M405 - HOMEWORK SET 10 - SOLUTIONS

7.1.1 Let $F(x)=f(x)+i g(x)$ be a complex valued function where f and g are its real and imaginary parts respectively. For any partition P and a choice of sample points $\left\{x_{i}^{*}\right\}$ we have

$$
S\left(F, P,\left\{x_{i}^{*}\right\}\right)=S\left(f, P,\left\{x_{i}^{*}\right\}\right)+i S\left(g, P,\left\{x_{i}^{*}\right\}\right)
$$

It then follows that if

$$
\lim _{|P| \rightarrow 0} S\left(f, P,\left\{x_{i}^{*}\right\}\right)=A
$$

and if

$$
\lim _{|P| \rightarrow 0} S\left(g, P,\left\{x_{i}^{*}\right\}\right)=B
$$

then

$$
\lim _{|P| \rightarrow 0} S\left(F, P,\left\{x_{i}^{*}\right\}\right)=A+i B
$$

To spell out the details, given $\frac{1}{m}$ let $\frac{1}{n}$ be such that for all partitions P such that $|P|<\frac{1}{n}$ we have

$$
\left|S\left(f, P,\left\{x_{i}^{*}\right\}\right)-A\right|<\frac{1}{2 m}
$$

and

$$
\left|S\left(g, P,\left\{x_{i}^{*}\right\}\right)-B\right|<\frac{1}{2 m}
$$

. Then by the triangle inequality for complex numbers

$$
\left|S\left(F, P,\left\{x_{i}^{*}\right\}\right)-(A+i B)\right|<\frac{1}{m} .
$$

Hence if f, g are Riemann integrable, then so is F. For the other direction, assume

$$
\lim _{|P| \rightarrow 0} S\left(F, P,\left\{x_{i}^{*}\right\}\right)=A+i B
$$

Given $\frac{1}{m}$ there exists $\frac{1}{n}$ such that for all partitions P such that $|P|<\frac{1}{n}$

$$
\left|S\left(F, P,\left\{x_{i}^{*}\right\}\right)-(A+i B)\right|<\frac{1}{m}
$$

For a complex number $a+b i$ we have $|a+b i|=\sqrt{a^{2}+b^{2}} \geq|a|$. Hence equation (1) implies

$$
\left|S\left(f, P,\left\{x_{i}^{*}\right\}\right)-A\right|<\frac{1}{m}
$$

for all $|P|<\frac{1}{n}$. This shows that f is Riemann integrable. The argument for integrability of g is analogous.
7.1.10 a) Both sides of the equation are invariant under interchanging z and z_{1}. We will therefore assume without loss of generality that $|z| \geq \mid z_{1}$. In that case $|z|-\left|z_{1}\right| \geq 0$ and $\left||z|-\left|z_{1}\right|\right|=|z|-\left|z_{1}\right|$. We thus need to show that

$$
|z|-\left|z_{1}\right| \leq_{1}^{\leq}\left|z-z_{1}\right|
$$

Adding $\left|z_{1}\right|$ to both sides, we get the usual triangle inequality

$$
|z| \leq\left|z-z_{1}\right|+\left|z_{1}\right|
$$

b) We have $z-z_{1}=x-x_{1}+i\left(y-y_{1}\right)$. For any complex number $a+b i$ we have

$$
|a+b i|^{2}=a^{2}+b^{2} \leq a^{2}+b^{2}+2|a b|=(|a|+|b|)^{2}
$$

and therefore $|a+b i| \leq|a|+|b|$. We therefore have

$$
\| z\left|-\left|z_{1}\right|\right| \leq\left|z-z_{1}\right| \leq\left|x-x_{1}\right|+\left|y-y_{1}\right|
$$

where the first inequality follows from part a).
7.2.1 Let $x_{n}=y_{n}=\frac{(-1)^{n}}{n^{1 / 2}}$. The series $\sum_{n=1}^{\infty} x_{n}$ converges by the alternating series test, but $\sum_{n=1}^{\infty} x_{n} y_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

If $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent and $\sum_{n=1}^{\infty} y_{n}$ is convergent we show that $\sum_{n=1}^{\infty} x_{n} y_{n}$ is absolutely convergent. We have that $\left|y_{n}\right|<M$ for some constant M and hence $\left|x_{n} y_{n}\right| \leq|M|\left|x_{n}\right|$. Since $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent, so is $\sum_{n=1}^{\infty}|M|\left|x_{n}\right|$.
7.2.3 We have

$$
\left|\sum_{k=1}^{n} r^{k}-\frac{r}{1-r}\right|=\left|\sum_{k=n+1}^{\infty} r^{k}\right|=\frac{|r|^{n+1}}{1-|r|}
$$

For any fixed $n, \lim _{r \rightarrow 1} \frac{|r|^{n+1}}{1-|r|}=\infty$ and the result follows.
7.2.5 Let P be the partition of $[1, N]$ given by the integers, i.e. $x_{i}=1+i$. Over each interval $\left[x_{i-1}, x_{i}\right]$ the function $\frac{1}{x^{a}}$ attains its minimum value at x_{i} being a decreasing function. Hence the lower Riemann sum for $\int_{1}^{N} 1 / x^{a} d x$ is

$$
S^{-}(f, P)=\sum_{n=2}^{N} 1 / n^{a} \leq \int_{1}^{N} \frac{1}{x^{a}} d x
$$

For $a>1$ we have

$$
\int_{1}^{N} \frac{1}{x^{a}} d x=(a-1)\left(1-\frac{1}{N^{a-1}}\right) \leq a-1
$$

And therefore

$$
\sum_{n=2}^{N} 1 / n^{a} \leq a-1
$$

Since all the terms of the series are positive, $\sum_{n=1}^{\infty} 1 / n^{a}$ is convergent.
7.2.9 Define $a_{m n}$ by

$$
a_{m n}= \begin{cases}\frac{2^{n}-1}{2^{n-1}} & n=m \\ -\frac{2}{}^{2}-1 & m-n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Every row and every column has only finite number of non-zero entries. The sum of the rows vanishes while the sum of the m th column is $\frac{1}{2^{m}}$. We therefore have

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m n}=2 \\
& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m n}=0
\end{aligned}
$$

