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K-Theoretic Computation of the Verlinde Ring

by

Valentin Zakharevich, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Daniel Freed

We compute Verlinde rings of the groups G = SU(3) o Z/2Z and

G = Spin(8) o Sym3 at level 1. We use the K-theory formulation developed

by Freed, Hopkins and Teleman. More precisely, we compute the twisted

equivariant K-theory Kτ
G(G) where G acts on itself by conjugation. The fusion

product, corresponding to the Pontryagin product on the level of K-theory, is

partially computed.
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Chapter 1

Introduction

In this thesis we compute the twisted equivariant K-theory groups

Kτ
G(G) for G = SU(3) o Z/2Z and G = Spin(8) o Sym3 with particular K-

theory twistings τ . By a theorem of Freed, Hopkins, and Teleman ([FHT11b]),

the K-theory group Kτ
G(G) is isomorphic to the twisted representation group

of twisted loop group of G. The interest in this computation lies in the con-

nection of the representations of loop groups to the Chern-Simons topological

quantum field theory (TQFT).

A mathematically rigorous definition of a TQFT was given by Atiyah

in [Ati88b] after Witten reformulated works of Donaldson and Floer in terms

of supersymmetric gauge theory in [Wit88] and found a definition of the Jones

polynomial in terms of the Chern-Simons field theory in [Wit89]. Since then,

the ideas of TQFTs played integral parts in the study of low dimensional

topology (e.g. Seiberg-Witten equation [SW94]), representation theory (e.g.

geometric Langlands program [KW07]) and higher category theory (e.g. cobor-

dism hypothesis [Lur09]).

There has recently been a surge of interest in the study of topologi-

cal phases of matter in condensed matter physics, i.e., the study of materials
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whose low energy excitations exhibit non-trivial topological properties. It is

understood that this non-trivial behavior is described by a TQFT. In con-

densed matter physics, systems are described by lattice models. Although

given a lattice model it is not clear how to determine the TQFT which de-

scribes its low energy physics, there are procedures going in the other direction

([Kit03, LW05, WW12]), i.e., given a TQFT one can write down a lattice model

whose low energy excitations exhibit the braiding statistics and fusion rules

governed by the TQFT. Unlike a fairly abstract definition of a TQFT, lattice

models are very concrete descriptions of a physical system and the translation

provides a physical intuition for constructions and operations one might write

down for TQFTs. It is the literature in this vein that motivated the prob-

lem of this thesis. Motivated by the corresponding lattice model description,

Barkeshli, Bonderson, Cheng, and Wang described the procedure of gauging a

finite symmetry of a 3-2-1 extended TQFT ([BBCW14]). Here, we ask if this

procedure applied to the Chern-Simons theory based on a connected compact

group results in the Chern-Simons theory based on a non-connected compact

group, which it formally should.

A 3-dimensional TQFT (3-2-1 extended, oriented with a p1-structure)

is determined by a modular tensor category C. A modular tensor category is

in particular a monoidal, braided, semisimple category with finite number of

isomorphism classes of simple objects. The simple objects of C correspond to

particle types of the system and the monoidal product corresponds to fusing

particles together. The set of isomorphism classes of C forms a semiring under
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direct sum and monoidal product. The Grothendieck group completion of this

semiring is called the Verlinde ring.

Chern-Simons theories are examples of classical topological field the-

ories. Given a compact Lie group G and a class l ∈ H4(BG,Z), called the

level, there is a corresponding classical topological (metric-independent) field

theory ([Fre95, Fre94, Fre02]). One would then like to quantize this theory,

but quantization is a notoriously difficult and non-canonical procedure. In

particular, to the best of our knowledge, there does not yet exist a definition

that works for all compact Lie groups G. When G is simply-connected, there

are several constructions of a modular tensor category C(G,l) which deserve to

be called the quantization of Chern-Simons theory:

(a) The category of representations of the quantum group at a root of unity.

(e.g. [Saw06])

(b) The category of representations of affine Lie algebras. (e.g. [HL13]).

(c) Representations of Von Neumann algebras generated by loop group LG

on the vacuum representation and Connes fusion product. (e.g. [GF93,

Was98])

All three are known to be equivalent to the category of projective positive

energy representations of LG at level l as additive categories. The categories

(a) and (b) are known to be equivalent as modular tensor categories. See

[Hen17] for a thorough overview of existing constructions and for a proposal
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for what the quantum Chern-Simons theory should be as a fully extended

theory. It is expected that for any G, the correct category CG,l should be

the category of positive energy representations of LG, but a definition of the

modular category structure directly in terms of the loop group is still missing,

even for connected groups.

For any compact Lie group G and l ∈ H4(BG,Z), Freed, Hopkins, and

Teleman ([FHT11b]) prove the isomorphism

Rl(LG) ∼= Kτl
G (G) (1.0.1)

of the Grothendieck group of positive energy representations of LG at level

l and the twisted equivariant K-theory group Kτl
G (G) where G acts on itself

by conjugation and τl is a twisting constructed from l which we will recall in

Section 3.3. Moreover, in [FHT10], the same authors construct the necessary

structure on the twisting τl so that the push-forward in equivariant K-theory

is defined along the multiplication map µ : G × G → G, giving rise to a

ring structure on Kτ
G(G). When G is simply-connected, the left-hand side of

(1.0.1) acquires a ring structure, being the Verlinde ring of one of the modular

tensor categories alluded to in the previous paragraph ((a) or (b)). In that

case, (1.0.1) is an isomorphism of rings. Hence, the ring Kτl
G (G) is a natural

candidate for the Verlinde ring of the yet to be defined C(G,l) forG disconnected.

Let G be a compact group, G1 be its component of the identity and

F = π0(G). Fix l ∈ H4(BG,Z) and let l1 ∈ H4(BG1,Z) be its restriction

to BG1. Formally, this defines an action of F on the quantum Chern-Simons
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theory of (G1, l1). The strongest form a symmetry of a group F on a TQFT

is that the theory can be extended to manifolds with a principal F -bundle. In

case of Chern-Simons theory based on G1, the fields of the theory are principal

G1-bundles with connection and the quantization is formally a path integral

over the space of fields. Given a 3-manifold X and a principal F -bundle Q,

instead of G1-bundles, we can consider principal G-bundles P with connection

and an isomorphism P ×G F ∼= Q. When Q is trivial, this recovers the Chern-

Simons theory of G1. The gauging of such symmetry is obtained by summing

(with appropriate weights) over all F -bundles. In particular, gauging the

F symmetry of the quantum Chern-Simons based on (G1, l1) gives the path

integral over all G-bundles and hence the Chern-Simons theory based on (G, l).

Although this derivation is formal, a construction of gauging a symme-

try of a TQFT provides a candidate for the quantum Chern-Simons theory

of (G, l), namely the gauging of the quantum Chern-Simons theory of (G1, l1)

whose various constructions we discussed above. Such gauging construction

is formulated in ([BBCW14]) motivated by the relation to the lattice mod-

els. Given a modular tensor category C and an action of F on C, they write

down a category C/F which corresponds to gauging the action of F . Their

construction is based on the work of Kirillov ([Kir04]) on equivariant modular

categories and of Etingof, Nikshych, and Ostrik ([ENO05, ENO10]) on fusion

categories and group actions on them.

A finite group action of F on a modular tensor category C is given

by an extension of C to an F -crossed braided tensor category C×F . A more
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naive notion of an action is a homomorphism F → Aut(C) where Aut(C) is

the group of isomorphism classes of auto-equivalences of C. It is shown in

([BBCW14]), that given a naive action of F , there are obstructions to lifting a

naive action to a true action and choices of lifts in the case these obstructions

vanish. The first obstruction lies in H3(BF,A) where A is the group formed

by the abelian (quantum dimension 1) simple objects of C. If this obstruction

vanishes, there is a H2(BF,A) torsor of intermediate extensions. For each

intermediate extension, there is a second obstruction in H4(BF,U(1)). If the

second obstruction vanishes, then there is a H3(BF,U(1)) torsor of extensions

to the full group action. This should remind the reader of an extension problem

in topology. Indeed, the full action of F on C is equivalent to a homomorphism

F → Aut(C) where Aut(C) is a certain 3-group of automorphisms of C 1. The

full action therefore is given by a (homotopy class of a) map of spaces BF →

BAut(C). The naive action on the other hand corresponds to a map from the

1-skeleton of BF into BAut(C) which extends to the 2-skeleton. An extension

to a full action is a lift of this map to all of BF . The statement about the

extension of the group action can be restated as the fact that π2(BAut(C)) ∼= A

and π3(BAut(C)) ∼= U(1).

If we had a definition for C(G,l) for an arbitrary compact Lie group G,

a natural conjecture would be

1Aut(C) is the 3-group of invertible module categories of C. It is a sub 3-group of
automorphisms of C when viewed as an object of the 3-category of tensor categories. It
is also the looping of the automorphism 4-group of C when viewed as an object of the
4-category of braided tensor categories ([CGPW16, Section 3.2]).
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Conjecture 1. Let G be a compact Lie group, G1 be the component of the

identity of G and F = π0(G). Let l1 ∈ H4(BG1,Z) be a level for G1. Then a

choice of l ∈ H4(BG,Z) extending l1 defines an action of F on C(G1,l1) and

C(G1,l1)/F ∼= C(G,l)

as modular tensor categories.

Since we only have a definition of C(G1,l1) for G1 simply connected and

we expect C(G,l) to be equivalent to Repl(LG) additively, a more reasonable

(and well posed) conjecture for the time being is

Conjecture 2. Let G,G1, F, l1 be as in Conjecture 1. Assume further that G1

is simply connected. Then a choice of l ∈ H4(BG,Z) extending l1 defines an

action of F on C(G1,l1) and

C(G1,l1)/F ∼= Repl(LG)

as abelian categories.

It follows from Serre’s spectral sequence of the fibration sequence

BG1 → BG→ BF , that an obstruction to a lift of l1 to l lies in H5(BF,Z) ∼=

H4(BF,U(1)) and that the set of extensions l is a torsor for H4(BF,Z) ∼=

H3(BF,U(1)). This is precisely the top level obstruction to lifting a naive

action of F on a modular tensor category.

Conjecture 3. Let G,G1, F, l1, l be as in Conjecture 2. Then

Ver(C(G1,l1)/F ) ∼= Kτl
G (G)
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as rings where the multiplication on Kτl
G (G) is the Pontryagin product defined

in [FHT10].

The goal of this thesis is to verify the isomorphism of Conjecture 3 in

two special cases: G = SU(3) o Z/2 and G = Spin(8) o Sym3 at l1 = 1 ∈

Z ∼= H4(BG1,Z). These cases were chosen because the categories C(G1,l1)/F

are worked out for them in [BBCW14]. We computed the additive structure

of the groups Kτl
G (G) in these cases and part of the multiplicative structures.

What we were able to compute coincides with results of [BBCW14].

Theorem 1.0.2. Let G = SU(3) o Z/2 or G = Spin(8) o Sym3. Let l ∈

H4(BG,Z) be a class extending 1 ∈ Z = H4(BG1,Z) Then

Kτl
G (G) ∼= Ver(C(G1,l1)/F )

as abelian groups. Moreover, the restriction of the Pontryagin prod-

uct on Kτl
G (G) to Kτl

G (G) ⊗ Kτl
G (G1) coincides with the multiplication on

Ver(C(G1,l1)/F ).

For the group G = SU(3)oZ/2, compare the table in Section 8.5 to the

computation in [BBCW14, Section X.E]. For G = Spin(8) o Sym3, compare

the tables in Section 9.5 to the computation in [BBCW14, Section X.J] where

the S-matrix is written down for C(G1,l1)/F
2 or [CGPW16, Appendix B] where

the fusion rules are given explicitly. Implicit in the statement of the theorem

2The fusion rules can be computed from the S-matrix by the Verlinde formula
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is that the structures that we compute are the same for every choice of the

extension l of l1.

