## M405 - HOMEWORK SET \#2- SOLUTIONS

2.1.2 Let $\left\{x_{i}\right\}$ be a Cauchy sequence of rational numbers representing a real number $x$. Define a new sequence $\left\{x_{i}^{\prime}\right\}$ by the following rule:

$$
x_{i}^{\prime}= \begin{cases}x_{i} & \text { if } x_{i} \notin \mathbb{Z} \\ x_{i}+\frac{1}{i+1} & \text { otherwise }\end{cases}
$$

None of $x_{i}^{\prime}$ are integers. Moreover, $\left\{x_{i}^{\prime}\right\} \sim\left\{x_{i}\right\}$ since for every $n \in \mathbb{N}$, for all $i>n$, we have

$$
\left|x_{i}-x_{i}^{\prime}\right| \leq \frac{1}{i+1}<\frac{1}{i}
$$

Therefore $x=\left[\left\{x_{i}^{\prime}\right\}\right]$.
2.1.4 Denote the shuffled sequence $\left\{z_{i}\right\}$, i.e.,

$$
z_{i}= \begin{cases}x_{(i+1) / 2} & i \text { odd } \\ y_{(i / 2)} & i \text { even }\end{cases}
$$

We first prove that if the shuffled sequence $\left\{z_{i}\right\}$ is Cauchy, then $\left\{x_{i}\right\} \sim\left\{y_{i}\right\}$. Assume $\left\{z_{i}\right\}$ is Cauchy. Then for any $n \in \mathbb{N}$, there exists $m \in \mathbb{N}$ such that for all $i, j>m,\left|z_{i}-z_{j}\right|<\frac{1}{n}$. Therefore for all $i>m$,

$$
\left|x_{i}-y_{i}\right|=\left|z_{2 i-1}-z_{2 i}\right|<\frac{1}{n}
$$

since $2 i-1,2 i>m$ if $i>m$. Therefore $\left\{x_{i}\right\} \sim\left\{y_{i}\right\}$.
Assume now that $\left\{x_{i}\right\} \sim\left\{y_{i}\right\}$. Given $n$, let $m_{1}, m_{2}, m_{3} \in \mathbb{N}$ be such that for $i, j>m_{1}, i^{\prime}, j^{\prime}>m_{2}, k>m_{3}$,

$$
\begin{aligned}
& \left|x_{i}-x_{j}\right|<\frac{1}{2 n} \\
& \left|y_{i^{\prime}}-y_{j^{\prime}}\right|<\frac{1}{2 n} \\
& \left|x_{k}-y_{k}\right|<\frac{1}{2 n} .
\end{aligned}
$$

Constants $m_{1}, m_{2}, m_{3}$ exist since $\left\{x_{i}\right\}$ is Cauchy, $\left\{y_{i}\right\}$ is Cauchy and $\left\{x_{i}\right\} \sim\left\{y_{i}\right\}$ respectively. Let $m=2 \cdot \max \left(m_{1}, m_{2}, m_{3}\right)$. Then for all $i, j>m$, we claim that

$$
\left|z_{i}-z_{j}\right|<\frac{1}{n}
$$

Indeed, if both $i, j$ are even, then

$$
\left|z_{i}-z_{j}\right|=\left|y_{i / 2}-y_{j / 2}\right|<\frac{1}{2 n}<\frac{1}{n}
$$

since $i / 2>m_{2}$. The argument for when both $i, j$ are odd is analogous. If $i$ is even and $j$ is odd, then

$$
\left|z_{i}-z_{j}\right|=\left|y_{i / 2}-x_{(j+1) / 2}\right| \leq\left|y_{i / 2}-x_{i / 2}\right|+\left|x_{i / 2}-x_{(j+1) / 2}\right|<\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}
$$

