M405 - HOMEWORK SET \#1- SOLUTIONS

1.2.2 The set $A \subset 2^{\mathbb{N}}$ of all finite subsets of \mathbb{N} is countable. Let $A_{n} \subset 2^{\mathbb{N}}$ be the set of subsets of \mathbb{N} of cardinality n. We have shown in class that a countable union of countable sets is countable. Therefore, since $A=\bigcup_{i=0}^{\infty} A_{n}$, it suffices to show that each A_{n} is countable. Define $B_{n} \subset \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}=\mathbb{N}^{\times n}$ by

$$
B_{n}=\left\{\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{\times n} \mid b_{1}<b_{2}<\cdots<b_{n}\right\}
$$

There is a bijection between B_{n} and A_{n} which sends a sequence $\left(b_{1}, \ldots, b_{n}\right)$ to the set $\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{N}$. Since a subset of a countable set is countable, it suffices to show that $\mathbb{N}^{\times n}$ is countable to conclude that B_{n}, and hence A_{n}, is countable.

We showed in class that $\mathbb{N}^{\times 2}$ is countable, i.e., that there is a map $a: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ which is onto. We argue by induction that $\mathbb{N}^{\times n}$ is countable for all n. The base case is $n=2$ which is what we proved in class. To prove the inductive step, fix $n \geq 2$ and assume that $\mathbb{N}^{\times n}$ is countable, i.e., that there is a map $b: \mathbb{N} \rightarrow \mathbb{N}^{\times n}$ which is onto. Then the composite map

$$
\mathbb{N} \xrightarrow{a} \mathbb{N} \times \mathbb{N} \xrightarrow{b \times i d} \mathbb{N}^{\times n} \times \mathbb{N} \cong \mathbb{N}^{\times n+1}
$$

is onto and therefore \mathbb{N}^{n+1} is countable.
1.2.4 We can rephrase the statement we need to prove as follows:

- Let A be a set and $B \subset A$ be a countable subset. Then if A is uncountable then $A-B$ is also uncountable.
The contrapositive of the above statement is
- Let A be a set and $B \subset A$ be a countable subset. If $A-B$ is countable then A is countable.
Since $A=(A-B) \bigcup B$, the above statement follows from the fact that the union of countable sets is countable.
1.2.5 Assume that each set A_{i} has at least 2 elements. For each $i \in \mathbb{N}$, choose a subset $A_{i}^{\prime} \subset A_{i}$ of cardinality 2 . Up to relabeling the elements of A_{i}^{\prime}, we may assume that $A_{i}^{\prime}=\{0,1\}$. Since subsets of countable sets are countable, to show that $A_{1} \times A_{2} \times \ldots$ is uncountable, it suffices to show that $A_{1}^{\prime} \times A_{2}^{\prime} \times \cdots \subset A_{1} \times A_{2} \times \ldots$ is uncountable. On the other hand, the set $A_{1}^{\prime} \times A_{2}^{\prime} \times \ldots$ is the set of sequences of 0 s and 1 s . We showed that this set is uncountable in class using the Cantor's diagonal argument.
1.2.6 Define the sets

$$
A_{k}=\{a \in A \mid f(a)=k\} .
$$

By the assumption, each set A_{k} is finite. Since a countable union of countable sets is countable, and $A=\bigcup_{k \in \mathbb{N}} A_{k}$, we conclude that A is countable. \square^{1}

[^0]1.2.7 We show that there is no function $f: A \rightarrow 2^{A}$ which is onto. Let $f: A \rightarrow 2^{A}$ be any function. We show that f is not onto. Define a subset $B \subset A$ by
$$
B=\{a \in A \mid a \notin f(A) \subset A\}
$$

For any $a \in A$ we have that $a \in B$ if and only if $a \notin f(A)$. In particular $B \neq f(a)$. Since this holds for every $a \in A$, we conclude that B is not in the image of f and hence f is not onto.
(1) Let A, B, E be the predicates "Alice is a knight", "Bob is a knight", and "Eve is a knight" respectively. Alice saying that Bob is a knight corresponds to the predicate " A if and only if $B^{\prime \prime}$. Bob saying that Alice is a knight but Eve is a knave corresponds to the predicate " B if and only if $(A$ and not $E)$ ". Eve saying that both Alice and Bob are knights corresponds to the predicate " E if and only if $(A$ and $B)$ ". In table 1, we draw the truth table to compute the conjunction of these predicates. In particular, there is only one consistent scenario which is where all three are knaves.
(2) (a) For every subset $U \subset \mathbb{Q}_{+}$there exists $y \in U$ such that for all $x \in U$ we have $y \leq x$.
(b) There exists a subset $U \subset \mathbb{Q}_{+}$such that for all $y \in U$ there exists $x \in U$ such that $y>x$.
(c) We prove the negation, i.e., the statement in (b). Let U be the entire set \mathbb{Q}_{+}. Then for any $y \in U$ let $x=y / 2$. It is clear that $y>x$.
(3) (a) A sequence x_{1}, x_{2}, \ldots of rational numbers does not converge to $x \in \mathbb{Q}$ if there exists $\epsilon>0$ such that for all $N \in \mathbb{N}$ there exists $n>N$ such that $\left|x_{n}-x\right|>\epsilon$.
(b) Let $\epsilon=1 / 2$. Then for any $N \in \mathbb{N}$ we have $\left|x_{n}-0\right|=1>1 / 2=\epsilon$ where we can take $n=N+1$.
(c) Let $x \in \mathbb{Q}$ and $\epsilon=1 / 2$. Given $N \in \mathbb{N}$, choose $n>N$ such that n is even if $x<0$ and n is odd if $x \geq 0$. We then have

$$
\left|x_{n}-x\right|=\left|(-1)^{n}-x\right|=|x|+1>1 / 2=\epsilon
$$

Table 1. Truth Table

A	B	E	A and not E	A and B	A if and only if B	B if and only if (A and not E)	E if and only if (A and B)
T	F	F	T	F	F	F	T
T	F	T	F	F	F	T	F
T	T	F	T	T	T	T	F
T	T	T	F	T	T	F	T
F	F	F	F	F	T	T	T
F	F	T	F	F	T	T	F
F	T	F	F	F	F	F	T
F	T	T	F	F	F	F	F

[^0]: ${ }^{1}$ Here, by countable we mean finite or infinitely countable.

