0,1)$ has the cardinality of $A \cup C$. We still need to show that $A \cup C$ has the same cardinality as $S_{0,1}$. Note that the sets A and B are infinitely countable. Indeed, a sequence $\left\{x_{i}\right\}$ is specified by the finite sequence preceding the trailing 0 s and the set of finite sequences of 0,1 is countable. Let $\phi_{1}: \mathbb{N} \rightarrow A$ and $\phi_{2}: \mathbb{N} \rightarrow B$ be the corresponding bijections. Also, let ϕ_{3} be a bijection $\mathbb{N} \times\{0,1\} \rightarrow \mathbb{N}$. We can then write the desired bijection

$$
\begin{aligned}
S_{0,1}=A \cup B \cup C \rightarrow A \cup C
\end{aligned}
$$

To summarize the above construction, since A and B are countably infinite, $A \cup B$ has the same cardinality as A. Therefore $A \cup B \cup C$ has the same cardinality as $A \cup C$. This completes the proof of Claim 1.

Proof of Claim 2. Let $\rho: \mathbb{Z} \rightarrow \mathbb{N} \cup\{0\}$ be a bijection. The desired bijection is

$$
\begin{aligned}
\chi: \mathbb{Z} \times S_{0,1} & \rightarrow S_{0,1} \\
\left(n,\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right) & \mapsto(\underbrace{0,0, \ldots, 0}_{\rho(n) 0 \mathrm{~s}}, 1, x_{1}, x_{2}, \ldots)
\end{aligned}
$$

2.2.3 Let x be a real number. Assume first that x can be represented by a Cauchy sequence $\left\{x_{n}\right\}$ of rational numbers so that $x_{i}<x_{i+1}$ for all i. Then for any $n, x-x_{n}$ is represented by the sequence $\left\{x_{i}-x_{n}\right\}_{i \in \mathbb{N}}$ and for all $i>n, x_{i}-x_{n}>x_{n+1}-x_{n}>0$. In particular $x_{n}<x$.

It remains to show that any $x \in \mathbb{R}$ can be represented by a strictly increasing Cauchy sequence of rational numbers. Let $\left\{y_{i}\right\}$ be any sequence representing x. For $k \in \mathbb{N}$, let $r_{k} \in \mathbb{N}$ be such that $\left|y_{i}-y_{j}\right|<2^{-k}$ for all $i, j \geq r_{k}$. For simplicity, we take the constants r_{k} satisfying $r_{k} \geq k$ and $r_{k+1}>r_{k}$. Define a new sequence $\left\{x_{i}\right\}$ by $x_{k}=y_{r_{k}}-2^{-k+2}$. We claim that $\left\{x_{i}\right\}$ is a strictly increasing sequence which is equivalent to $\left\{y_{i}\right\}$.

We first show that $\left\{x_{i}\right\}$ is equivalent to $\left\{y_{i}\right\}$. Given $\frac{1}{n}$, let $m \in N$ be such that $2^{-m+2}<\frac{1}{2 n}$ and for all $i, j \geq m$ we have $\left|y_{i}-y_{j}\right|<\frac{1}{2 n}$. Then for all $i>m$ we have

$$
\left|x_{i}-y_{i}\right|=\left|y_{r_{i}}-2^{-i+2}-y_{i}\right| \leq\left|y_{n_{i}}-y_{i}\right|+2^{-i+2}<\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}
$$

This proves that $\left\{x_{i}\right\}$ is equivalent to $\left\{y_{i}\right\}$.
We now show that $\left\{x_{i}\right\}$ is strictly increasing. We have

$$
\begin{aligned}
x_{i+1}-x_{i} & =\left(y_{r_{i+1}}-2^{-(i+1)+2}\right)-\left(y_{r_{i}}-2^{-i+2}\right)=\left(y_{r_{i+1}}-y_{r_{i}}\right)+\left(2^{-i+2}-2^{-i+1}\right) \\
& =\left(y_{r_{i+1}}-y_{r_{i}}\right)+2^{-i+1} .
\end{aligned}
$$

