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7.3.2 Assume that fn → f point-wise and each function f is Lipschitz with the same
constant M . Fix any two point |x− y|. We would like to show that |f(x)− f(y)| ≤
M |x− y|. By continuity of the absolute value function, we have

|f(x)− f(y)| = lim
n→∞

|fn(x)− fn(y)|

Since all fn are Lipschitz with the Lipschitz constant M , we have |fn(x) − fn(y)| <
M |x−y| for all n. Since limits preserve non-strict inequalities, we have |f(x)−f(y)| ≤
M |x− y|.

7.3.5 Fix x < y in the domain of the functions f . Since fn are monotone increasing,
fn(y)− fn(x) ≥ 0 for all n. Since limits preserve non-strict inequalities, we have

f(y)− f(x) = lim
n→∞

fn(y)− fn(x) ≥ 0.

Since limits do not preserve strict inequalities, the limit of strictly increasing func-
tions need not be strictly increasing. For example, the functions fn(x) = xn on the
domain (1/3, 2/3) are strictly increasing, while their limit, f(x) = 0 is not.

7.3.7 The series of functions converges point-wise since for any x,
∑

fn(x) is an absolutely
convergent series. Consider the absolute value of the following di�erence

|f −
N∑

n=1

fn(x)| = |
∞∑

n=N+1

f(x)| ≤
∞∑

n=N+1

an

Since
∞∑
n=1

an converges absolutely,
∞∑

n=N+1

an goes to 0 as N goes to in�nity. In partic-

ular, for any 1
m

there exists N ′ ∈ N such that for all N ≥ N ′, we have

∞∑
n=N+1

an <
1

m
.

Then for all N ≥ N ′ and all x we have

|f −
N∑

n=1

fn(x)| = |
∞∑

n=N+1

f(x)| ≤ 1

m

and hence
∞∑
n=1

fn(x) converges to f uniformly.

7.3.14 Let Pn be the equidistant partition of [a, b] into n intervals. Let fn be the linear
spline de�ned by fn(xi) = f(xi) for every xi in the partition Pn and fn is linear on
every interval of Pn. I claim that fn → f uniformly.
Since f is continuous on the compact domain [a, b], it is uniformly continuous.

Given 1
m
, let 1

n
be such that

|f(x)− f(y)| < 1

2m
1
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whenever |x− y| < 1
n
. Let N be such that for all n ≥ N , the length of each interval

in the partition Pn is shorter than 1
n
. For any x ∈ [a, b], let xi be the closest partition

point in Pn to x with xi ≤ x. Then |x− xi| < 1
n
. We thus have

|f(x)− fn(x)| ≤ |f(x)− f(xi)|+ |f(xi)− fn(xi)|+ |fn(xi)− fn(x)|

The middle term in this sum is 0. The �rst term is bounded by 1
2m

. We still have to
analyze the third term. We have

fn(x) = fn(xi) +
f(xi+1)− f(xi)

(xi+1 − xi)
· (x− xi)

Therefore

|fn(xi)− fn(x)| = |
f(xi+1)− f(xi)

(xi+1 − xi)
· (x− xi)| ≤ |f(xi+1)− f(xi)| ≤

1

2m

where we used the fact that xi+1 − xi ≥ x− xi. Hence

|f(x)− fn(x)| <
1

m
for all x and all n ≥ N and fn → f uniformly.

7.4.2 Assume for simplicity that x0 = 0. We have f(x) =
∞∑
n=0

anx
n in some neighborhood

of 0, i.e.,
∞∑
n=0

anx
n has a positive radius of convergence R. Since f(0) = a0 = 0,

f(x)/x, if well de�ned, is given by
∞∑
n=0

an+1x
n. The radius of convergence of this

power series is given by

lim sup
n→∞

(an+1)
1/n = lim sup

n→∞
((an+1)

1/n+1)(n+1)/n = lim
n→∞

R(n+1)/n = R

In particular, it has the same radius of convergence as
∞∑
n=0

anx
n.

7.4.4 Fix 0 < x < 1 and consider the series

1 + ax+
(a)(a− 1)

2!
x2 + . . .

The ratio of the n'th term and the n− 1'st term is
a− n

n
x

whose limit as n→∞ is x < 1. In particular, this series converges by the ratio test.
Hence the radius of convergence of the power series satis�es R ≥ x. Since this is true
for all 0 < x < 1, we have R ≥ 1.

7.4.8 a) We have limn→∞(n!)
1
n = ∞. To see it, note for example that all terms in n! are

≥ 1 and half of them are greater than n/2. Therefore

n! ≥ (
n

2
)n/2

and
(n!)1/n ≥ (

n

2
)1/2 →∞
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It follows that

lim
n→∞

(
n4

n!
)1/n = 0

since limn→∞(n4)1/n = 1, n4 being a polynomial. Hence the radius of convergence is
∞.
b) We have

√
n
1/n

= (n1/n)1/2. Since limn→∞(n)1/n = 1, the radius of convergence

of
∞∑
n=0

√
nxn is 1.

c) R = 1/2.