The main purpose of this thesis is to compute the K-theory groups

appearing in Theorem 1.0.2. In Chapter 2, we review the definition and prop-

erties of twisted equivariant K-theory as well as work out some properties of

K-theory twistings. In Chapter 3, we review the construction of the twisting

τl of [FHT10]. It is a part of a 2-dimensional TQFT constructed via a pull-

push construction on K-theory similar to the definition of string topology and

we review the definition of this TQFT. In Chapter 4, we collect the notation

and conventions that deal with compact Lie groups as well as prove some re-

sults concerning the Weyl group of semi-direct products G1 o F where G1 is

simply-connected. In Chapter 5 we elaborate on the computation of Kτ
G(G) of

[FHT11b, part III]. In Chapter 6, we study the properties of the twisting τl.

In Chapter 7, we study the R(G)-module structure on Kτl
GG, which gives us

the part of Pontryagin product we computed. In Chapter 8 and Chapter 9 we

compute Kτl
G (G) for G = SU(3) o Z/2 and G = Spin(8) o Sym3 respectively.

9



Chapter 2

K-Theory Preliminaries

2.1 K-theory of Spaces

In this section, we briefly present the definition of twisted K-theory

of Atiyah and Segal ([AS04]). We will be more precise in Section 2.3 when

discussing K-theory twistings of stacks as defined by Freed, Hopkins, and

Teleman in [FHT11a].

The first definition of K-theory one usually encounters is for compact

Hausdorff spaces via the Grothendieck group construction of the commuta-

tive monoid of isomorphism classes of complex vector bundles. This functor

is represented by Fred(H), the space of Fredholm operators on an infinite-

dimensional separable Hilbert space with the norm topology. In other words

K(X) = [X,Fred(H)]

where [, ] denotes the homotopy classes of maps. The simples way to ”twist” K-

theory is therefore to consider a Fred(H)-bundle over a space X and define the

twisted K-theory to be the set of homotopy classes of sections. The conjugation

action of U(H) on Fred(H) descends to an action of the projective unitary

group PU(H) and therefore a bundle P → X of projective Hilbert spaces

10



gives rise to the associated bundle Fred(P ) of Fredholm operators and we may

define

KP (X) = π0Γ(Fred(P ))

This is the simplest kind of twisted K-theory 1.

Bott periodicy gives rise to a 2-periodic generalized cohomology theory

with K0(X) = K(X). By Brown’s representability theorem, it corresponds

to a ring spectrum K which Atiyah and Singer ([AS69]) identify with a se-

quence of spaces of Fredholm operators. Let Fred(n)(H) ⊂ Fred(Sn ⊗ H)

be the subset of odd skew-adjoint operators which graded commute with the

Clifford action of Cln where Sn is an irreducible representation of Cln and

H is a Z/2-graded Hilbert space. Atiyah and Singer show that when H has

infinite dimensional even and odd components, the space Fred(n)(H) is homo-

topy equivalent to ΩnFred(0)(H). In particular, the spaces Fred(n)(H) form

the K-theory spectrum. The periodicity of K-theory follows from homotopy

equivalence Fred(n)(H) ' Fred(n+2)(H) which in turn follows from the Morita

equivalence Cln ' Cln+2 and Kuiper’s theorem.

We can thus define more general twistings and talk about twisted K-

theory in various degrees. The notion of an odd transformation of a Z/2-

graded vector space V only uses the decomposition of V as an unordered

direct sum V = V 0 ⊕ V 1. A bundle P → X of projective spaces with two

1We implicitly assumed that the bundle P corresponded to a principal PU -bundle with
the norm topology. Atiyah and Segal consider more general bundles corresponding to the
compact open topology on PU .
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infinite-dimensional subbundles P 0, P 1 such that locally P = P(H0 ⊕ H1)

and P i = P(Hi), corresponds to a principal PUhom-bundle where Uhom is the

group of unitary homogeneous transformations of a Z/2-graded Hilbert space

H with infinite dimensional even and odd components. The group PUhom

acts on Fred(n)(H) by conjugation and to a bundle P as above we associate

the bundle Fred(n)(P ) over X. As n varies, these form a bundle of K-module

spectra over X. The P -twisted K-theory of X is then defined by

Kn+P (X) = π0Γ(Fred(n)(P ))

There is a general framework ([ABG+14]) for twisted cohomology theories.

The ones discussed here are only a subset which appears in geometric examples.

Denote by Twist′(X) the groupoid of twistings of X we just defined,

i.e., the groupoid of PUhom principal bundles on X. The set of isomorphism

classes in Twist′(X) is given by the set of homotopy classes of maps X →

BPUhom. The classifying space BPUhom is the product of Eilenberg-Maclane

spaces 2

BPUhom = K(Z, 3)×K(Z/2, 1)

2The group PUhom is (U ×U)/U(1)oZ/2 with Z/2 acting by permuting the two copies
of U . Since U is contractible by Kuiper’s theorem, (U×U)/U(1) ∼= K(Z, 3) and hence there
is a fibration sequence

K(Z, 3) // BPUhom // K(Z/2, 1)

There is a section induced from a map Z/2 → PUhom. The fibration above is therefore
associated to a map K(Z/2, 1) → BAutTop∗(K(Z, 3)) = B(Z/2). Since Z/2 acts trivially
on U(1) ⊂ U × U , this map is trivial.

12



It follows that the isomorphism classes of twistings of X are given by the set

H1(X,Z/2)×H3(X,Z)

and the automorphisms of any twisting are given by

H0(X,Z/2)×H2(X,Z)

The set H0(X,Z/2)×H2(X,Z) classifies Z/2-graded T-principal bun-

dles on X where T = U(1). Another way to see this bundle is the follow-

ing. Given an automorphism φ of a projective bundle P and a point x ∈ X,

the fiber Px is the projectivization of a Z/2-graded Hilbert space Hx. Let

Lφx ⊂ Uhom(Hx) be the T torsor of lifts of φ with the grading 0 if Lφx belongs to

the identity component of Uhom(Hx) and 1 otherwise. These glue together into

a Z/2-graded T-bundle on X whose isomorphism class does not depend on the

choices of Hx. The associated Z/2-graded line bundle Lφ ×T C determines a

class in K0(X) and the map KP (X)
φ∗−→ KP (X) is the multiplication by this

class.

The groupoid Twist′(X) has a symmetric monoidal structure coming

from the tensor product of Hilbert spaces. The symmetric structure uses

the Koszul sign rule for the tensor product of Z/2-graded vector spaces. As

an abelian group, the isomorphism classes of Twist′(X) is the extension of

H1(X,Z/2) by H3(X,Z) corresponding to the 2-cocycle (a, b) 7→ β(a ^ b)

where β is the Bockstein homomorphism3.

3An element a ∈ H1(X,Z/2) corresponds to a real line bundle La with ω1(La) = a and
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There is a relation between the twistings we have thus far defined and

Z/2-graded T-gerbes. A low-brow definition of a Z/2-graded T-gerbe on a

space X is via the Čech construction, i.e., it is given by an open cover {Ui}, a

Z/2-graded T-bundle Lij over every double intersection Uij := Ui∩Uj, and an

isomorphism Lij⊗Ljk ∼= Lik over every triple intersection Uijk which satisfies a

cocycle condition over quadruple intersections. A twisting P gives such a gerbe

via the following construction: let Ui be open sets such that P
∣∣
Ui
∼= P(Hi)

for Hilbert space bundles Hi over Ui. Let Lij ⊂ hom(Hi,Hj) be the subset of

morphisms lifting the gluing data of P with the grading depending on whether

the homomorphisms are even or odd. In [FHT11a], the twistings are defined

via the gerbes in the more general setting of twisted K-theory of stacks.

Example 2.1.1. Let X = S3 be the three-sphere and P be a twisting whose

isomorphism class is n ∈ Z ∼= H1(X,Z/2)×H3(X,Z). Let Ui for i = 1, 2 be the

open sets Ui = X\{pi} where p1, p2 are the oposite poles of X. The twisting P

can be trivialized on U1

∐
U2 and it corresponds to the T-gerbe given by the

complex line bundle O(−n) over U1 ∩U2
∼= S2. The twisted K-theory satisfies

twisting is given by the complex spinor bundle S(La) by tensoring it with a fixed Hilbert
space. For a, b ∈ H1(X,Z/2) the sum of the corresponding twistings is given by the tensor
product

S(La)⊗ S(Lb) = S(La ⊕ Lb)

with H. The projective class of this bundle is

β(ω2(La ⊕ Lb)) = β(a ^ b) ∈ H3(X,Z)

14



the Mayer-Vietoris property and there is a long exact sequence

K0+P (X) // K0+P1(U1)⊕K0+P2(U2) // K0+P12(U1 ∩ U2)

��
K1+P12(U1 ∩ U2)

OO

K1+P1(U1)⊕K1+P2(U2)oo K1+P (X)oo

The restrictions of P to U1, U2, U1 ∩ U2 are trivializable and hence the above

sequence reduces to

K0+P (X) // Z⊕ Z α // Z⊕ Z

��
0

OO

0oo K1+P (X)oo

We have K0+P12(U1 ∩ U2) ∼= K0(S2) ∼= Z ⊕ Z and we use the basis given by

the trivial line bundle O(0) and the tautological bundle O(−1). We use the

trivialization of P12 consistent with the trivialization of P1. It differs from the

trivialization of P2 by the line O(−n). The map α above is therefore(
1 n− 1
0 −n

)
: Z⊕ Z→ Z⊕ Z

where we used the relation O(−n) = nO(−1) − (n − 1)O(0) in K0(S2). We

thus get

K0+P (X) = {0}; K1+P (X) = Z/n.

One context where twisted cohomology theories arise naturally is the

Thom isomorphism. Let V → X be a real n-dimensional vector bundle and

let XV denote the Thom space of V . Recall that in the case of ordinary coho-

mology theory, a Thom class U ∈ Hn(XV ,Z) exists only if V is orientable, in
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which case we get an isomorphism H•−n(X,Z) ∼= H•(XV ,Z). In a more gen-

eral case, the Thom isomorphism identifies H•−n(X,Zor(V )) with H•(XV ,Z)

where the former is the cohomology with twisted coefficients determined by

the Z/2 cover or(V ) of orientations of V . The analogous story holds for any

generalized cohomology theory given by a spectrum E. Let ΩV (E) be the

bundle of spectra over X with the fiber over x ∈ X given by maps of the

sphere {x}Vx into E, i.e. the fibers are homotopic to Σ−nE. Globally this

bundle might be non-trivial and thus define an E-twisting −ρ(V ) of X. The

sections of this bundle are manifestly the same as maps XV → E and hence

E•−n−ρ(V )(X) = E•(XV )

In the case of K-theory, by Atiyah-Singer ([AS04]), the bundle ΩV (K) is ho-

motopic to

Fred
(0)
Clc(V )(Cl

c(V )⊗H),

the space of odd skew-adjoint Fredholm operators which commute with the

Clc(V ) action. We claim that FredClc(V )(Cl
c(V )⊗H) is homotopy equivalent

to

Fred
(0)
Cln

(Sn ⊗ S(V )⊗H) ∼= Fred(n)(S(V )⊗H)

To verify it, let M denote Cln as an invertible Cln − Cln bimodule. The

orthogonal group O(n) acts projectively on M . We get an associated projective

bundle B(V )⊗O(n) P(M) where B(V ) is the bundle of frames of V . The tensor

product with this bundle over Clc(V ) gives the desired equivalence. We leave

the details to the reader. We thus get that the twisting −ρ(V ) given by
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S(V )⊗H satisfies

K•−n−ρ(V )(X) ∼= K•(XV )

The isomorphism class of −ρ(V ) is

(w1(V ), β(w2(V )) ∈ H1(X,Z/2)×H3(X,Z)

When there is no possibility of confusion, we will refer to ρ(V ) by V . Note

as well that a Clc(V )-module N on X gives rise to a class in K−n−ρ(V )(X) =

K0(XV ); there is a contractible space of Clc(V )-linear isomorphisms Clc(V )⊗

H ∼= N⊕H′ where H′ is Z/2-graded with infinite dimensions in both even and

odd degrees. The desired class corresponds to the Fredholm operator which

vanishes on N and is the identity on H. Perhaps more familiarly, this is the

class given by the Atiyah-Bott-Shapiro construction ([ABS64]).

