M405 - HOMEWORK SET #3- SOLUTIONS

2.2.2 Let Sy be the set of sequences of 0s and 1s. We saw in class that Sp; = 2V, We
show that R has the same cardinality as Sp;. We break up the proof into two smaller
steps:

Claim 1: The set [0,1) C R has the same cardinality at Sp 1, i.e., there is a bijection

¢:[0,1) = Soy.
Claim 2: The set Z x Sy has the same cardinality as S, i.e., there is a bijection
X - 7, X SO,l :> 5071.

Assuming the two claims above, we get the desired bijection
R —7Z x [O,l) MZX5071£>SO’1

where the left-most map is  — (|z],z — [z]) where |z| is the greatest integer less
than or equal to .

Proof of Claim 1. The basic idea is simple: we can express any real number x € [0, 1)
in binary expansion as "0." followed by a sequence of 0s and 1s. The detail in which
the devil lies is that for some x € [0, 1), there are more ways than one to express x
in binary expansion. We first identify such x.

Let x1,x9,... and yq,ys,... be two distinct sequences of Os and 1s such that the
corresponding real numbers 0.z1x5x3... and 0.y;y2y3 are equal. We claim that up
to interchanging {z;} and {y;}, there exists n € N such that

T, =1Y; fori<n
=1, vy;=0 fori>m
In other words, two distinct sequences correspond to the same real number only if

they have trailing Os and trailing 1s following some finite sequence of Os and 1s. For
example

0.10111111111--- = 0.11000000000. . .

To see why that is true, note that the condition on the sequences translates to

f: 27y = i 27y,
=1 i=1

Let n be the first position where the sequences differ and assume that x,, = 0 and
Y, = 1, which we can do by interchanging {z;} and {y;} if necessary. We then have

(1) Z 2y, =27 4 Z 27y,
1=n+1 1=n+1
1
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Every term in the above equation is positive. Moreover, we have

i 27y, < i 27t =29

i=n-+1 i=n+1
with equality holding only if z; = 1 for all ¢ > n + 1. The equality can therefore

only hold if z; =1 fori >n+1and 3 ° 27"y, =0, ie y =0fori>n+1.
Define the following subsets A, B,C' C Sy

A ={(z1,22,...) € Sp1| there exists n € N s.t. for all i > n,z; = 0}
B = {(x1,x9,...) € Sp1| there exists n € N s.t. for all i > n,x; = 1}
C=S01—(AUB)

In words, A is the set of sequences with trailing 0s, B is the set of sequences with

trailing 1s, and C' is the subset of all other sequences. We write down a bijection
between [0,1) and AU C.

0,1) > AUC
x> {x;} where z; = [2"- 2] mod 2

This is precisely the procedure for obtaining a binary representation of a real number.
Notice that it only results in sequences which do not have trailing 1s. Indeed, if
x € [0,1) can be represented by a sequence with trailing 1s, then by the above
analysis, x can be written as a finite sum z = Y _)' | 272} and thus in particular 2 -z
is an even integer for ¢ > n. The inverse to the map p is the map of exercise 6 from
section 2.1.

We showed that [0, 1) has the cardinality of AUC. We still need to show that AUC
has the same cardinality as Sy ;. Note that the sets A and B are infinitely countable.
Indeed, a sequence {x;} is specified by the finite sequence preceding the trailing Os
and the set of finite sequences of 0,1 is countable. Let ¢; : N — A and ¢ : N — B
be the corresponding bijections. Also, let ¢3 be a bijection N x {0,1} — N. We can
then write the desired bijection

S()JZAUBUC—)AUC
x rel

x4 ¢r1ogs((¢7 ' (2),0) xzeA
¢10¢3((¢5'(2),1)) z€B

To summarize the above construction, since A and B are countably infinite, A U B
has the same cardinality as A. Therefore AUBUC has the same cardinality as AUC.
This completes the proof of Claim 1. 0

Proof of Claim 2. Let p: Z — N U {0} be a bijection. The desired bijection is
X : 7, X SO,l — SO,l
(n, (x1, 29, x3,...)) — (0,0,...,0,1, 21, 29,...)
————

p(n) Os
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2.2.6
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Let x be a real number. Assume first that = can be represented by a Cauchy sequence
{z,} of rational numbers so that x; < x;,; for all i. Then for any n, x — z, is
represented by the sequence {z; — x, }ien and for all i > n, x; — x, > .11 — x, > 0.
In particular z,, < x.