By the choice of the constant r_{i} and the fact that $r_{i+1} \geq r_{i}$ we have that $\mid\left(y_{r_{i+1}}-y_{r_{i}}\right)<$ 2^{-i}. It follows that

$$
x_{i+1}-x_{i}=2^{-i+1}+\left(y_{r_{i+1}}-y_{r_{i}}\right) \geq 2^{-i+1}-\left|y_{r_{i+1}}-y_{r_{i}}\right|>2^{-i+1}-2^{-i}=2^{-i} .
$$

In particular, $x_{i+1}-x_{i}$ is strictly positive.
2.2.6 We first show that given any positive rational number y and $\frac{1}{n}$, there exist $p, q \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|y-\frac{p^{2}}{q^{2}}\right|<\frac{1}{n} \tag{4}
\end{equation*}
$$

Fix $q \in \mathbb{N}$. We claim that if $y<\frac{p^{2}}{q^{2}}$ then there exists p^{\prime} such that $\left|y-\frac{p^{\prime 2}}{q^{2}}\right| \leq \frac{2 p-1}{q^{2}}$. Indeed, in such case there exists $p^{\prime} \leq p$ such that

$$
\begin{equation*}
\frac{\left(p^{\prime}-1\right)^{2}}{q^{2}} \leq y \leq \frac{\left(p^{\prime}\right)^{2}}{q^{2}} \tag{5}
\end{equation*}
$$

The difference between the outer terms of the above inequality is

$$
\frac{\left(p^{\prime}\right)^{2}}{q^{2}}-\frac{\left(p^{\prime}-1\right)^{2}}{q^{2}}=\frac{2 p^{\prime}-1}{q^{2}}
$$

and therefore

$$
\left|y-\frac{p^{\prime 2}}{q^{2}}\right| \leq \frac{2 p^{\prime}-1}{q^{2}} \leq \frac{2 p-1}{q^{2}}
$$

Fix p, q such that $y<\frac{p^{2}}{q^{2}}$. For any $m \in \mathbb{N}$, be have

$$
y<\frac{p^{2}}{q^{2}}=\frac{(n p)^{2}}{(n q)^{2}}
$$

and therefore by the argument of the previous paragraph, there exists p^{\prime} with

$$
\left|y-\frac{p^{\prime 2}}{(m q)^{2}}\right| \leq \frac{m p-1}{(m q)^{2}}=\frac{1}{m} \frac{p-\frac{1}{m}}{q^{2}}
$$

The right hand side of this inequality can be made arbitrarily small by increasing m. In particular, given $\frac{1}{n}$, let m be such that $\frac{1}{m} \frac{p-\frac{1}{m}}{q^{2}}<\frac{1}{n}$. Then by the above argument, there exists p^{\prime} such that

$$
\left|y-\frac{p^{\prime 2}}{(m q)^{2}}\right| \leq \frac{1}{m} \frac{p-\frac{1}{m}}{q^{2}}<\frac{1}{n}
$$

Now, given any positive real number x, there is a Cauchy sequence $\left\{x_{i}\right\}$ of positive rational numbers representing x. Let $p_{i}, q_{i} \in \mathbb{N}$ be such that $\left|x_{i}-\frac{p_{i}^{2}}{q_{i}^{2}}\right|<\frac{1}{i}$ which we just proved to exist. Then the sequence $\left\{\frac{p_{i}}{q_{i}}\right\}$ is the desired sequence.
2.2.9 Let us recall the definition of an ordered field.

Definition 6. An order field is a field F with a strict total order $<$ such that for all $x, y, z \in F$
(a) If $x<y$, then $x+z<y+z$.
(b) If $x, y>0$, then $x y>0$.

Lets us first derive few simple consequences.
Claim 1 For all $y \neq 0, y>0$ if and only if $-y<0$.
Proof. By property (a) of definition 6, $y>0$ is equivalent to $y+(-y)>0+(-y)$ which simplifies to $0>-y$.
Claim 2 For all $y \in F, y^{2} \geq 0$
Proof. If $y>0$, then $y^{2}=y \cdot y>0$ by property (b) of definition 6. If $y<0$, then $-y>0$ by Claim 1 and again we have $y^{2}=(-y) \cdot(-y)>0$ by property (b) of definition 6. The result clearly holds if $y=0$.