The Thom isomorphism allows us to define the pushforward map. The

more general statement of the Thom isomorphism is

K•−n−ρ(V )+s∗(P )(X) ∼= K•+P (XV )

where P is a twisting on V and s is the 0-section. Given a proper map of

manifolds φ : X → Y and an isomorphism of twistings

P ∼= φ∗(TY )− TX + P0

there is a push-forward map

KP (X)
φ∗−→ KP0−dimY+dimX(Y )
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defined in the following way. There is an embedding X
ι−→ RN × Y such that

π2 ◦ ι = φ. The push-forward map is then defined as the following composition

KP (X) ∼= Kφ∗P0−TX+TY (X)

∼= Kφ∗P0−dimX+dimY+N(Xνι)

→ Kφ∗P0−dimX+dimY+N(ΣNY+)

∼= KP0−dimX+dimY (Y )

where νι is the normal bundle of X in RN × Y and the map

Kφ∗P0−TX+TY+νι(Xνι)→ Kφ∗P0+N(ΣNY+)

is the Pontryagin-Thom collapse. We have used that the twisting TY −TX−νι

is trivial. This expression can be made less cumbersome if we include the

degree in the data of the twisting, which we will do in a later section.

The Atiyah-Singer index theorem provides an analytic way of com-

puting the pushforward map. Let π : X → Y be a fiber bundle of com-

pact manifolds and let T (X/Y ) ⊂ TX be the kernel of dπ. There is a

natural isomorphism of twistings T (X/Y ) = TX − π∗TY . Given a class

α ∈ KdimX−dimY+T (X/Y )(X) represented by a Cl(T (X/Y )) module bundle,

the Atiyah-Singer index theorem implies that the pushforward π∗α equals the

index of the Dirac operator acting along the fibers.

2.2 Equivariant K-theory

LetG be a compact Lie group andX be a compact Hausdorff space with

a continuous G-action. The equivariant K-theory KG(X) is the Grothendieck
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group completion of the monoid of isomorphism classes of G-equivariant com-

plex vector bundles on X. For example, if X = ∗ is a point, then KG(∗) =

R(G), the representation ring of G. Segal showed in [Seg68] that in a lot of

ways, equivariant K-theory behaves the same way as ordinary K-theory. One

defines K−nG (X) =: K̃G(ΣnX+) where n ≥ 0 and K̃ denotes reduced K-theory.

By periodicity K−nG (X) = K−n−2
G (X), one extends Kn

G for all n ∈ N. Just

as in non-equivariant case, equivariant K-theory is represented by a space of

Fredholm operators. Let H be a stable G-Hilbert space, i.e. such that every

irreducible representation of G occurs infinitely many times in H. Let

UG−cts(H) = {u ∈ U(H)|g 7→ gug−1 is continuous}

and let FredG−cts(H) be defined analogously. Atiyah and Segal ([AS04, Ap-

pendix 3]) prove that UG−cts(H) is equivariantly contractible and that for a

G-space X,

[X,FredG−cts]G = KG(X)

where [, ]G denotes the set of homotopy classes of G-equivariant maps. Let

H be a Z/2-graded Hilbert space such that H0 and H1 are stable G-Hilbert

spaces. Defining

Fred
(n)
G−cts(H) =

{
f ∈ FredG−cts(Sn ⊗H)

∣∣∣ f odd, skew-adjoint and
graded commutes with Cln

}
,

it is shown in [FHT11a, Appendix A.5] that

Kn
G(X) = [X,FrednG−cts(H)]G.
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Modulo technical difficulties (see [AS04, Section 6]), the equivariant K-

twisting of a G-space X is again defined by a G-equivariant projective bundle

P → X which is locally on X the projectivization of a Z/2-graded Hilbert

space. It should satisfy the following condition. For every point x ∈ X, there

should exist a Gx invariant neighborhood U of x, where Gx = StabG(x), such

that P
∣∣
U

= U × P(H) where H is a Z/2-graded Hilbert space with projective

action of Gx on H, i.e. with a continuous map Gx → PUhom(H). We require

P(H) to be a stable Gx projective bundle in the following sense: the map

Gx → PUhom(H) defines a Z/2-grading ε on Gx by composing with the Z/2-

grading of PUhom(H) and a central extension Gτ
x via pullback

T

��

T

��
Gτ
x

//

��

Uhom(H)

��
Gx

// PUhom(H)

A (τ, ε)-twisted representation of Gx is a representation of Gτ
x on a Z/2-graded

vector space such that the central T acts by its defining representation and

g ∈ Gτ
x acts by even (odd) homomorphisms if ε(g) = 0 (ε(g) = 1). The Gx

projective bundle P(H) is called stable if for any (τ, ε)-projective representation

V , there is a unitary embedding V → H of Gτ
x representations. Given such

projective bundle P , we form bundles of Fredholm operators Fred
(n)
G−cts(P ) via

the associated bundle construction and define

Kn+P := π0Γ(X,Fred
(n)
G−cts(P ))G
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Consider the simplest case where X = ∗ is a point. Then as above, a

twisting gives rise to a central extension

1→ T→ Gτ → G→ 1

and a Z/2-grading ε : G→ Z/2. In fact, the category of G-equivariant twist-

ings of a point is equivalent to the category of Z/2-graded central extensions

of G as above. The isomorphism classes of the latter are given by the set

H1(BG,Z/2)×H3(BG,Z).

The component in H1 comes from the grading. The component in H3 comes

from the fact that central extensions are classified by the sheaf cohomology

H2(BG,T) where T is the sheaf of continuous functions into T. The isomor-

phism H2(BG,T) ∼= H3(BG,Z) is a map in the long exact sequence corre-

sponding to the short exact sequences 0 → Z → R → T → 0. It is an

isomorphism because the sheaf of continuous maps into R is fine.

There is an interpretation of the twisted K-theory group K(τ,ε)(∗) in

terms of finite dimensional twisted representations. Denote representations

of Gτ on which the central T acts by its defining representation by τ -twisted

representations of G. Similarly, let (τ, ε)-twisted representations of G be the

τ -twisted representation of G on a super vector space such that g ∈ Gτ pre-

serves the grading if ε(g) = 0 and reverses it otherwise. Let Rep(τ,ε)(G) be the

monoid of isomorphism classes of (τ, ε)-twisted representations of G and let

Triv(τ,ε)(G) ⊂ Rep(τ,ε)(G) be the submonoid generated by super representa-

tions for which there exists an odd automorphism super commuting with the
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action of Gτ . Then

K(τ,ε)(∗) = Rep(τ,ε)(G)/Triv(τ,ε)(G).

This is how twisted K-theory is defined in [FM13, Section 7]. If ε is trivial

and V = V 0 ⊕ V 1 is a (τ, ε)-twisted representation, then Gτ preserves V 0 and

V 1. In that case, K(τ,0) is the Grothendieck group completion of the monoid

of τ -twisted representations of G and V = V 0 ⊕ V 1 corresponds to the formal

difference V 0 − V 1.

The isomorphism classes of twistings on a general G-space X are shown

by Atiyah and Segal ([AS04, Proposition 6.3]) to coincide with the Borel equiv-

ariant cohomology of X. Let XG := X×GEG be the Borel construction where

EG is the total space of the universal principal G-bundle. Then

H1(XG,Z/2)×H3(XG,Z)

is the set of isomorphism classes of G-equivariant twistings on X. As an

abelian group, it is again an extension of H1(XG,Z/2) by H3(XG,Z) with

the 2-cocycle given by (a, b) 7→ β(a ^ b). The π0 of the automorphisms of a

twisting is given by H0(XG,Z/2)×H2(XG,Z).

2.3 K-theory Twistings of Stacks

Let G be a topological group, S be a G-space and H C G be a closed

normal subgroup which acts freely on S. Then KG(X) ∼= KG/H(S/H). In

fact, the category of G-equivariant vector bundles on S is equivalent to the
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category of G/H-equivariant vector bundles on S/H. This suggests that K-

theory and its twisted variants can be defined on objects which are locally

built out of spaces with group actions where a space S with a G action as

above is equivalent in an appropriate sense to the space S/H with the action

of G/H. Such objects are topological stacks ([Noo05]), but we will refrain

from giving a precise definition of those. Instead, we will define topological

groupoids, which present topological stacks, as well as the equivalence rela-

tion identifying groupoids presenting equivalent stacks. This section mostly

presents constructions of [FHT11a].

Definition 2.3.1. A topological groupoid X is a groupoid internal to the

category of topological spaces. In particular, it consists of a space X0 of

objects, a space X1 of morphisms and continuous maps

s, t : X1 → X0

◦ : X1 ×
X0

X1 → X1

ι : X0 → X1

satisfying the standard groupoid relations. Here, s, t are the source and target

maps, ◦ is the composition, and ι is the map specifying the identity morphisms.

Definition 2.3.2. Let G be a topological group and S be a right G-space.

Denote by S//G the topological groupoid given by the following data:

X0 = S

s(z, g) = z

(z.g1, g2) ◦ (z, g1) = (z, g1g2)

X1 = S ×G

t(z, g) = z.g

ι(z) = (z, e)
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where z ∈ S, g, g1, g2 ∈ G and e ∈ G is the identity element. The groupoids

of the form S//G are called quotient groupoids.

Definition 2.3.3. A local equivalence of topological groupoids is a continuous

functor X → Y which is an equivalence of groupoids (when the topology on

objects and morphisms is ignored) such that for every object y ∈ Y0, there

exists an open set U ⊂ Y0 containing y and a lift U 99K X̃0 in the following

diagram

X̃0
//

��
y

X0

��
Y1

t //

s

��

Y0

U //

GG

Y0

Groupoids X, Y are called weakly equivalent if there is a zig-zag diagram of

local equivalences between X and Y .

A topological groupoid X defines a topological stack by the sheafifica-

tion of the prestack U 7→ U(X) where U is a topological space, and U(X) is the

groupoid whose objects are continuous maps U → X0 and whose morphisms

are continuous maps U → X1. A local equivalence of topological groupoids de-

fines an equivalence of the corresponding topological stacks and hence weakly

equivalent groupoid represent equivalent topological stacks.

Example 2.3.4. Let S be a topological space and let U = {Ui}i∈I be an

open cover of S. There is a groupoid SU whose space of objects is the disjoint

union of the open sets Ui and such for si ∈ Ui, sj ∈ Uj, the set of morphisms
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SU(si, sj) consists of one element if si, sj correspond to the same point of S

and empty otherwise. To summarize

(SU)0 =
∐
i∈I

Ui (SU)1 =
∐

i,j∈I×I

Ui ∩ Uj

The groupoid SU is locally equivalent to S but it is not equivalent to S as a

topological groupoid.

Definition 2.3.5. The coarse moduli space [X] of a topological groupoid X

is the quotient X0/ ∼ where x1 ∼ x2 if there exists a morphism from x0 to x1.

For U ⊂ [X] denote by X
∣∣
U

the full subgroupoid of X consisting of objects

whose equivalence class lies in U .

Definition 2.3.6. A topological groupoid X is a local quotient groupoid if

its coarse moduli space [X] admits a countable cover by open sets U such

that X
∣∣
U

is weakly equivalent to a global quotient groupoid S//G where S is

Hausdorff and G is a compact Lie group.

Given a local quotient groupoid X, we will define a Picard 2-groupoid

Twist(X) such that for τ ∈ Twist(X), an abelian group Kτ (X) is defined. A

map φ : X → Y will define the pull-back functor Twist(Y )
φ∗−→ Twist(X) and

the pull-back map Kτ (Y )
φ∗−→ Kφ∗τ (X). If φ is a local equivalence, the the

pull-backs are isomorphisms. It is in this sense that the twisted K-theory of

topological stacks is defined.

Definition 2.3.7. A T-bundle over a groupoid X is a principal T-bundle η →

X0 with an isomorphism s∗η
∼−→ t∗η over X1 satisfying the obvious associativity

condition on X1 ×
X0

X1.

25



Definition 2.3.8. A grading of a groupoid X is a functor ε : X → Z/2 into the

symmetric monoidal category Z/2 with 2 objects and trivial isotropy groups.

Definition 2.3.9. A Z/2-graded T-bundle over a groupoid X is a pair (η, ε)

of a T-bundle and a Z/2-grading of X.

