M405 - HOMEWORK SET \#1- DUE 02/08/19

- Textbook exercises: pg. 13: 2, 4, 5, 6, 7

(1) On an island inhabited by knights and knaves, where the former always tell the truth and the latter always lie, you meet three individuals: Alice, Bob, and Eve. Alice says that Bob is a knight. Bob say that Alice is a knight but Eve is a knave. Eve says that both Alice and Bob are knights. Determine who is a knight and who is a knave.
(2) Consider the following statement: "Every subset $U \subset \mathbb{Q}_{+}$of positive rational numbers has a minimal element."
(a) Rewrite the statement making the quantifiers explicit. (There should be 3 quantifiers)
(b) Write the negation of the above statement.
(c) Prove the statement or its negation.
(3) We say that a sequence $x_{1}, x_{2}, x_{3}, \ldots$ of rational numbers converges to $x \in \mathbb{Q}$ if for every rational $\epsilon>0$ there exists a natural number $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n>N$ we have $\left|x_{n}-x\right|<\epsilon$.
(a) Write the negation of this definition: i.e. when does a sequence x_{1}, x_{2}, \ldots NOT converge to a rational number x ?
(b) Prove that the sequence $x_{i}=(-1)^{i}$ does not converge to 0 .
(c) Prove that the sequence in (b) does not converge to any rational number x.