Claim 3: Let $x \neq 0$. Then $x>0$ if and only if $x^{-1}>0$.
Proof. We first note that $0<1$ by Claim 2 , since $1=1^{2}$. Therefore by Claim 1 , $-1<0$. Assume by contradiction that there exists $x \in F$ such that $x>0$ and $x^{-1}<0$. Then

$$
-1=x \cdot\left(-x^{-1}\right)>0
$$

where the inequality follows from property (b) of definition 6 .
We now go back to the original problem.
a. If $x \neq 0$, then $\frac{x^{2}+y^{2}}{x^{2}} \geq 1$.

Proof. By Claim 2, we have $y^{2} \geq 0$. Therefore

$$
y^{2} \geq 0 \xlongequal{\text { Def } 6(\mathrm{a})} y^{2}+x^{2} \geq x^{2} \xlongequal[\text { Claims } 2 \& 3]{\operatorname{Def}[6 \mathrm{~b})} \frac{y^{2}+x^{2}}{x^{2}} \geq 1
$$

where the last implication is obtained by multiplying by $\left(x^{2}\right)^{-1}$ which is positive by claims 2 and 3 .
b. $2 x y \leq x^{2}+y^{2}$.

Proof. We have $(x-y)^{2}=x^{2}-2 x y+y^{2}$ by the virtue of F being a field. Therefore by Claim 2,

$$
(x-y)^{2}=x^{2}-2 x y+y^{2} \geq 0
$$

Adding $2 x y$ to both sides gives the desired result.
c. If $x>0$ and $0<y<1$, then $x / y>x$.

Proof. Let $x, y \in F$ with $x>0$ and $0<y<1$. We then have

$$
1>y \Longrightarrow x>x y \Longrightarrow \frac{x}{y}>x
$$

where both implications follows from Definition 6(b). In the first we use $x>0$ and in the second, $y^{-1}>0$ which in turn follows from Claim 3 and $y>0$.
2.3.2 Given $x \in \mathbb{R}$, we construct two sequences $\left\{a_{i}\right\},\left\{b_{i}\right\}$ of real numbers such that $\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} b_{0}, a_{i}^{3} \leq x \leq b_{i}^{3}$ for all i. Setting $y=\lim _{i \rightarrow \infty} a_{i}$, we then have $y^{3} \leq x \leq y^{3}$ since limits preserve non-strict inequality, from which we can conclude $y^{3}=x$.

We first pick a_{1}, b_{1} such that $a_{1}^{3} \leq x \leq b_{1}^{3}$ in the following manner: if $-1 \leq x \leq 1$, we set $a_{1}=-1 ; b_{1}=1$. If $x>1$, we set $a_{1}=1 ; b_{1}=x^{3}$ and if $x<1$, we set $a_{1}=x^{3} ; b_{1}=-1$. We define a_{i}, b_{i} inductively by the following rule. Suppose we defined a_{i}, b_{i} for $i \leq n$. Let $m=\frac{a_{n}+b_{n}}{2}$, be the midpoint between a_{n} and b_{n}. If $m^{3} \leq x$, we set $a_{n+1}=m ; b_{n+1}=b_{n}$. If $m^{3}>x$, we set $a_{n+1}=a_{n} ; b_{n+1}=m$. Note that $\left\{a_{i}\right\}$ is a monotone increasing sequence bounded by b_{1} and therefore converges. Moreover, we have $\left|a_{i}-b_{i}\right|=\frac{\left|b_{1}-a_{1}\right|}{2^{i-1}}$ and therefore $\left\{b_{i}\right\}$ converges to the same limit y as $\left\{a_{i}\right\}$. By the argument in the previous paragraph, we have $y^{3}=x$.

To show uniqueness, suppose $y^{\prime} \in \mathbb{R}$ is another real number such that $y^{\prime 3}=x$. Then $y^{3}-y^{\prime 3}=0$. We factor the left hand side

$$
y^{3}-y^{\prime 3}=\left(y-y^{\prime}\right)\left(y^{2}+y y^{\prime}+y^{\prime 2}\right)=0 .
$$

We claim that $\left(y^{2}+y y^{\prime}+y^{\prime 2}\right)=0$ if and only if $y^{\prime}=y=0$. Assume that $\left(y^{2}+y y^{\prime}+\right.$ $\left.y^{\prime 2}\right)=0$, then adding $y y^{\prime}$ to both sides we obtain

$$
\left(y^{\prime}+y\right)^{2}=\left(y^{2}+2 y y^{\prime}+y^{\prime 2}\right)=y y^{\prime} .
$$