The Z/2-graded T-bundles form a symmetric monoidal category. The

space of morphisms hom ((η1, ε1), (η2, ε2)) is empty unless ε1 = ε2, in which

case it is the space of T-bundle maps η1 → η2. The monoidal product is

(η1, ε1)⊗ (η2, ε2) = (η1 ⊗ η2, ε1 + ε2)

and the symmetry natural transformation is

(a⊗ b) 7→ (−1)ε1(x)ε2(x)(b⊗ a)

over a point x ∈ X0. The category of Z/2-graded T-bundles is equivalent to

the category of Hermitian super line bundles. We will sometimes use the two

notions interchangeably.

Definition 2.3.10. A graded T-central extension of a groupoid X is a Z/2-

graded T-bundle L over X1 along with an isomorphism

π∗1L⊗ π∗2L→ ◦∗L

over X1 ×
X0

X1 satisfying the obvious cocycle condition.

To spell out the details, a Z/2-graded central extension L assigns a Z/2-

graded T-torsor Lf to every morphism f ∈ X1 and to every pair of composable
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morphisms f, g it assigns an isomorphism

Lg ⊗ Lf → Lg◦f

The cocycle condition is that for three composable morphisms f, g, h, the fol-

lowing diagram commutes

Lh ⊗ Lg ⊗ Lf //

��

Lh ⊗ Lg◦f

��
Lh◦g ⊗ Lf // Lh◦g◦f

Equivalently, a Z/2-graded T-central extensions L of X can be given by a

grading ε : X → ∗//Z/2 and the groupoid X̃ = (X,L) whose space of objects

is that of X and whose space of morphisms is a T-bundle over that of X. The

structure maps of L define the groupoid structure maps of X̃. There is an

obvious morphism X̃ → X whose fibers are ∗//T which is the motivation for

the name ”T-central extension”.

The collection of Z/2-graded T-central extensions of a groupoid X

forms a symmetric monoidal 2-groupoid Ext(X). The groupoid of morphisms

Ext(X)(L1, L2) consists of Z/2-graded T-bundles η over X0 equipped with an

isomorphism t∗η⊗L1 ∼= L2⊗ s∗η over X1, i.e., for a morphism f ∈ X(a, b) an

isomorphism

ηb ⊗ L1
f → L2

f ⊗ ηa

which moreover satisfy the cocycle condition
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ηc ⊗ L1
g ⊗ L1

f
//

��
	

L2
g ⊗ ηb ⊗ L1

f
// L2
g ⊗ L2

f ⊗ ηa

��
ηc ⊗ L1

g◦f
// L2
g◦f ⊗ ηa

The morphisms η → η′ are maps of Z/2-graded T-bundles over X0 satisfying

ηb ⊗ L1
f

//

��
	

L2
f ⊗ ηa

��
η′b ⊗ L1

f
// L2
f ⊗ η′a

When L1 = L2 = L, the structure maps ηb⊗Lf → Lf⊗ηa ∼= ηa⊗Lf give η the

structure of a Z/2-graded T-bundle over X. In other words the automorphism

groupoid of any Z/2-graded T-central extension is equivalent to the groupoid

of Z/2-graded T-bundles over X.

The monoidal structure on Ext(X) is the following: the underlying Z/2-

graded T-bundle of L1 ⊗ L2 over X1 is the tensor product of the underlying

Z/2-graded T-bundles of L1 and L2. The structure maps are(
L1
g ⊗ L2

g

)
⊗
(
L1
f ⊗ L2

f

)
→ L1

g ⊗ L1
f ⊗ L2

g ⊗ L2
f → L1

g◦f ⊗ L2
g◦f

Note that the definition uses the symmetric monoidal structure of Z/2-graded

T-bundles L2
g⊗L1

f
∼= L1

f⊗L2
g where the Koszul sign rule is used. In particular,

if L1, L2 are given by trivial T-bundles with trivial structure maps but non-

trivial grading, the structure maps of L1 ⊗ L2 might be non-trivial.

We are now ready to define K-Theory twistings of local quotient

groupoids. In this presentation we will include the degree of K-theory as

part of the twisting.
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Definition 2.3.11. For X a local quotient groupoid, let Twist(X) be the

groupoid whose objects are triples (P,L, n) where P → X is a local equiv-

alence, L is a Z/2-graded T-central extensions of P and n : X → Z/2 is a

functor to the Picard groupoid Z/2 consisting of 2 elements and no non-trivial

automorphisms. Morphisms between (P1, L
1, n1) and (P2, L

2, n2) exist only if

n1 = n2, in which case they are given by (P, p, η) where p is a local equivalence

P

p

��
P1 P1 ×

X
P2

π1oo π2 // P2

and η is a morphism between p∗π∗1L
1 and p∗π∗2L

2 on P . Similarly the mor-

phisms between (P, p, η) and (P ′, p′, η′) are given by morphisms from η to η′

pulled back to some locally equivalent space Q

Example 2.3.12. Let S be a space and let U be an open cover. Let Lij be a

Z/2-graded T-gerbe on S given by Z/2-graded T-bundles over double intersec-

tions Ui,j along isomorphisms λi,j,k : Li,j ⊗Lj,k → Li,k over triple intersections

satisfying the obvious cocycle condition on quadruple intersections. Then L

defines a Z/2-graded T-central extension on SU (defined in Example 2.3.4 and

locally equivalent to S). For any locally constant map n : S → Z/2, we get a

twisting (SU , L, n). It corresponds to the twisting by a Z/2-graded T-gerbe of

Section 2.1

Let |X| denote the classifying space of X, i.e., the geometric realization

of the nerve of X. It is shown in [FHT11a, Proposition 2.22] that if the
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restriction maps H3(|X|,Z) → H3(X0,Z) and H1(|X|,Z/2) → H1(X0,Z/2)

vanish then Twist(X) is equivalent to Ext′(X) := Ext(X)× hom(X,Z/2). In

that case, any twisting is isomorphic to one given by a Z/2-graded central

extension of X, i.e., without a need for a locally equivalent groupoid P . In

particular, given two elements in Twist(X), we may assume they are given by

extension over the same locally equivalent groupoid P .

Definition 2.3.13. The groupoid Twist(X) is symmetric monoidal. The

monoidal structure is

(P,L1, n1)⊗ (P,L2, n2) = (P,L1 ⊗ L2, n1 + n2).

The symmetry transformation is given by a Z/2-graded bundle η over P0 which

is trivial as a T-bundle, has grading (−1)n1n2 and structure maps

η ⊗ L1
f ⊗ L2

f → L1
f ⊗ L2

f ⊗ η → L2
f ⊗ L1

f ⊗ η

given by the symmetric monoidal structure of Z/2-graded T-bundles.

The isomorphism classes of twistings of a groupoid X are given by

([FHT11a, Corollary 2.25])

H0(X,Z/2)×H1(X,Z/2)×H3(X,Z)

as a set4. As an abelian group, it is an extension of H0(X,Z/2)⊕H1(X,Z/2)

by H3(X,Z) with the 2-cocycle given by β(∗^ ∗). The argument is the same

as we saw in Section 2.1.

4We use the Borel cohomology of topological groupoids throughout, i.e., H∗(X) :=
H∗(|X|)

30



Example 2.3.14. Let V → X be a vector bundle on X. Let B → X be the

bundle of frames of V ; it is a principal O(k)-bundle. There is a local equiva-

lence P = B//O(k)→ X and a Z/2-graded central extensions B//Pinc(k)→ P

(grading of the central extension is given by the component in O(k)). Let the

degree n : X → {0, 1} be the dimension of V mod 2. Denote the resulting

twisting by ρ(V ). Its equivalence class is given by

(dimV, ω1(V ), β(ω2(V ))) ∈ H0(X,Z/2)×H1(X,Z/2)×H3(X,Z)

Consider the category Twist(∗). It is a topological symmetric monoidal

2-groupoid with π0 = Z/2, π1 = Z/2, π2 = T. The classifying space of a sym-

metric monoidal category can be endowed with a structure of an infinite loop

space, or equivalently, a connective spectrum, as described by Segal in [Seg74].

More generally, stable homotopy hypothesis says that Picard n-groupoids cor-

respond to stable n-types, i.e., spectra with non-trivial homotopy groups in

degrees 0 through n.5 As an ∞-groupoid, Twist(∗) is a Picard 3-groupoid

(the homotopy type of its 2-morphisms T is BZ) and therefore, corresponds

to a 3-truncated connective spectrum.

Definition 2.3.15. Let |Twist| be the spectrum corresponding under the

stable homotopy hypothesis to Twist(∗).

5See [JO12, GJO17] for a careful discussion of the cases n = 1, 2.
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The homotopy groups of |Twist| are

π0|Twist| = Z/2

π1|Twist| = Z/2

π3|Twist| = Z

and the correspondence of the homotopy hypothesis says Twist(∗) =

π≤∞|Twist|.

The spectrum |Twist| defines a Borel type generalized cohomology the-

ory of stacks by

Twistn(X) = [|X|,Σn|Twist|]

Claim 2.3.16. For X a locally quotient groupoid, the Picard groupoid

Twist(X) is equivalent to π≤∞Map(|X|, |Twist|). In particular, the isomor-

phism classes in Twist(X) are given by Twist0(X) and isomorphism classes

of automorphisms of any class are given by Twist−1(X).

We will not use the full strength of this claim and therefore will not

prove it here. The special cases when X is a space or when X is a quotient

groupoid follows from the discussion in Section 2.1. The general case should

follow from the fact that the sheaf Twist satisfies the descent condition. It also

follows from this that Twist is invariant under homotopy in the sense that if

h is a homotopy between f, g : X → Y , then it induces a natural isomorphism

between f ∗, g∗ : Twist(Y )→ Twist(X).

In our computation of Kτ
G(G), will use the definition of τ in [FHT10]

which relies heavily on the structure of |Twist|. We therefore analyze its struc-
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ture. Let ko be connective spectrum associated to the symmetric monoidal

category V ectR of real finite-dimensoinal vector spaces via Segal delooping

construction [Seg74] and let k̃o be its connected cover. The tensor product

of vector spaces provides a second monoidal structure on V ectR and endows

ko with a structure of a ring spectrum. Segal shows in [Seg77] that ko is the

connective cover of the real K-theory spectrum KO.

Proposition 2.3.17. The spectrum |Twist| is isomorphic to 〈Σ−1k̃o〉3, where

k̃o is the connected cover of KO and 〈〉n denotes the n-th Postnikov section.

Proof. The homotopy groups of |Twist| agree with those of 〈Σ−1k̃o〉3 so it

suffices to check that they have the same k-invariants. Consider the Postnikov

tower for |Twist|

Σ3HZ γ // |Twist|

��
Σ1HZ/2 i // T

j //

��

Σ4HZ

HZ/2 //k // Σ2HZ/2

We claim that

j ◦ i = β ◦ Sq2

k = Sq2

where HA is the Eilenberg-Maclane spectrum of an abelian group A. A

map HZ/2 → Σ2HZ/2 corresponds to a degree 2 stable cohomology oper-

ation on Z/2 cohomology. These are known to coincide with the Steenrod
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square operations and Sq2 is the only non-zero operation of degree 2. Any sta-

ble operation HZ/2 → Σ3HZ factors through the Bockstein homomorphism

Σ2HZ/2→ Σ3HZ and therefore β ◦ Sq2 is also the only non-zero map in the

specified degrees. It therefore suffices to show that these maps are not zero.

The spectrum T corresponds to the 1-Picard groupoid which is 1-truncation

of Twist(∗). The k-invariant of this Picard groupoid is non-zero. Indeed the

symmetry transformation of 1⊗1 ∼= 0, where 1 ∈ Twist(∗) corresponds to the

trivial twisting in degree 1, is given by the non-identity automorphism of 0.

This implies that the map k is non-zero. To see that j ◦ i 6= 0 note that the

pull-back of |Twist| by the map i is the subgroup of twistings of degree 0. As

noted in Section 2.1, the group of isomorphism classes of such twistings over a

space S is the non-trivial extensions of H1(S,Z/2) by H3(S,Z). This implies

that j ◦ i 6= 0 and hence equal to β(Sq2). These maps are also non-trivial for

〈k̃o〉3 but we will not prove it here.