where we used the triangle inequality and the fact that $\frac{i}{2}>m_{3}$ and $\frac{i}{2}, \frac{j+1}{2}>m_{1}$. The argument for when $j$ is even and $i$ is odd is analogous. It follows that $\left\{z_{i}\right\}$ is a Cauchy sequence.
2.1.6 Consider the decimal expansion $N . a_{1} a_{2} a_{3}, \ldots$ where $N \in \mathbb{Z}$ and $a_{i} \in\{0,1,2, \ldots, 9\}$. The corresponding sequence is

$$
\begin{aligned}
& x_{1}=N \\
& x_{2}=N \cdot a_{1}=\frac{10 N+a_{1}}{10} \\
& x_{3}=N \cdot a_{1} a_{2}=\frac{10^{2} N+10 a_{1}+a_{2}}{10^{2}} \\
& x_{4}=N \cdot a_{1} a_{2} a_{3}=\frac{10^{3} N+10^{2} a_{1}+10 a_{2}+a_{3}}{10^{3}} \\
& \vdots
\end{aligned}
$$

For $i, j \in \mathbb{N}$ with $i<j$, we have

$$
\begin{equation*}
x_{j}-x_{i}= \pm 0.000 \ldots 00 a_{i} a_{i+1} \ldots a_{j-1}= \pm \frac{10^{j-i-1} a_{i}+10^{j-i} a_{i+1}+\cdots+10 a_{j-2}+a_{j-1}}{10^{j-1}} \tag{1}
\end{equation*}
$$

where the sign depends on the sign of $N$. For all $k$, we have $a_{k} \leq 9$. Therefore substituting 9 for each $a_{k}$ in 1 we get the inequality

$$
\left|x_{j}-x_{i}\right| \leq \frac{10^{j-i-1} \cdot 9+10^{j-i} \cdot 9+\cdots+10 \cdot 9+9}{10^{j-1}}=\frac{10^{j-i}-1}{10^{j-1}}=10^{1-i}-10^{1-j}<10^{1-i}
$$

Therefore, given $n \in \mathbb{N}$ letting $m \in \mathbb{N}$ be such that $10^{1-m}<\frac{1}{n}$ implies that for all $i>m$,

$$
\left|x_{j}-x_{i}\right|<10^{1-\min (i, j)}<10^{1-m}<\frac{1}{n} .
$$

2.1.7 Let $\left\{x_{i}\right\},\left\{y_{i}\right\}$ be sequences where $y_{i}=1$ for all $i$ and $x_{i}=.99999 \ldots 99$, decimal point followed by $i 9 \mathrm{~s}$. A better representation of the sequence $x_{i}$ is $x_{i}=1-10^{-i}$. Therefore

$$
\left|y_{i}-x_{i}\right|=10^{-i} .
$$

Given $n \in \mathbb{N}$, let $m \in \mathbb{N}$ be the least integer such that $10^{m}>n$. Then for all $i>m$, we have

$$
\left|y_{i}-x_{i}\right|=10^{-i}<10^{-m}<\frac{1}{n}
$$

. It follows that $\left\{x_{i}\right\} \sim\left\{y_{i}\right\}$.
2.1.8 Yes! The sequences $\left\{x_{i}=\frac{1}{i}\right\}$ and $\left\{y_{i}=-\frac{1}{i}\right\}$ are equivalent.

- We prove the statement it two steps. We first prove that $(a d+b c, b d) \sim\left(a^{\prime} d+b^{\prime} c, b^{\prime} d\right)$. Since $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$, we have

$$
a b^{\prime}=a^{\prime} b
$$

and therefore

$$
\begin{aligned}
a d b^{\prime} d & =a^{\prime} d b d \\
(a d+b c) b^{\prime} d & =\left(a^{\prime} d+b^{\prime} c\right) b d
\end{aligned}
$$

implying $(a d+b c, b d) \sim\left(a^{\prime} d+b^{\prime} c, b^{\prime} d\right)$. The same argument shows that $\left(a^{\prime} d+b^{\prime} c, b^{\prime} d\right) \sim$ $\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$. The result then follows from transitivity of $\sim$.