On the other hand, subtracting $y y^{\prime}$ from both sides we obtain

$$
y^{2}+y^{\prime 2}=-y y^{\prime}
$$

Together, since the left hand sides of those equations are necessarily non-negative, these imply that

$$
y^{2}+y^{\prime 2}=-y y^{\prime}=0 .
$$

In particular, equation 7 implies $y^{\prime}=y$.
2.3.3 We first investigate partial sums of geometric series, i.e., we would like a closed formula for $\sum_{i=n}^{m} 2^{-i}$. Denote this quantity by A. We have
$2 A=\sum_{i=n}^{m} 2^{-(i-1)}=\sum_{i=n-1}^{m-1} 2^{-i}=2^{-(n-1)}+\sum_{i=n}^{m} 2^{-i}-2^{-m}=2^{-(n-1)}+A-2^{-m}$

Subtracting A from both sides, we obtain

$$
A=\sum_{i=n}^{m} 2^{-i}=2^{-(n-1)}-2^{-m}
$$

Going back to the problem, we would like to show that the $y_{n}=\sum_{i=1}^{n} 2^{-i}$ is a Cauchy sequence. Given $\frac{1}{n}$, let m be such that $2^{-m}<\frac{1}{n}$. Then for all $i \geq j>m$ we have

$$
\begin{aligned}
\left|y_{i}-y_{j}\right| & =\left|\sum_{n=j+1}^{i} x_{n}\right| \leq \sum_{n=j+1}^{i}\left|x_{n}\right| \leq \sum_{n=j+1}^{i} 2^{-n} \\
& =2^{-j}-2^{-i}<2^{-j}<2^{-m}<\frac{1}{n}
\end{aligned}
$$

2.3.7 We prove the contrapositive, i.e., if $\sqrt{b}>\sqrt{a}$, then $b>a$. The condition $\sqrt{b}>\sqrt{a}$ is equivalent to $\sqrt{b}-\sqrt{a}>0$. Since \mathbb{R} is an ordered field, and $\sqrt{b}+\sqrt{a}$ is positive, we get

$$
(\sqrt{b}+\sqrt{a})(\sqrt{b}-\sqrt{a})=b-a>0
$$

which is equivalent to $b>a$.
2.3.10 We first show that there are irrational numbers arbitrarily close to 0 . For example, given $\frac{1}{n}, \frac{\sqrt{2}}{2 n}$ is irrational, since the product of a rational and an irrational number is irrational, and less than $\frac{1}{n}$ since $\frac{\sqrt{2}}{2}<1$. Given $x \in \mathbb{R}$ and $\frac{1}{n}$, let $y \in \mathbb{Q}$ be such that $|x-y|<\frac{1}{2 n}$ and let $z \in \mathbb{R}$ be irrational such that $|z|<\frac{1}{2 n}$. Then $y+z$ is irrational, being a sum of an irrational number and a rational number, and moreover

$$
|x-(y+z)| \leq|x-y|+|z|<\frac{1}{n}
$$

- Let $\lim _{i \rightarrow \infty} x_{i}=x$ and $\lim _{i \rightarrow \infty} y_{i}=y$. Let $M \in \mathbb{N}$ be such that $\left|x_{i}\right|<M,\left|y_{i}\right|<M$ for all i which exists since $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ are convergent. Since limits preserve non-strict inequalities, we also have $|x| \leq M$ and $|y| \leq M$. We prove that $\lim _{i \rightarrow \infty} x_{i} y_{i}=x y$. Given $\frac{1}{n}$, let m be such that for all $i>m$,

$$
\left|x-x_{i}\right|<\frac{1}{2 M n}
$$

and

$$
\left|y-y_{i}\right|<\frac{1}{2 M n} .
$$

Then for all $i>m$ we have

$$
\begin{aligned}
\left|x y-x_{i} y_{i}\right| & =\left|x\left(y-y_{i}\right)+y_{i}\left(x-x_{i}\right)\right| \leq|x|\left|y-y_{i}\right|+\left|y_{i}\right|\left|x-x_{i}\right| \\
& <|x| \frac{1}{2 M n}+\left|y_{i}\right| \frac{1}{2 M n} \leq \frac{M}{2 M n}+\frac{M}{2 M n}=\frac{1}{n}
\end{aligned}
$$