Definition 2.3.18. There are maps of spectra

γ : Σ3HZ→ |Twist|

ρ : ko→ |Twist|

P : k̃o→ Σ1|Twist|

where ρ(V ) is as in Example 2.3.14 and P is the projection onto the third

Postnikov section. We will write V for ρ(V ) when it will not cause confusion.

The spectrum ko classifies virtual real vector bundles and k̃o classifies
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the virtual rank 0 bundles. There is a map

BO
δ−→ k̃o

which classifies the stable universal bundle over BO. More directly, we have

Ω∞k̃o ∼= BO and δ is the adjoint of this isomorphism.

The map γ becomes invertible after taking the smash product with

HQ. Consider the composition

k̃o ∧HQ P−→ Σ1|Twist| ∧HQ γ−1

−−→ Σ4HQ.

It is the projection to the 4-th Postnikov section of k̃o ∧HQ.

Proposition 2.3.19. The composition

BO
δ−→ k̃o ∧HQ P−→ Σ1|Twist| ∧HQ γ−1

−−→ Σ4HQ

is the class 1
2
p1 where p1 ∈ H4(BO,Z) is the first Pontryagin class.

Proof. It suffices to consider the 4-th Postnikov section of BO. Consider the

map from BSpin, the 4th level of the Whitehead tower for BO, to the 4th

Postnikov section 〈BO〉4. It factors through the homotopy fiber of the map

〈BO〉4 → 〈BO〉3 and it is well known that the corresponding map is 1
2
p1.

BSpin

��

1
2
p1 // K(Z, 4) // 〈BO〉4

��
〈BO〉3

BO

99

The result follows.
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Proposition 2.3.20. The map ρ is the composition

ko
η−→ Σ−1k̃o

Σ−1P−−−→ |Twist|

where η is the action of the non-trivial class in π1(S) and S is the sphere

spectrum.

Proof. The spectrum |Twist| is a module over ko coming from the action of

V ectR on Twist(∗) given by

Rm ⊗ (∗, L, n) = (∗, L⊗m, n ·m)

Since both maps in question are ko-module maps, it suffices to check that they

coincide on the unit element in ko. This is true since both maps send R to the

non-trivial element.

Corollary 2.3.21. The following maps are homotopic

ρ ◦ π ' η ◦ P

where π : k̃o→ ko is the cover map.

We defined the Borel type cohomology theory Twistn(X) for any topo-

logical groupoid as maps into the spectrum |Twist|. The machinery of stable

homotopy theory applies to define push-forward in this theory along |Twist|-

orientable maps. We will not discuss |Twist|-orientations and will only en-

counter push-forwards along stably framed maps.
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Proposition 2.3.22. Let τ be a twisting of S1×X and let τ0 = τ
∣∣
{∗}×X . The

homotopy around the circle induces an isomorphism class of automorphisms

of τ0. It is given by

π2∗(τ − π∗2τ0) ∈ Twist−1(X)

where π2 : S1×X → X and the push-forward is with respect to the trivialization

of the tangent bundle of S1.

Proof. The class τ − π∗2τ is trivialized over {∗} × X and therefore defines a

class in

Twist0
(
S1 ×X, {∗} ×X

) ∼= Twist0(Σ1X+) ∼= Twist−1(X)

which is the sought after class. The push-forward of this class along the inclu-

sion {0} ×X ↪→ S1 ×X where 0 6= ∗ with respect to the trivialization of TS1

is the class τ −π∗2τ0. Since the composition of inclusion followed by projection

back to {0} ×X is the identity map, the result follows by functoriality of the

push-forward map.

2.4 Twisted K-theory of Stacks

Let X be a local quotient groupoid and τ ∈ Twist(X). Freed, Hopkins,

and Teleman define twisted K-theory group

Kτ (X)

in [FHT11a, Section 3]. Their construction is analogous to that outlined in

Section 2.1. Here, we simply state the properties that the K-theory functor
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satisfies. Let Twist be the category whose objects are triples (X,A, τ) where

X is a local quotient groupoid, A is a subgroupoid and τ ∈ Twist(X). A

morphism from (X,A, τX) to (Y,B, τY ) is a continuous functor f : X → Y

which maps A to B and a morphism of twistings f ∗τY → τX . K-theory is a

contravariant homotopy functor

(X,A, τ) 7→ Kτ (X,A)

satisfying

1. There is a natural long exact sequence 6

Kτ (X,A) // Kτ (X) // Kτ (A)

��
Kτ+1(A)

OO

Kτ+1(X)oo Kτ+1(X,A)oo

2. For Z ⊂ A full subgroupoid whose closure belongs to the interior of A,

the map

Kτ (X,A)→ Kτ (X\Z,A\Z)

is an isomorphism

3. For (X,A, τ) =
∐

α(Xα, Aα, τα), there is a natural isomorphism

Kτ (X,A)→
∏
α

Kτα(Xα, Aα)

6Kτ (X) := Kτ (X, ∅)
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4. There is a bilinear pairing

Kτ1(X)⊗Kτ2(Y )→ Kπ∗1τ1+π∗2τ2(X × Y )

which when pulled back to the diagonal, gives a pairing

Kτ1(X)⊗Kτ2(X)→ Kτ1+τ2(X)

which is associative and commutative. 7

5. An automorphism η of a twisting τ corresponds to a Z/2-graded T-

bundle L and hence a class in K0(X). The pullback of Kτ (X) along

(id, η) is multiplication by L.

2.5 Mackey Decomposition

We give a brief treatment following [FHT11b, Sec. 5].8 Let

1→ T → N → W → 1

be a short exact sequence of compact Lie groups. Let Λ be the set if isomor-

phism classes of irreducible representations of T and fix a representation Vλ

for every class λ ∈ Λ. A representation E of N can then be decomposed as

E =
∑
λ∈Λ

HomT (Vλ, V )⊗ Vλ.

The vector spaces HomT (Vλ, V ) form a twisted W -equivariant vector bundle

over Λ. There is a family version of this statement:

7This uses the symmetric monoidal structure on Twist(X).
8We recommend [FM13, Sec. 9] for a thorough discussion of a simple case of this con-

struction.
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Lemma 2.5.1 ([FHT11b, Lemma 5.2]). Let N act on a compact Hausdorff

space X with T acting trivially and assume T is connected. Let τ be a twisting

of the groupoid X//N . Assume moreover that every x ∈ X has a closed N-

equivariant neighborhood equivariantly diffeomorphic to N ×Nx Sx where Nx is

the stabilizer of x and Sx is equivariantly contractible. This gives rise to the

following:

1. a N-equivariant family T τx of central extensions of T by T parametrized

by X.

2. a W -equivariant covering space p : Y → X whose fiber at x ∈ X is

identified with the set of isomorphism classes of irreducible T τx represen-

tations where the central T acts by its defining homomorphism.

3. a N-equivariant twisting PR over Y given by the projective bundle which

at point y ∈ Y is the T τp(y) projective representation of T labeled by y.

4. a class [R] ∈ KPR
N (Y )

5. a W -equivariant twisting τ ′ over Y and an isomorphism of N-equivariant

twistings τ ′ ∼= p∗τ − PR.

such that the composition

Kτ ′

W (Y )cpt → Kτ ′

N (Y )cpt
∼= Kp∗τ−PR

N (Y )cpt
⊗R−−→ Kp∗τ

N (Y )cpt
p∗−→ Kτ

N(X).

(2.5.2)

is an isomorphism
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The case when X is a point is elaborated upon in the example below.

The assumption on the neighborhoods ensures that locally, (2.5.2) reduces to

the case when X is a point and hence an isomorphism. The general case

follows by a Mayer-Vietoris argument.

Example 2.5.3. The simplest example is when X is a point and τ = 0. The

group K0
N(∗) is the group completion of the commutative monoid of finite-

dimensional representations of N . The main idea of this decomposition is that

a representation E of N decomposes under the action of T into its isotypical

components which are permuted by W . Let Λ be the set of isomorphism

classes of irreducible complex representations of T . It is the space we called Y

in Lemma 2.5.1. The group N acts on Λ by conjugating the action and T acts

trivially. The action therefore descends to an action of W . Fix an irreducible

representation (Vλ, ρVλ) for each λ ∈ Λ where ρVλ : T → Aut(Vλ). For n ∈ N

and a representation (V, ρV ) of T , let (V n, ρV n) be the representation of T

given by

ρV n(t) = ρV (ntn−1).

Consider the groupoid P whose set of objects is Λ and whose morphisms from

λ to β are pairs (n, φ) ∈ N×homT (V n
λ , Vβ) where homT is the space of unitary

intertwiners. The map of groupoids P → Λ//N defines the desired twisting

PR. The class [R] is given by the following tautological vector bundle R over

P : for λ ∈ Λ we let R|λ = Vλ and a morphism λ
(n,φ)−−−→ β of P lifts to the map

Vλ → Vβ given by φ where we recall that Vλ = V n
λ as vector spaces.
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The twisting τ ′ is given by the T-central extension of groupoids P ′ →

Λ//W where the morphisms of P ′ are equivalence classes of pairs (n, φ) where

n ∈ N and φ ∈ homT (Vβ, V
n
λ ) with equivalence given by

(n, φ) ∼ (tn, ρVλ(t) ◦ φ)

where t ∈ T . We denote the equivalent class of (n, φ) by [(n, φ)]. The iso-

morphism τ ′ ∼= −PR of N -equivariant twistings follows from the fact that

homT (V n
λ , Vβ) is naturally dual to homT (Vβ, V

n
λ ).

The sequence of maps (2.5.2) in this case takes the following form: sup-

pose a class in Kτ ′
W (Λ)cpt is given by a finite-dimensional compactly supported

vector bundle over P ′ i.e. a collection of vector spaces Eλ for λ ∈ Λ which are

zero for all but finitely many λ along with maps

λ[(n,φ)] : Eλ → Eλ.n

where [(n, φ)] is a morphism in P ′. The image of this class under (2.5.2) is the

representation E of N given by

E =
⊕
λ∈Λ

Eλ ⊗ Vλ.

The action of N is the following:

n : Eλ ⊗ Vλ
λ[(n,φ)]⊗φ−1

−−−−−−−→ Eλ.n ⊗ Vλ.n

where φ is any element in homT (Vλ.n, V
n
λ ).
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The inverse of this construction is more transparent. Given a represen-

tation E, we set Eλ = homT (Vλ, E) and

λ[(n,φ)] : Eλ → Eλ.n

f 7→ ρE(n)−1 ◦ f ◦ φ.

More generally, if τ ∈ Twist({∗}//N), then it corresponds to a T-central

extension N τ of N and a Z/2-grading ε : N → Z/2. The central extension N τ

restricts to a central extension T τ of T .

T

��

T

��
1 // T τ //

��

N τ //

��

W // 1

1 // T // N //W // 1

In this case, Λτ is the set of irreducible representations of T τ such that the

central T acts by its defining homomorphism. The twisting PR is given by the

central extension P → Λτ//N where the morphisms from λ to β are equivalence

classes of pairs (n, φ) where n ∈ N and φ ∈ homT τ (V
n
λ , Vβ) and the class

R ∈ KPR
W (Λτ ) is constructed in exactly the same way as in the untwisted case.

The twisting τ ′ is given by the central extension P ′ → Λτ//W where

the morphisms of P ′ from λ to β are equivalence classes of pairs (n, φ) where

n ∈ N τ and φ ∈ homT τ (Vβ, V
n
λ ) with equivalence given by

(n, φ) ∼ (tn, ρVλ(t) ◦ φ)
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for t ∈ T τ . The grading ε pulls back to give the grading of the twisting τ ′

since T is assumed connected.

Proposition 2.5.4. The K-theory group Kτ
N(∗) = Kτ ′

W (Λτ ) is a module for

KN(∗). Assume that T is abelian. Then there is a ”tensor product” map

Λ× Λτ µ−→ Λτ

and an isomorphism of twistings π∗1(τN)+π∗2(τ ′) ∼= µ∗(τ ′) such that the module

structure is given by the push-forward along the map µ, i.e., the following

diagram commutes.