It remains to show that any x € R can be represented by a strictly increasing
Cauchy sequence of rational numbers. Let {y;} be any sequence representing =. For
k € N, let r;, € N be such that |y; — y;| < 27 for all 4,5 > 7. For simplicity, we
take the constants ry satisfying r, > k and ryy; > 1. Define a new sequence {z;}
by @ = y,, — 2752, We claim that {z;} is a strictly increasing sequence which is
equivalent to {y;}.

We first show that {x;} is equivalent to {y;}. Given %, let m € N be such that
2-mH2 < % and for all i, 7 > m we have |y; — y;| < % Then for all ¢ > m we have

e =il = b, = 27— ] < g, il + 2 < =L
n 2n n
This proves that {x;} is equivalent to {y;}.
We now show that {z;} is strictly increasing. We have

Tit1 — Tg = (yW-H - 2_(i+1)+2> - (yn‘ - 2_i+2) = (y’f‘i-H - yri) + (2_i+2 - 2_i+1)
- (yTi—H - yh‘) + 2—1—1—1.

By the choice of the constant r; and the fact that r;1, > r; we have that |(y,,,, —y,,) <
27 Tt follows that

> 27l 9=t — 9=t

Tiy1 — Xy = 2~ + (ynurl - yn‘) > 27— |yn+1 = Yr;

In particular, x; 1 — x; is strictly positive.
We first show that given any positive rational number y and %, there exist p,q € N
such that
2
P 1
_ < J—
ly q2| "

2p—1

Fix ¢ € N. We claim that if y < Z—z then there exists p’ such that |y — %22] <+

Indeed, in such case there exists p’ < p such that

/o 1 2 /\2
(p : ) < y < (pz)
q q
The difference between the outer terms of the above inequality is
)? -1 2 -1
2 & - 7

and therefore

P 2 —1  2p—1
’y - _2’ < 2 D)
q q q
Fix p, q such that y < 2. For any m € N, be have

q2

p* _ (np)?
VS @7 (ngp
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and therefore by the argument of the previous paragraph, there exists p’ with

p” mp—1 1p—

G R o e
The right hand side of this inequality can be made arbitrarily small by increasing m.

1
In particular, given %, let m be such that %pq—g" < % Then by the above argument,

ly —

there exists p’ such that
2 lp—a 1
LA et
(mg)*’ —m ¢* n
Now, given any positive real number x, there is a Cauchy sequence {z;} of positive

ly —

2
rational numbers representing x. Let p;,¢; € N be such that |z; — 2’—;| < % which we

just proved to exist. Then the sequence {Z—} is the desired sequence.
2.2.9 Let us recall the definition of an ordered field.

Definition 6. An order field is a field F' with a strict total order < such that for all
x,y,z € F

(a) f z <y, then 2+ 2z <y + z.

(b) If z,y > 0, then zy > 0.

Lets us first derive few simple consequences.
Claim 1 For all y # 0, y > 0 if and only if —y < 0.

Proof. By property (a) of definition [6] y > 0 is equivalent to y+ (—y) > 0+ (—y)
which simplifies to 0 > —y. U

Claim 2 For ally € F, y> > 0

Proof. If y > 0, then 4> = y -y > 0 by property (b) of definition [6] If y < 0,
then —y > 0 by Claim 1 and again we have y*> = (—y) - (—y) > 0 by property
(b) of definition [f] The result clearly holds if y = 0. O

Claim 3: Let x # 0. Then z > 0 if and only if 27 > 0.

Proof. We first note that 0 < 1 by Claim 2, since 1 = 12. Therefore by Claim 1,
—1 < 0. Assume by contradiction that there exists x € F such that = > 0 and
271 < 0. Then

—1l=a-(-27") >0
where the inequality follows from property (b) of definition [6] O

We now go back to the original problem.
a. If x # 0, then ”:2’292 > 1.

T

Proof. By Claim 2, we have y? > 0. Therefore

2 2
y2 >0 Def@ag y2 42> g Def[6{b) Y —1—295 >1
Claims 2&3 T

where the last implication is obtained by multiplying by (z?)~! which is positive
by claims 2 and 3. U

b. 22y < 2 + 9%
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Proof. We have (z—y)? = 2 —2xy+y? by the virtue of F' being a field. Therefore
by Claim 2,
(x —y)?=2%—2zy +1y* > 0.
Adding 2zy to both sides gives the desired result. 0
c. Ifz>0and 0 <y <1, then z/y > x.

