M405 - HOMEWORK SET \#11- SOLUTIONS

7.3.2 Assume that $f_{n} \rightarrow f$ point-wise and each function f is Lipschitz with the same constant M. Fix any two point $|x-y|$. We would like to show that $|f(x)-f(y)| \leq$ $M|x-y|$. By continuity of the absolute value function, we have

$$
|f(x)-f(y)|=\lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{n}(y)\right|
$$

Since all f_{n} are Lipschitz with the Lipschitz constant M, we have $\left|f_{n}(x)-f_{n}(y)\right|<$ $M|x-y|$ for all n. Since limits preserve non-strict inequalities, we have $|f(x)-f(y)| \leq$ $M|x-y|$.
7.3.5 Fix $x<y$ in the domain of the functions f. Since f_{n} are monotone increasing, $f_{n}(y)-f_{n}(x) \geq 0$ for all n. Since limits preserve non-strict inequalities, we have

$$
f(y)-f(x)=\lim _{n \rightarrow \infty} f_{n}(y)-f_{n}(x) \geq 0
$$

Since limits do not preserve strict inequalities, the limit of strictly increasing functions need not be strictly increasing. For example, the functions $f_{n}(x)=x^{n}$ on the domain $(1 / 3,2 / 3)$ are strictly increasing, while their limit, $f(x)=0$ is not.
7.3.7 The series of functions converges point-wise since for any $x, \sum f_{n}(x)$ is an absolutely convergent series. Consider the absolute value of the following difference

$$
\left|f-\sum_{n=1}^{N} f_{n}(x)\right|=\left|\sum_{n=N+1}^{\infty} f(x)\right| \leq \sum_{n=N+1}^{\infty} a_{n}
$$

Since $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, $\sum_{n=N+1}^{\infty} a_{n}$ goes to 0 as N goes to infinity. In particular, for any $\frac{1}{m}$ there exists $N^{\prime} \in \mathbb{N}$ such that for all $N \geq N^{\prime}$, we have

$$
\sum_{n=N+1}^{\infty} a_{n}<\frac{1}{m}
$$

Then for all $N \geq N^{\prime}$ and all x we have

$$
\left|f-\sum_{n=1}^{N} f_{n}(x)\right|=\left|\sum_{n=N+1}^{\infty} f(x)\right| \leq \frac{1}{m}
$$

and hence $\sum_{n=1}^{\infty} f_{n}(x)$ converges to f uniformly.
7.3.14 Let P_{n} be the equidistant partition of $[a, b]$ into n intervals. Let f_{n} be the linear spline defined by $f_{n}\left(x_{i}\right)=f\left(x_{i}\right)$ for every x_{i} in the partition P_{n} and f_{n} is linear on every interval of P_{n}. I claim that $f_{n} \rightarrow f$ uniformly.

Since f is continuous on the compact domain $[a, b]$, it is uniformly continuous. Given $\frac{1}{m}$, let $\frac{1}{n}$ be such that

$$
|f(x)-f(y)|<\frac{1}{2 m}
$$

whenever $|x-y|<\frac{1}{n}$. Let N be such that for all $n \geq N$, the length of each interval in the partition P_{n} is shorter than $\frac{1}{n}$. For any $x \in[a, b]$, let x_{i} be the closest partition point in P_{n} to x with $x_{i} \leq x$. Then $\left|x-x_{i}\right|<\frac{1}{n}$. We thus have

$$
\left|f(x)-f_{n}(x)\right| \leq\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f_{n}\left(x_{i}\right)\right|+\left|f_{n}\left(x_{i}\right)-f_{n}(x)\right|
$$

The middle term in this sum is 0 . The first term is bounded by $\frac{1}{2 m}$. We still have to analyze the third term. We have

$$
f_{n}(x)=f_{n}\left(x_{i}\right)+\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\left(x_{i+1}-x_{i}\right)} \cdot\left(x-x_{i}\right)
$$

Therefore

$$
\left|f_{n}\left(x_{i}\right)-f_{n}(x)\right|=\left|\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\left(x_{i+1}-x_{i}\right)} \cdot\left(x-x_{i}\right)\right| \leq\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right| \leq \frac{1}{2 m}
$$

where we used the fact that $x_{i+1}-x_{i} \geq x-x_{i}$. Hence

$$
\left|f(x)-f_{n}(x)\right|<\frac{1}{m}
$$

for all x and all $n \geq N$ and $f_{n} \rightarrow f$ uniformly.
7.4.2 Assume for simplicity that $x_{0}=0$. We have $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ in some neighborhood of 0, i.e., $\sum_{n=0}^{\infty} a_{n} x^{n}$ has a positive radius of convergence R. Since $f(0)=a_{0}=0$, $f(x) / x$, if well defined, is given by $\sum_{n=0}^{\infty} a_{n+1} x^{n}$. The radius of convergence of this power series is given by

$$
\limsup _{n \rightarrow \infty}\left(a_{n+1}\right)^{1 / n}=\limsup _{n \rightarrow \infty}\left(\left(a_{n+1}\right)^{1 / n+1}\right)^{(n+1) / n}=\lim _{n \rightarrow \infty} R^{(n+1) / n}=R
$$

In particular, it has the same radius of convergence as $\sum_{n=0}^{\infty} a_{n} x^{n}$.
7.4.4 Fix $0<x<1$ and consider the series

$$
1+a x+\frac{(a)(a-1)}{2!} x^{2}+\ldots
$$

The ratio of the n 'th term and the $n-1$ 'st term is

$$
\frac{a-n}{n} x
$$

whose limit as $n \rightarrow \infty$ is $x<1$. In particular, this series converges by the ratio test. Hence the radius of convergence of the power series satisfies $R \geq x$. Since this is true for all $0<x<1$, we have $R \geq 1$.
7.4 .8 a) We have $\lim _{n \rightarrow \infty}(n!)^{\frac{1}{n}}=\infty$. To see it, note for example that all terms in $n!$ are ≥ 1 and half of them are greater than $n / 2$. Therefore

$$
n!\geq\left(\frac{n}{2}\right)^{n / 2}
$$

and

$$
(n!)^{1 / n} \geq\left(\frac{n}{2}\right)^{1 / 2} \rightarrow \infty
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{4}}{n!}\right)^{1 / n}=0
$$

since $\lim _{n \rightarrow \infty}\left(n^{4}\right)^{1 / n}=1, n^{4}$ being a polynomial. Hence the radius of convergence is ∞.
b) We have $\sqrt{n}^{1 / n}=\left(n^{1 / n}\right)^{1 / 2}$. Since $\lim _{n \rightarrow \infty}(n)^{1 / n}=1$, the radius of convergence of $\sum_{n=0}^{\infty} \sqrt{n} x^{n}$ is 1 .
c) $R=1 / 2$.