KN(∗)⊗Kτ
N(∗) // Kτ

N(∗)

KτN
W (Λ)⊗Kτ ′

W (Λτ ) // K
π∗1(τN )+π∗2(τ ′)
W (Λ× Λτ )

µ∗ // Kτ ′
W (Λτ )

Proof. Since we assume that T is abelian, all (τ -twisted) irreducible repre-

sentations of T are 1-dimensional and hence their tensor product is again

irreducible. This determines the map µ : Λ× Λτ → Λτ .

Since all irreducible representations of T are 1-dimensional, we can

choose an isomorphism Vλ = C for every λ. The spaces of homomorphisms are

then trivialized: homT τ (Vλ.n, V
n
λ ) = T. With this trivialization, the twisting

π∗1(τN) + π∗2(τ ′) is given by the central extension Q → Λ × Λτ//W where the

morphisms of Q from (λ, ξ) to (λ.w, ξ.w) are the equivalence classes of triples

(n, x1, x2) ∈ N τ × T× T with equivalence given by

(n, x1, x2) ∼ (n, x1y, y
−1x2)

(n, x1, x2) ∼ (tn, ρVλ(π(t))x1, ρVξ(t)x2)
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for y ∈ T, t ∈ T τ and π : T τ → T . The twisting µ∗τ ′ is given by the central

extension Q′ whose morphisms from (λ, ξ) to (λ.w, ξ.w) are pairs (n, x) ∈

N τ × T with equivalence

(n, x) (tn, ρµ(λ,ξ)(t)x).

The desired isomorphism π∗1(τN) + π∗2(τ ′) ∼= µ∗(τ ′) is then the map from Q

to Q′ that maps the equivalence class of (n, x1, x2) to the equivalence class of

(n, x1x2). The map is well defined since ρVµ(λ,ξ) = ρVλρVµ . It is now a matter of

tracing definitions to see that the diagram in the statement of the proposition

commutes.
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Chapter 3

Twisting τl and a 2-D TQFT

In this section, we review the construction of the 2-dimensional oriented

topological quantum field theory over Z defined in [FHT10]. The construc-

tion is analogous to string topology but using K-Theory instead of singular

homology and the stack of flat principal G-bundles instead of the mapping

space.

3.1 Construction of the TQFT

Let BordSO2 be the symmetric monoidal category whose objects are

compact oriented 1-manifolds and whose morphisms are oriented bordisms.

The monoidal structure is given by disjoint union. An oriented 2-d TQFT is

a symmetric monoidal functor F : BordSO2 → C for some symmetric monoidal

category C ([Ati88a]). One usually takes C to be the category of vector spaces

over C with the tensor product as the monoidal structure. Here we take

C = Z−mod with the tensor product.

Fix a compact Lie group G. For M a compact oriented manifold (pos-

sibly with boundary), let MM denote the stack of flat G connections on M .

For X a two dimensional manifold with boundary Y0

∐
Y1, i.e. for a morphism
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X : Y0 → Y1 in the category BordSO2 , there are restriction maps

MX

s

{{

t

##
MY0 MY1

. (3.1.1)

We would like to define a TQFT by

Y 7→ K∗(MY )

(Y0
X−→ Y1) 7→ t∗ ◦ s∗ : K∗(MY0)→ K∗(MY1),

but the pushforward map t∗ : K∗(MX)→ K∗(MY1) requires a K-orientation

of the relative tangent bundle of t, which in general is not K-orientable. This

demonstrates the need to introduce a twisting to the definition. The extra

data we need is the following: for every one dimensional manifold Y , we need

a K-twisting τY of MY and for every bordism X : Y0 → Y1 we need an

isomorphism of twistings s∗τY0
∼= t∗τY1 + (TMX − TMMY1

). In that case we

can define

F (Y ) = KτY (MY )

F (Y0
X−→ Y1) = t∗ ◦ s∗ : KτY0 (MY0)→ KτY1 (MY1).

In [FHT10], the authors describe the space of such functorial assignments

Y 7→ τY along with necessary isomorphisms of twistings onMX in a way that

makes F into a symmetric monoidal functor. We summarize their construction

in the next section.
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3.2 Universal Orientations

Let MTSOn denote the Madsen-Tillmann spectrum of SOn.1 For E an

oriented n-dimensional vector bundle over a compact manifold X, there is a

map of spectra X−E →MTSOn induced by a classifying map X → BSOn of

E. There is a natural map Σ−1MTSOn−1 → MTSOn given by stabilization.

Consider a family of flat G-connections over a closed oriented 2-manifold X,

parametrized by a manifold M . In other words, a G-bundle P →M×X with a

smoothly varying flat connection over fibers of the projection π : M×X →M .

This defines a classifying map f : M →MX of the family. The product of the

classifying map M ×X → BG of P and X−TX →MTSO2, induces a map

M+ ∧X−TX →MTSO2 ∧BG

where M+ is the space M with a disjoint base point. There is a map M+ →

M+ ∧ X−TX given by embedding X in a sphere and applying Pontryagin-

Thom collapse map as in the definition of push-forward maps in generalized

cohomology. In [FHT10], a map

σuniv : (MTSO2,Σ
−1MTSO1) ∧BG→ |Twist|

is constructed such that the twisting given by the composition

M+ ∧X−TX //MTSO2 ∧BG
q // (MTSO2,Σ

−1MTSO1) ∧BG
σuniv
��

M+

OO

|Twist|

1As a pre-spectrum, it is given by the sequence of Thom spaces {Gr+n (Rk)Qk−n}k>n
where Gr+n denotes the Grassmannian of oriented n-planes and Qk−n is the quotient of the
trivial Rk-bundle by the tautological vector bundle.
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is isomorphic to the twisting by the reduced2 tangent bundle of MX pulled

back to M along f . If X has non-empty boundary, an analogous construction

gives a map M+ → (MTSO2,Σ
−1MTSO1) ∧BG which when composed with

σuniv is the twisting by the reduced relative tangent bundle of the restriction

map MX
t−→M∂X pulled back to M by f ([FHT10, Lemma 3.19].

Consider the following diagram:

M∂X+ f∂X

++
MTSO2 ∧BG

q // (MTSO2,Σ
−1MTSO1) ∧BG r //

σuniv

��

MTSO1 ∧BG

−λ

yy

MX+
fX

66
t

OO

|Twist|
(3.2.1)

The mapsMX+
fX−→ (MTSO2,Σ

−1MTSO1)∧BG andM∂X+
f∂X−−→MTSO1∧

BG are the classifying maps as described above, written globally on the stacks.

The horizontal maps form a cofiber sequence and the diagram consisting of

solid arrows commutes.

Definition 3.2.2. A universal twisting is a map λ : MTSO1∧BG→ |Twist|.

A universal orientation is a universal twisting λ along with a homotopy from

σuniv to (−λ) ◦ r. 3

2For a vector bundle V , the reduced bundle is the difference V − RdimV

3The terminology is inconsistent with [FHT10] where they refer to the map λ as the
level. We reserve the term level for a class in H4(BG,Z).
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A universal orientation gives us the functorial assignment of K-

twistings we wanted. To a 1-manifold Y we assign the twisting

τY := b dimG+ λ ◦ fY

of MY where b is the number of connected components in Y .4 Let X be

a 2-manifold with ∂X = Y , and t : MX → MY the restriction map. The

universal orientation gives rise to an isomorphism

t∗τY ∼= −(TMX − TMY )

where the right hand side is the twisting determined by the virtual vector

bundle. Therefore, there is a pushforward map

t∗ : K0(MX)→ KτY (MY ).

In [FHT10], it is also shown that for Y = Y0

⊔
Y1, if we view X as a bordism

X : Y0 → Y1, an analogous construction gives rise to a pull-push map

KτY0 (MY0)
s∗−→ Ks∗τY0 (MX)

t∗−→ KτY1 (MY0)

where s, t are as in diagram (3.1.1). In summary, a universal orientation allows

us to define a TQFT5 F : BordSO2 → Z−mod where

F (Y ) = KτY (MY ).

4The extra degree shift is necessary since σuniv ◦ q ◦ fY is the twisting by the reduced
relative tangent bundle. The bdimG term is the dimension of this bundle.

5Functoriality is verified in [FHT10].
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3.3 Canonical Universal Orientation and Level

It turns out that there is a canonically defined universal orientation hG

for any G which is constructed in [FHT10, Theorem 3.24]. The corresponding

universal twisting is given by the map

MTSO1 ∧BG = Σ−1BG
g−→ Σ−1BO

δ−→ Σ−1k̃o
P−→ |Twist|

where P is as in Definition 2.3.18, and δ classifies the stable universal bundle

over BO. We have also used that MTSO1 is isomorphic to the (-1)-suspended

sphere spectrum Σ−1S

Up to homotopy, a universal orientation is equivalent to a null-

homotopy of σuniv ◦ q in (3.2.1). Therefore, homotopy equivalence classes

of universal orientations form a torsor for

O(G) := [ΣMTSO2 ∧BG, |Twist|].

The canonical universal orientation allows us to identify this torsor with O(G)

itself. A class l ∈ H4(BG,Z) is called a level and is the input data for a

3-dimensional Chern-Simons theory. At least formally, the dimensional reduc-

tion of the Chern-Simons theory for a fixed level l is the 2-dimensional TQFT

constructed in the previous section with the universal orientation being the

canonical one shifted by the image of l under the map H4(BG,Z) → O(G)

which we now describe.

The spectrum |Twist| is connective and its non-negative homotopy

groups are Z/2,Z/2, 0,Z, 0, . . . (it is 3-truncated). The spectrum ΣMTSO2 is
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(−2)-connected with π−1 = Z which implies that Map(ΣMTSO2, |Twist|) is

4-truncated with π4 = Z, i.e. its 3-connected cover is the suspended Eilenberg

MacLane spectrum Σ4HZ. We thus get a map

H4(BG,Z) = [BG,Σ4HZ]→ [BG,Map(ΣMTSO2, |Twist|)] = O(G).

Translating a universal orientation by a class in H4(BG,Z) via the above map,

translates the universal twisting via analogously constructed map

H4(BG,Z)→ [BG,Map(MTSO1, |Twist|)].

Invoking the isomorphism MTSO1
∼= Σ−1S, the above map is γ of Defini-

tion 2.3.18.

Given a class l ∈ H4(BG,Z), the universal twisting corresponding the

the canonical universal orientation shifted by l is #π0(Y ) ·dimG plus the sum

of the top and bottom rows in the following diagram.

K(Z, 3)
γ

&&
MY+ ∧ (Y )−TY

fY // S−1 ∧BG

l
77

g

''

|Twist|

MY+

OO

S−1 ∧BO δ // Σ−1k̃o

P

OO

(3.3.1)

We now specialize to Y = S1. The stack MS1 is represented by the

global quotient groupoid G//G where the action is by conjugation. The clas-

sifying space of G//G is LBG, the loop space of BG, which could be seen

by realizing G ' ΩBG as H-spaces and verifying the homotopy equivalence
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LBG ' ΩBG ×ΩBG PBG where PBG is the contractible space of paths on

BG.

The map

Σ−1(MS1
+
∧ S1

+) =MS1
+
∧ (S1)−R

fS1−−→ S−1 ∧BG

is the (-1)-suspension of the evaluation map LBG× S1 e−→ BG.

Definition 3.3.2. For E any generalized cohomology theory, denote by tg :

E∗(BG)→ E∗−1(LBG) the composition π1∗ ◦ ev∗ in the following diagram

LBG× S1

π1
��

ev // BG

LBG

The push-forward is with respect to the stable framing coming from trivial-

ization of the tangent space of S1.

For any space X, the push-forward along the projection map X ×

S1 π1−→ X with respect to the trivialization of the tangent bundle of S1 is the

precomposition with the map X+ → X+ ∧ S1−R ∼= Σ−1(X+ ∧ S1
+). Hence, the

twistings in (3.3.1) are given by the transgression of γ ◦ l and g ◦ δ ◦ P .

