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7.3.2 Assume that f, — f point-wise and each function f is Lipschitz with the same
constant M. Fix any two point |z — y|. We would like to show that |f(x) — f(y)| <
M|z — y|. By continuity of the absolute value function, we have

() = )l = T |fa(@) = ful)

Since all f,, are Lipschitz with the Lipschitz constant M, we have |f,(x) — f.(y)| <
M|z —y| for all n. Since limits preserve non-strict inequalities, we have | f(z)— f(y)| <
M|z —y|.

7.3.5 Fix z < y in the domain of the functions f. Since f,, are monotone increasing,
fn(y) — fu(x) > 0 for all n. Since limits preserve non-strict inequalities, we have

fy) = fx) = lim f(y) = fulz) > 0.

Since limits do not preserve strict inequalities, the limit of strictly increasing func-
tions need not be strictly increasing. For example, the functions f,(xz) = 2™ on the
domain (1/3,2/3) are strictly increasing, while their limit, f(z) = 0 is not.

7.3.7 The series of functions converges point-wise since for any x, > f,(x) is an absolutely
convergent series. Consider the absolute value of the following difference

=S h@l=1 Y f@l< Y a

oo oo

Since Z a, converges absolutely, Z a, goes to 0 as IV goes to infinity. In partic-
n=1 n=N-+1

ular, for any % there exists N’ € N such that for all N > N’, we have

> 1
E a, < —.
m
n=N+1
Then for all N > N’ and all x we have

=S h@l=1 Y @<

n=N-+1

and hence Z fu(zx) converges to f uniformly.

n=1
7.3.14 Let P, be the equidistant partition of [a,b] into n intervals. Let f,, be the linear
spline defined by f,(z;) = f(z;) for every z; in the partition P, and f, is linear on
every interval of P,. I claim that f, — f uniformly.
Since f is continuous on the compact domain [a,b], it is uniformly continuous.
Given %, let % be such that

@) — f)] < —
1

2m
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whenever |z —y| < 1. Let N be such that for all n > N, the length of each interval
in the partition P, is shorter than % For any x € [a, b], let x; be the closest partition
point in P, to x with x; < z. Then |z — 2;| < % We thus have

[f (@) = ful@)| < | f(2) = [l + 1f (@) = falzi)| + [ fala:) = fu(2)]

The middle term in this sum is 0. The first term is bounded by ﬁ We still have to
analyze the third term. We have

f(@iy1) — f(@)

fulo) = ot + LD o
Therefore
o) = o) = LEZLED o) < o) = S < o

where we used the fact that x;,y — x; > x — x;. Hence

£() — fale)l < -

for all x and all n > N and f,, — f uniformly.

Assume for simplicity that o = 0. We have f(z) = Z a,z" in some neighborhood

n=0
)

of 0, i.e., Zanx” has a positive radius of convergence R. Since f(0) = a9 = 0,

n=0
0

f(z)/z, if well defined, is given by Zan+1x". The radius of convergence of this

n=0
power series is given by

limsup(a,+1)"/" = limsup((ay+1)/") V" = lim RO = R

n—00 n—00 n—00
[o.¢]

In particular, it has the same radius of convergence as E a,x".
n=0

Fix 0 < 2 < 1 and consider the series

(a)(a—1) ,
MTx + ...

The ratio of the n’th term and the n — 1’st term is
a—n

1+ ax +

T
n

whose limit as n — oo is ¢ < 1. In particular, this series converges by the ratio test.
Hence the radius of convergence of the power series satisfies R > x. Since this is true
forall 0 < x < 1, we have R > 1.

a) We have limn%m(n!)% = 00. To see it, note for example that all terms in n! are
> 1 and half of them are greater than n/2. Therefore
n
> (=)/2
()
and n
()" > (372 = oo
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It follows that
: n4 1/n 0
)=
since lim,,_,oo(n?)"/™ = 1, n* being a polynomial. Hence the radius of convergence is
0.

b) We have /n'/" = (n}/")}/2. Since lim,,_,o0(n)/™ = 1, the radius of convergence

of Z\/ﬁx” is 1.
n=0
c) R=1/2.



