M405 - HOMEWORK SET \#2- DUE 02/15/19

- Textbook exercises: pg. 37: 2, 4, 6, 7, 8
- Define the set \mathbb{Q} of rational numbers by

$$
\mathbb{Q}=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b \neq 0\} / \sim
$$

where the equivalence relation \sim is given by

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \text { if } a b^{\prime}=a^{\prime} b
$$

Denote the equivalence class of (a, b) by $\frac{a}{b}$.
Prove that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then

$$
(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)
$$

Conclude that the addition operation

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

is well defined on \mathbb{Q}.