Definition 3.3.3. For l ∈ H4(BG,Z) denote by τl ∈ Twist(G//G) the twisting

τl := dimG+ tg(γ(l)) + hG

where

hG = tg(P (g))

and P is defined in Definition 2.3.18.
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The twisting τl is the universal twisting corresponding the canonical

universal orientation shifted by l ∈ H4(BG,Z) on MS1 .
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Chapter 4

Compact Lie Group Theory

In this section we collect the notation, conventions, and lemmas that

have to do with the theory of compact Lie groups.

4.1 Connected Lie Groups

Let G1 be a connected semi-simple compact Lie group, g its Lie algebra,

and T ⊂ G1 a maximal torus with Lie algebra t ⊂ g. Let Π ⊂ t be the kernel

of exp(2π·) and Λ ⊂ t∗ be the Z dual of Π. The lattice Λ is identified with the

group of characters T → T via exp(t) 7→ ei〈λ,t〉 for λ ∈ Λ. The complexified

Lie algebra gC := g⊗ C decomposes under the adjoint action of T as a direct

sum gC = tC ⊕
⊕

α∈∆ gα where ∆ ⊂ Λ is the set of roots.

Let N1 := StabG1(T ) and W1 := N1/T be the Weyl group. The hy-

perplanes ker(α) for α ∈ ∆ divide t into connected components called Weyl

chambers. The group W1 acts freely and transitively on the set of Weyl cham-

bers. Fix a Weyl chamber and let ∆+ be the set of roots which have positive

values on the fixed chamber. Let Φ ⊂ ∆+ be the set of simple roots, i.e. those

which cannot be written as a non-trivial linear combination of elements in ∆+.

The set Φ forms a basis for t∗.
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The Killing form 〈−,−〉 defines a Weyl invariant symmetric bilinear

forms on t and t∗ and hence a map b : t∗ → t. The coroots are defined by

hα := 2
〈α,α〉b(α). We have that hα ⊂ Π and Π/〈hα〉α∈∆

∼= π1(G1) where 〈hα〉α∈∆

is the sublattice spanned by hα. Define the Cartan matrix by Cαβ := 2 〈α,β〉〈α,α〉

where α, β ∈ Φ, and the Dynkin diagram by assigning a vertex to each simple

root, connecting vertices labeled by α, β by Cαβ · Cβα edges and orienting the

edges in the direction of the shorter root if Cαβ ·Cβα > 1. One can reconstruct

the Lie algebra up to isomorphism from the Cartan matrix or from the Dynkin

diagram. The outer automorphism group of the Lie algebra is isomorphic to

the group of automorphisms of the corresponding Dynkin diagram. We will

now study particular kind of automorphisms of the Lie algebra coming from

the automorphisms of the Dynkin diagram.

For each α ∈ Φ, choose Xα ∈ gα and Yα ∈ g−α such that hα =

−i[Xα, Yα]. Let χ be an automorphism of the Dynkin diagram. In partic-

ular it acts by a permutation of the simple coroots. Define an automorphism

of gC in the following way:

hα 7→ hχ(α)

Xα 7→ Xχ(α)

Yα 7→ Yχ(α).

The Lie algebra gC is generated by Xα, Yα, the only relations being Serre’s

relations. In particular, this defines an automorphism of gC. The real sub-

algebra g is generated by Xα + Yα, i (Xα − Yα) and hence preserved by χ. It
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may or may not lift to the Lie group G1; if G1 is simply-connected, then the

automorphism lifts to the group.

Definition 4.1.1. After having fixed G1, T,Φ, Xα, an automorphism χ of G1

is called a diagram automorphism if it preserves T and permutes Xα for α ∈ Φ.

Proposition 4.1.2. Let G1 be a simply-connected simple Lie group and χ ∈

Aut(G1) be a diagram automorphism. If 〈χ(α), α〉 = 0 for all α ∈ Φ such that

χ(α) 6= α, then Gχ
1 is simple and simply-connected. If G1 = SU(2k + 1) and

χ is the order 2 diagram automorphism, then Gχ
1
∼= SO(2k + 1).

Proof. Suppose 〈χ(α), α〉 = 0 for all α ∈ Φ such that χ(α) 6= α. Then a simple

computation shows that the coroot vectors of Gχ
1 are

∑
α∈Oj hα where Oj ⊂ Φ

are the orbits under χ. Let Π ⊂ Π be the sublattice fixed by χ. Since G1 is

simply connected, hα generate Π and it follows that the coroots of Gχ
1 generate

Π and hence Gχ
1 is simply connected.

The group G1 = SU(2k + 1) corresponds to the Dynkin diagram A2k.

The order 2 automorphism χ satisfies 〈χ(α), α〉 = 0 for all roots except those

corresponding to the middle two nodes β, χ(β) ∈ Φ of A2k. The coroots of

Gχ
1 are

∑
α∈Oj hα for Oj 6= {β, χ(β)} and 2(hβ + hχ(β)). It follows that the

quotient of Π by the sublattice generated by the coroots is Z/2 and therefore

π1(Gχ
1 ) = Z/2. Moreover, note that the coroot 2(Hβ +Hχ(β)) corresponds to a

short root and therefore Gχ
1 corresponds to the Dynkin diagram Bk. It follows

that Gχ
1
∼= SO(2k + 1).
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We now collect the results about the geometry of conjugacy classes that

we will use later on.

Proposition 4.1.3. [BtD95, Proposition IV.2.5] The quotient spaces G1/G1

and T/N1 with the action given by conjugation coincide.

In other words, the groupoids G1//G1 and T//N have homeomorphic

coarse moduli spaces. Additionally, the inclusion map T//N1
ι−→ G1//G1 is

representable. The fiber over a point t ∈ T is the quotient Gt
1/N

t
1. We will be

considering the push-forward map in K-theory along this map.

Definition 4.1.4. Let G be a compact Lie group. An element g ∈ G is called

regular if the connected component of the identity in Gg, the subgroup fixed

by conjugation by g, is a torus.

Proposition 4.1.5. [Bor61, Theorem. 3.4] Let G1 be a simply-connected

Lie group and χ be an automorphism of G1. Then the fixed subgroup Gχ
1 is

connected.

Proposition 4.1.6. Suppose G1 is simply connected. Then t ∈ T is regular if

and only if it is not fixed by any element of the Weyl group.

Proof. The fixed group Gt
1 is connected by Proposition 4.1.5 and its Weyl

group is isomorphic to the subgroup of W1 which fixes t. Since a connected

group is a torus if and only if its Weyl group is trivial, the result follows.
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4.2 Non-connected Lie Groups

Let G be a compact, but not necessarily connected Lie group whose

identity component G1 is semi-simple, and fix an element f ∈ G. We use the

superscript in e.g. Gf
1 to indicate the fixed subgroup under the conjugation

action of f . Introduce the following notation:

• T - a maximal torus of G1

• N = StabG(T )

• Π = ker(exp(2π·)) ⊂ t

• Λ ⊂ t∗ - the Z-dual of Π,

• W = N/T - the Weyl group of

G

• N1 = StabG1(T )

• W1 = N1/T , the Weyl group of

G1

• Waff = Π oW

• Waff 1 = Π oW1

• T - a maximal torus of Gf
1

• t - the Lie algebra of T

• G(f) = StabG(fG1)

• N = StabG(fT )

• W = N/T

• N1 = StabG1(fT )

• W 1 = N1/T ,

• W̃ = N f/T , the Weyl group of

Gf .

• W̃ 1 = N f
1/T , the Weyl group of

Gf
1 .

• Π = ker(exp(2π·)) ⊂ t

• Λ ⊂ t∗ - the Z-dual of Π,

• Waff = {(x, h) ∈ toW | h−1 · f · exp(2πx) · h = f},
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• Waff
1

= Waff ∩ (t×G1/T ).

• Π̃ = Waff ∩ t× (T/T ).

Proposition 4.2.1. [BtD95, Proposition IV.4.7] The quotient spaces

fG1/G(f) and fT/N coincide.

Proposition 4.2.2. Suppose G1 is simply connected. An element g ∈ fT is

regular if and only if it is not fixed by any element in W 1.

Proof. The proof is completely analogous to the proof of Proposition 4.1.6

after noting that the fixed subgroup of W 1 under conjugation by g is the Weyl

group of Gg
1.

Assume from now on that Ad(f) is a diagram automorphism of g and

that G1 is simply connected. In that case, we choose T to be the identity

component of T f , the fixed subset of T .

Lemma 4.2.3. If G1 is simply-connected, then

ZG1(T ) = T

where ZG1(T ) is the centralizer of T in G1.

Proof. Let ρ = 1
2

∑
α∈∆+ α be the Weyl vector. It is not fixed by any element

of the Weyl group of G1 but it is fixed by f . In particular, b(ρ) ∈ t where

b : t∗ → t is the map given by the Killing form. It follows that t is not fixed by

any simple reflection, and hence the identity component of ZG1(T ) is T . Since
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t is not fixed by any element of the Weyl group, ZG1(T ) is connected, since

the Weyl group of ZG1(T ) is the centralizer of t in W .

It follows from the above Lemma that an element normalizing T also

normalizes T . Hence N ⊂ N and there is a map

W̃ 1 ⊂ W 1 = N1/T → N1/T = W1 (4.2.4)

Proposition 4.2.5. If G1 is simply-connected, then the map (4.2.4) is injective

with the image equal to W f
1 .

Proof. The kernel of the map is T f/T and vanishes by Lemma 4.2.6 below.

The remaining statement is proved in [BFM99, Proposition 8.4.3].

Lemma 4.2.6. If G1 is simply connected, then

T f = T

Proof. The statement of the lemma is equivalent to the following statement

on the level of the Lie algebra: if x ∈ t such that (Adf (x)− x) ∈ Π, then

x ∈ Π + t. Suppose we are given such x. Since G1 is semisimple, the simple

coroot vectors hi form a basis for t. Let x =
∑k

i=1 aihi. Since we are assuming

Adf is a diagram automorphism, it permutes the simple coroot vectors, i.e.

given by an element σf ∈ Symk. We therefore have

Adf (x)− x =
k∑
i=1

(aσf (i) − ai)hi.
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Since G1 is simply connected, the simple coroot vectors generate the lattice Π.

It follows that the coefficients (aσf (i) − ai) are integers for all i. The subspace

t consists of elements
∑k

i=1 γihi such that γi = γj if i is in the σf orbit of j.

The element x−
∑k

i=1baichi therefore belongs to t.

Corollary 4.2.7. If G1 is simply connected, then there is a split short exact

sequences

1→ [T/T ]f → W 1 → W f
1 → 1.

Proof. The image of W 1 → W1 is certainly contained in W f
1 and by Propo-

sition 4.2.5 it is equal to it. The splitting is obtained by the composition

W f
1 → W̃ 1 ↪→ W 1 where the first map is the inverse of the map (4.2.4)

Corollary 4.2.8. Let G = G1 o F with F acting by diagram automorphisms

and G1 simply connected. Fix f ∈ F . We then have split short exact sequences

1→ [T/T ]f → W → W f
1 oH → 1 (4.2.9)

1→ Π̃→ Waff → W f
1 oH → 1 (4.2.10)

where H = StabF (f). Additionally, we have

W f
1 oH ∼= W̃
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Chapter 5

Computation of Kτ (G//G)

For G be a compact Lie group and τ a twisting of the groupoid G//G

where G acts on itself by conjugation, the twisted K-theory Kτ (G//G) has

been computed in [FHT11b, part III]. This section is mostly a summary of

their computation.

5.1 Local Induction Model

Let G be a compact group, T ⊂ G1 a maximal torus. Consider the

action groupoids g//G and t//N with the adjoint action. The fibers of the map

ι : t//N → g//G are compact manifolds and therefore we can push-forward and

pull-back K-theory classes along it. More directly, we have t//N ∼= t×N G//G

and the map

t×N G//G→ g//G

where [(x, g)] ∈ t ×N G is mapped to Adg−1x ∈ g. Note that the relative

tangent bundle is trivial.

Proposition 5.1.1. [FHT11b, Proposition 4.13] Let τ ∈ Twist(g//G) be a

twisting. The following composition is the identity map

Kτ
G(g)cpt

ι∗−→ Kτ
N(t)cpt

ι∗−→ Kτ
G(g)cpt
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Proof. This composition is the multiplication by the class ι∗(1) ∈ K0
G(g). The

restriction of ι∗(1) to any regular orbit O ⊂ g is 1 since ι is a diffeomorphism

at regular orbits. The intersections of kernels of restriction maps K0
G(g) →

K0
G(O) for all O vanishes. It follows that ι∗(1) = 1.

