M405 - HOMEWORK SET #11- SOLUTIONS

7.3.2 Assume that $f_n \to f$ point-wise and each function f is Lipschitz with the same constant M. Fix any two point |x - y|. We would like to show that $|f(x) - f(y)| \le |x - y|$ M|x-y|. By continuity of the absolute value function, we have

$$|f(x) - f(y)| = \lim_{n \to \infty} |f_n(x) - f_n(y)|$$

Since all f_n are Lipschitz with the Lipschitz constant M, we have $|f_n(x) - f_n(y)| < 1$ M|x-y| for all n. Since limits preserve non-strict inequalities, we have $|f(x)-f(y)| \leq 1$ M|x-y|.

7.3.5 Fix x < y in the domain of the functions f. Since f_n are monotone increasing, $f_n(y) - f_n(x) \ge 0$ for all n. Since limits preserve non-strict inequalities, we have

$$f(y) - f(x) = \lim_{n \to \infty} f_n(y) - f_n(x) \ge 0.$$

Since limits do not preserve strict inequalities, the limit of strictly increasing functions need not be strictly increasing. For example, the functions $f_n(x) = x^n$ on the domain (1/3, 2/3) are strictly increasing, while their limit, f(x) = 0 is not.

7.3.7 The series of functions converges point-wise since for any $x, \sum f_n(x)$ is an absolutely convergent series. Consider the absolute value of the following difference

$$|f - \sum_{n=1}^{N} f_n(x)| = |\sum_{n=N+1}^{\infty} f(x)| \le \sum_{n=N+1}^{\infty} a_n$$

Since $\sum_{n=1}^{\infty} a_n$ converges absolutely, $\sum_{n=N+1}^{\infty} a_n$ goes to 0 as N goes to infinity. In partic-

ular, for any $\frac{1}{m}$ there exists $N' \in \mathbb{N}$ such that for all $N \geq N'$, we have

$$\sum_{n=N+1}^{\infty} a_n < \frac{1}{m}$$

Then for all $N \ge N'$ and all x we have

$$|f - \sum_{n=1}^{N} f_n(x)| = |\sum_{n=N+1}^{\infty} f(x)| \le \frac{1}{m}$$

and hence $\sum_{n=1}^{\infty} f_n(x)$ converges to f uniformly.

7.3.14 Let P_n be the equidistant partition of [a, b] into n intervals. Let f_n be the linear spline defined by $f_n(x_i) = f(x_i)$ for every x_i in the partition P_n and f_n is linear on every interval of P_n . I claim that $f_n \to f$ uniformly.

Since f is continuous on the compact domain [a, b], it is uniformly continuous. Given $\frac{1}{m}$, let $\frac{1}{n}$ be such that

$$|f(x) - f(y)| < \frac{1}{2m}$$

whenever $|x - y| < \frac{1}{n}$. Let N be such that for all $n \ge N$, the length of each interval in the partition P_n is shorter than $\frac{1}{n}$. For any $x \in [a, b]$, let x_i be the closest partition point in P_n to x with $x_i \le x$. Then $|x - x_i| < \frac{1}{n}$. We thus have

$$|f(x) - f_n(x)| \le |f(x) - f(x_i)| + |f(x_i) - f_n(x_i)| + |f_n(x_i) - f_n(x)|$$

The middle term in this sum is 0. The first term is bounded by $\frac{1}{2m}$. We still have to analyze the third term. We have

$$f_n(x) = f_n(x_i) + \frac{f(x_{i+1}) - f(x_i)}{(x_{i+1} - x_i)} \cdot (x - x_i)$$

Therefore

$$|f_n(x_i) - f_n(x)| = \left|\frac{f(x_{i+1}) - f(x_i)}{(x_{i+1} - x_i)} \cdot (x - x_i)\right| \le |f(x_{i+1}) - f(x_i)| \le \frac{1}{2m}$$

where we used the fact that $x_{i+1} - x_i \ge x - x_i$. Hence

$$|f(x) - f_n(x)| < \frac{1}{m}$$

for all x and all $n \ge N$ and $f_n \to f$ uniformly.

7.4.2 Assume for simplicity that $x_0 = 0$. We have $f(x) = \sum_{n=0}^{\infty} a_n x^n$ in some neighborhood

of 0, i.e., $\sum_{n=0}^{\infty} a_n x^n$ has a positive radius of convergence R. Since $f(0) = a_0 = 0$,

f(x)/x, if well defined, is given by $\sum_{n=0}^{\infty} a_{n+1}x^n$. The radius of convergence of this power series is given by

$$\limsup_{n \to \infty} (a_{n+1})^{1/n} = \limsup_{n \to \infty} ((a_{n+1})^{1/n+1})^{(n+1)/n} = \lim_{n \to \infty} R^{(n+1)/n} = R^{(n+1)/n}$$

In particular, it has the same radius of convergence as $\sum_{n=0}^{\infty} a_n x^n$. 7.4.4 Fix 0 < x < 1 and consider the series

$$1 + ax + \frac{(a)(a-1)}{2!}x^2 + \dots$$

The ratio of the *n*'th term and the n - 1'st term is

$$\frac{a-n}{n}x$$

whose limit as $n \to \infty$ is x < 1. In particular, this series converges by the ratio test. Hence the radius of convergence of the power series satisfies $R \ge x$. Since this is true for all 0 < x < 1, we have $R \ge 1$.

7.4.8 a) We have $\lim_{n\to\infty} (n!)^{\frac{1}{n}} = \infty$. To see it, note for example that all terms in n! are ≥ 1 and half of them are greater than n/2. Therefore

$$n! \ge (\frac{n}{2})^{n/2}$$

and

$$(n!)^{1/n} \ge (\frac{n}{2})^{1/2} \to \infty$$

It follows that

$$\lim_{n \to \infty} (\frac{n^4}{n!})^{1/n} = 0$$

since $\lim_{n\to\infty} (n^4)^{1/n} = 1$, n^4 being a polynomial. Hence the radius of convergence is

(∞). b) We have $\sqrt{n^{1/n}} = (n^{1/n})^{1/2}$. Since $\lim_{n\to\infty} (n)^{1/n} = 1$, the radius of convergence of $\sum_{\substack{n=0\\ n \geq 0}}^{\infty} \sqrt{nx^n}$ is 1. c) R = 1/2.