Proof. Let x,y € F with x > 0 and 0 < y < 1. We then have

x
1>y=—=a>0y=—= —>z
Y

where both implications follows from Definition [6(b). In the first we use z > 0
and in the second, y~! > 0 which in turn follows from Claim 3 and y > 0. O

2.3.2 Given = € R, we construct two sequences {a;},{b;} of real numbers such that

im0 @; = limy 500 by, a3 < x < b for all 4. Setting y = lim; o, a;, we then have
y3 < x < g? since limits preserve non-strict inequality, from which we can conclude
Y3 = x.

We first pick ay,b; such that a} < x < b? in the following manner: if —1 <z <1,
we set ap = —1;0p = 1. If 2 > 1, we set a1 = 1;b; = 2% and if 2 < 1, we set
a; = x3;b; = —1. We define a;, b; inductively by the following rule. Suppose we
defined a;,b; for 1 < n. Let m = %, be the midpoint between a, and b,. If
m? < x, we set app1 = m;byr1 = b,. If m3 > x, we set a1 = a,; b,y = m. Note
that {a;} is a monotone increasing sequence bounded by b; and therefore converges.
Moreover, we have |a; — b;| = % and therefore {b;} converges to the same limit y
as {a;}. By the argument in the previous paragraph, we have y° = .

To show uniqueness, suppose ¥’ € R is another real number such that y? = .
Then 32 — 3y = 0. We factor the left hand side

v =y =)y +uyy +y?) =0.

We claim that (y* +yy’ +3?) = 0 if and only if 5/ = y = 0. Assume that (y* + yy’ +
y”?) = 0, then adding yy’ to both sides we obtain

W' +y) =" +29y +y?) =y
On the other hand, subtracting yy’ from both sides we obtain
vy = —yy

Together, since the left hand sides of those equations are necessarily non-negative,
these imply that

vy =—yy =0
In particular, equation |7 implies ' = y.

2.3.3 We first investigate partial sums of geometric series, i.e., we would like a closed

formula for Z 27", Denote this quantity by A. We have
m m—1 m
2A — Z 2—(’i—1) — Z 2—i — 2—(n—1) + Z 2—i _ 2—m — 2—(71—1) + A _ 2—m

i=n—1
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Subtracting A from both sides, we obtain

A= Zm: 97t = 9-(n=1) _9-m

Going back to the problem, we would like to show that the y, = Z 27" is a Cauchy
i=1
sequence. Given %, let m be such that 27 < % Then for all © > 7 > m we have

i =yl =1 D wal < D wal < Y 2"
n=j+1 n=j+1 n=j+1
, . , 1
=277 -27"<277 <27 < —
n
2.3.7 We prove the contrapositive, i.e., if vb > v/a, then b > a. The condition Vb > \/a is
equivalent to v/b — v/a > 0. Since R is an ordered field, and v/b + v/a is positive, we
get
(Vb+va)Vb—+va)=b—a>0
which is equivalent to b > a.
2.3.10 We first show that there are irrational numbers arbitrarily close to 0. For example,

L V2 g irrational, since the product of a rational and an irrational number is

n’ 2n
irrational, and less than % since ‘/75 < 1. Given z € R and %, let y € Q be such that
|z —y| < 5 and let z € R be irrational such that |z| < 5-. Then y + z is irrational,

being a sum of an irrational number and a rational number, and moreover

given

1
o= (t2)l<lo—yl+]e] <

o Let lim; ,, x; = z and lim; ,, y; = y. Let M € N be such that |z;| < M, |y;| < M for
all ¢ which exists since {z;} and {y;} are convergent. Since limits preserve non-strict
inequalities, we also have |z| < M and |y| < M. We prove that lim; . z;y; = xy.
Given %, let m be such that for all © > m,

1
lr — 2] < M
and
1
ly — il < SMn

Then for all 7 > m we have

vy — xys| = |2(y —yi) +yile — 2)| < |2lly — vl + |vil |z — 24
M M 1

< ||

1 1
, < —
2Mn+|yz|2Mn - 2Mn+2Mn n



