M405 - PROBLEM SET \#12- SOLUTIONS

7.5.1 For each k, we construct a polynomial $R_{k}(x)$ such that

$$
R_{k}\left(x_{i}\right)=R_{k}^{\prime}\left(x_{i}\right)=0
$$

if $i \neq k$ and

$$
\begin{aligned}
& R_{k}\left(x_{k}\right)=a_{k} \\
& R_{k}^{\prime}\left(x_{k}\right)=b_{k}
\end{aligned}
$$

The desired polynomial is then the sum $R_{1}+\cdots+R_{n}$. Define an auxiliary polynomial

$$
S_{k}(x)=\prod_{i \neq k}\left(x-x_{i}\right)^{2}
$$

It has the property that $S_{k}\left(x_{i}\right)=S_{k}^{\prime}\left(x_{i}\right)=0$ for $i \neq k$ and $S_{k}\left(x_{k}\right) \neq 0$. We then define

$$
R_{k}(x)=S_{k}(x)\left(r+t\left(x-x_{k}\right)\right)
$$

where r, t are constant we will now determine. We want

$$
a_{k}=R_{k}\left(x_{k}\right)=r S_{k}\left(x_{k}\right)
$$

so we set

$$
r=\frac{a_{k}}{S_{k}\left(x_{k}\right)} .
$$

We also want

$$
b_{k}=R_{k}^{\prime}\left(x_{k}\right)=r S_{k}^{\prime}\left(x_{k}\right)+t S_{k}\left(x_{k}\right),
$$

so we set

$$
t=\frac{b_{k}-r S_{k}^{\prime}\left(x_{k}\right)}{S_{k}\left(x_{k}\right)}
$$

7.5.3 Assume that f vanishes outside of $[a, b]$. Fix $x \in \mathbb{R}$ and let $|h|<1$. We have

$$
f * g(x+h)-f * g(x)=\int_{a}^{b}(g(x+h-y)-g(x-y)) f(y) d y
$$

The function g is uniformly continuous on $[x-b-1, x-a+1]$ and therefore given $\frac{1}{m}$ there exists $\frac{1}{n}$ such that

$$
|g(x+h-y)-g(x-y)| \leq \frac{1}{m M(b-a)}
$$

where $M=\sup _{x \in[a, b]} f(x)$ for all h with $|h|<\frac{1}{n}$ and all $y \in[a, b]$. We then have that for such h we have

$$
\begin{aligned}
|f * g(x+h)-f * g(x)| & =\left|\int_{a}^{b}(g(x+h-y)-g(x-y)) f(y) d y\right| \\
& \leq \int_{a}^{b} \frac{1}{m M(b-a)} M=\frac{1}{m}
\end{aligned}
$$

7.5.9 Given such f, the Weierstrass Approximation Theorem gives rise to a sequence of polynomials g_{n} such that $g_{n} \rightarrow f$ uniformly. Define the sequence of polynomials h_{n} by

$$
h_{n}(x)=g_{n}(x)-g_{n}(c) .
$$

Since $g_{n}(c) \rightarrow f(c)=0$, the sequence h_{n} also converges uniformly to f and now also satisfies $h_{n}(c)=0$.
7.6.1 Given $\frac{1}{m}$ let $\frac{1}{n^{\prime}}$ be such that for all n and all x, y with $|x-y|<\frac{1}{n}$ we have

$$
\left|f_{n}(x)-f_{n}(y)\right|<\frac{1}{4 m}
$$

Let $y_{1}, \ldots, y_{l} \in[a, b]$ be such that for all $x \in[a, b]$ at least one of the y_{i} is within $\frac{1}{n^{\prime}}$ of x. Let N be such that for all $n \geq N$,

$$
\left|f_{n}\left(y_{i}\right)-f\left(y_{i}\right)\right|<\frac{1}{4 m}
$$

for all y_{1}, \ldots, y_{l}. This is possibly because there are only finitely many points $\left\{y_{i}\right\}$. Then for all $n, m \geq N$ and any x we have
$\left|f_{n}(x)-f_{m}(x)\right| \leq\left|f_{n}(x)-f_{n}\left(y_{i}\right)\right|+\left|f_{n}\left(y_{i}\right)-f\left(y_{i}\right)\right|+\left|f\left(y_{i}\right)-f_{m}\left(y_{i}\right)\right|+\left|f_{m}\left(y_{i}\right)-f_{m}(x)\right|<\frac{1}{m}$
Fixing n and letting m go to infinity, this implies that

$$
\left|f_{n}(x)-f(x)\right| \leq \frac{1}{m}
$$

for all $n \geq N$ and all x. Hence $f_{n} \rightarrow f$ uniformly.
7.6.2 For any $\frac{1}{m}$, let $\frac{1}{n^{\prime}}$ be such that

$$
M\left(\frac{1}{n^{\prime}}\right)^{\alpha} \leq \frac{1}{m}
$$

Then for all x, y such that $|x-y|<\frac{1}{n^{\prime}}$ we have

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq M|x-y|^{\alpha} \leq M\left(\frac{1}{n^{\prime}}\right)^{\alpha} \leq \frac{1}{m}
$$

7.6.4 Let $[a, b]$ be the compact domain on which we will show $\sin (n x)$ is not uniformly equicontinuous. We show that given any $\frac{1}{m}<2$ and $\frac{1}{n^{\prime}}$, there exists $n \in \mathbb{N}$ and $x, y \in[a, b]$ such that $|x-y|<\frac{1}{n^{\prime}}$ but

$$
|\sin (n x)-\sin (n y)|=2>\frac{1}{m}
$$

Let n be large enough so that $\frac{2 \pi}{n}<\frac{1}{n^{\prime}}$ and so that $[a, b]$ contains points of the form

$$
x=\frac{\pi+4 \pi k}{2 n} ; \quad y=\frac{3 \pi+4 \pi k}{2 n}
$$

for some integer k. We have $\sin (n x)=1$ and $\sin (n y)=-1$ and $|x-y|<\frac{1}{n^{\prime}}$.
$7.6 .5 f_{n}(x)=n$