Claim 5.1.2. Consider the induction map

Kτ
N(t)cpt

ι∗−→ Kτ
G(g)cpt.

We have Kτ
N(t)cpt = Kτ ′−t

W (Λτ )cpt by Thom isomorphism. The push-forward

of a class supported on a W -orbit O of Λτ vanishes if W1 does not act freely

on O.

By functoriality of the push-forward map, the map in the statement of

the claim is given by the push-forward

Kτ−t
N (∗) = Kτ−t

G (N\G)
π∗−→ Kτ−g

G (∗).

This is the Dirac induction map studied in [Sle87, Lan00] and the statement

should follow from their work. We will not be using this claim to prove new

results.

5.2 Component of the Identity

Let G be a compact Lie group. We use the notation of Section 4.2. Let

τ ∈ Twist(G//G) where G acts on G by conjugation. For G non-connected, the

groupoid G//G is the disjoint union of groupoids corresponding to conjugacy
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classes of the group π0G. The K-theory group Kτ
G(G) is hence a direct sum of

terms corresponding to these conjugacy classes. In this subsection we analyze

the summand Kτ
G(G1).

We first consider the subgroupoid T//N which has the same coarse

moduli space as G1//G by Proposition 4.2.1.

The Mackey decomposition construction of Section 2.5 applied to T//N

gives rise to a W -equivariant covering space π : Y → T and a twisting τ ′ ∈

Twist(Y //W ) such that Kτ ′
W (Y )cpt

∼= Kτ
N(T ). Denote by Λτ the fiber over the

identity e ∈ T . It is the set of twisted representations of T , where the twisting

is the restriction of τ to {e}//T . In particular it is a W -equivariant torsor

for Λ. We have π1(T ) ∼= Π and the theory of covering spaces gives rise to a

W -equivariant Λ-affine group action of Π on Λτ .

Definition 5.2.1. The holonomy around T defines a W -equivariant homo-

morphism

κ : Π→ Λ

Definition 5.2.2. A twisting τ is called regular if the corresponding map

κ : Π→ Λ is injective.

If τ is a regular twisting, then Y is a union of affine t spaces. It is

moreover a W equivariant vector bundle over a finite number of points. We

locate the zero section of Y when viewed as a vector bundle.1

1Non-equivariantly, an affine space can be identified with the vector space by choosing a
point and declaring it to be the zero vector. When there is a group action, this point needs
to be a fixed point.
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The group Waff = Π o W acts on Λτ with π ∈ Π ⊂ Waff acting

by translation by κ(π). An element t ∈ t defines the following path in T :

s 7→ exp(s · t) for s ∈ [0, 2π]. For (λ, t) ∈ Λτ × t, denote by λ + t the parallel

transport of λ along the path defined by t. For π ∈ Π, we have λ+π = λ+κ(π).

Proposition 5.2.3. If τ is regular, then there exists a Waff -equivariant map

σ : Λτ → t.

If G1 is semi-simple, then σ is unique.

Proof. The space Λτ
R := Λτ ⊗ R is an affine space for t∗ with an equivariant

W action. Since W is a finite group, there exists a W fixed point λ0 of Λτ
R

which identifies it with t∗ by mapping λ0 to 0. The inverse of the R-extension

κR : t → t∗ then defines the desired map σ. If G1 is semi-simple, then there

is a unique W fixed point of t and therefore there is a unique W -equivariant

identification of Λτ
R with t∗.

A map σ as in Proposition 5.2.3 determines an injective map

σ′ : Λτ/κ(Π)→ Y

λ 7→ λ− σ(λ)

Viewing this map as the zero section, it expresses Y as a W -equivariant vector

bundle over Λτ/κ(Π) with constant fiber t. By Thom isomorphism we have

Kτ ′

W (Y )cpt
∼= Kσ′∗τ ′−t

W (Λτ/κ(Π)). (5.2.4)
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This implies that Kτ
N(T ) is generated by classes pushed-forward from individ-

ual N -orbits, namely from π(Im(σ′)).

Consider the inclusion map

w : T//N → G1//G.

The map w is the identity on the coarse moduli spaces. The fiber over a point

t ∈ T ⊂ G1 is Gt/N t. In particular, the map is a diffeomorphism over regular

elements of G. The relative tangent bundle of w is trivial, which allows us

to define the push-forward map in K-theory. Explicitly, it is computed by

expressing w as a morphism of global quotient groupoids. We have T//N ∼=

T ×N G//G where the action of N on T is by conjugation and on G by left

multiplication. The action of G on T ×N G is by right multiplication on G.

The map w is then

w : T ×N G//G→ G1//G

[t, g] 7→ g−1tg

We thus have maps

w∗ : Kτ
G(G1)→ Kτ

N(T )

w∗ : Kτ
N(T )→ Kτ

G(G1)

Proposition 5.2.5. [FHT11b, Theorem 7.9] If τ is a regular twisting then

w∗ ◦ w∗ : Kτ
G(G1)→ Kτ

G(G1) is the identity map.
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Proof. Fix a point t ∈ T and consider the following diagram:

gt//Gt x 7→t·exp(x) // G1//G

t//N t

ι

OO

// T//N

OO
.

Over a neighborhood of 0 ∈ gt, the horizontal maps in the above diagram

are local equivalences. The map ι∗ ◦ ι∗ is the identity map on K-theory by

Proposition 5.1.1. It follows that we can find a good cover of the moduli

space of G1//G such that restriction of w∗ ◦ w∗ to the open sets and their

intersections is the identity map. By the Mayer-Vietoris argument for K-

theory with compact supports, w∗ ◦ w∗ is an isomorphism. In particular, w∗

is surjective. If τ is a regular twisting, it follows from isomorphism (5.2.4)

that Kτ
N(T ) is generated by classes which are push-forwards from individual

N orbits. The composition w∗ ◦ w∗ on w∗ images of these classes is identity.

Since w∗ is surjective, w∗ ◦ w∗ is precisely the identity map.

In particular, w∗ is injective and Kτ
G(G1) is isomorphic to a summand

in Kτ
N(T ). We now identify this summand.

Definition 5.2.6. A weight λ ∈ Λτ is regular if π ◦ σ′(λ) is a regular element

of G. Denote the set of regular weights by Λτ
reg.

Proposition 5.2.7. [FHT11b, Theorem 7.10] Assume τ is regular and σ :

Λτ → t is a Waff -equivariant map. Then

Kτ
G(G1) ∼= Kσ′∗τ ′−t

W (Λτ
reg/κ(Π)).
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Proof. Let O ⊂ Λτ/κ(Π) be a W -orbit and λ ∈ O. Under isomorphism

(5.2.4) a class supported on O corresponds to the push-forward of a class

V ∈ Kτ
N(π ◦σ′(O)) ∼= Kτ

Nt({t}) where t = π ◦σ′(λ). Moreover, V is supported

on a single weight. By the local description of w at t described in the proof of

Proposition 5.2.5 and by Claim 5.1.2, it follows that the pushforward of this

class to Kτ
G(G) vanishes if t is not a regular element of G. On the other hand

if t is a regular element, then w is a diffeomorphism near t and hence w∗w∗ is

the identity on this class.

The regular weights in Λτ are determined by the action of Waff on Λτ .

Proposition 5.2.8. If G1 is simply-connected, then λ ∈ Λτ is regular if and

only if it has trivial stabilizer in Waff 1.

Proof. For t ∈ T , the centralizer Gt
1 of t has T as a maximal torus and

StabW1(t) as the Weyl group. The element t is regular if Gt
1 has a torus for its

component of the identity. Since G1 is simply connected, by Proposition 4.2.2,

Gt
1 is connected and hence t is regular if and only if StabW1(t) is trivial. For

x ∈ t, the group element exp(2πx) has trivial stabilizer in W1 if and only if x

has trivial stabilizer in Waff 1. Since Λτ σ−→ t is an injective Waff -equivariant

map, the result follows.

If π1(G1) has torsion, then there exists a finite cover G̃1 → G1 where

G̃1 is simply-connected.The preimage T̃ of T is a maximal torus of G̃1 and the

lattice Π̃ = ker exp(2π·)T̃ is a sublattice of Π. An element g ∈ G1 is regular if
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and only if any of its preimages in G̃1 is regular. Therefore exp(2πt) is regular

if and only if it has a trivial stabilizer in W̃aff 1 := Π̃ oW1.

We have that if G1 is simply connected, then

Kτ
G(G1) = Kσ′∗τ−t

π0(G) (Λτ
reg/Waff 1). (5.2.9)

since W/W1
∼= π0(G) and the following groupoids are equivalent

(
Λτ

reg/Waff 1

)
// (W/W1) ∼=

(
Λτ

reg/κ(Π)
)
//W.

When G is connected, the right hand side of (5.2.9) is the K-theory of a finite

number of points. If deg τ = dimG mod 2 then the degree of σ′∗τ − t is zero

and

Kτ
G(G) ∼= Z⊕#(Λτreg/Waff).

If deg τ 6= dimG mod 2, then the K-theory vanishes.

We now discuss how to find κ given an isomorphism class of τ . Let T

be a torus and τ a twisting of T//T . The isomorphism class of τ lies in

H0
T (T,Z/2)×H1

T (T,Z/2)×H3
T (T,Z)

and we have

H3
T (T,Z) ∼= H2(BT,Z)⊗H1(T,Z)⊕H3(T,Z).

The twistings that live in H3(T,Z) and H1
T (T,Z/2) ∼= H1(T,Z/2) are pulled

back from a twisting on T//{∗} and do not affect the map κ. We have a natural

isomorphism

H2(BT,Z)⊗H1(T,Z) ∼= Λ⊗ Λ.
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Proposition 5.2.10. For τ a twisting of T//T , the map κ is given by the

component of the isomorphism class of τ in H2(BT,Z) ⊗ H1(T,Z) via the

map

H2(BT,Z)⊗H1(T,Z) ∼= Λ⊗ Λ ∼= Λ⊗ Π∗ ∼= hom(Π,Λ).

Note that it is important which copy of Λ we contract with Π. Here,

we contract the copy corresponding to H1(T,Z).

Proof. An element π ∈ Π corresponds to a loop in T and the value of κ(π) ∈ Λ

is the character of the line bundle over the groupoid {e}//T corresponding to

the automorphism of τ
∣∣
{e} determined by this loop. Consider τ , the pullback

of τ along the map S1//T → T//T determined by π. By Proposition 2.3.22,

the desired automorphism is π∗(τ − π∗(τ
∣∣
{e})). Since we only care about the

character of this line and not its Z/2 grading, we can restrict τ to a class

in H3
T (T,Z) and compute the push-forward in cohomology. For a class α

in H3
T (T,Z) ∼= H2(BT,Z) ⊗ H1(T,Z) ⊕ H3(T,Z), its pullback to S1//T fol-

lowed by push-forward to {e}//T is precisely contraction of its component in

H2(BT,Z)⊗H1(T,Z) with π.

Example 5.2.11. Let us consider the group G = SU(2). From the discussion

underneath (5.2.9), it suffices to determine the action ofWaff on Λτ to compute

Kτ
G(G).

The isomorphism classes of twistings of G//G are classified by

H0
G(G,Z/2)×H1

G(G,Z/2)×H3
G(G,Z) ∼= Z/2× {0} × Z.
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To see that H3
G(G,Z) ∼= Z, one can consider the Serre spectral sequence for

the fibration

G // G×G EG

��
BG

.

Since G is connected and simply connected, many of the low degree terms

vanish and H3
G(G,Z) is the kernel of the fourth page differential

d4 : Z ∼= H3(G,Z)→ H4(BG,Z) ∼= Z.

Since the fibration has a splitting given by the fixed point e ∈ G for the

conjugation action, every non-zero class of H4(BG,Z) lifts to a non-zero class

in H4
G(G,Z). This implies that d4 is the zero map.

We can restrict a generator of H3
G(G,Z) to

H3
T (T,Z) ∼= H2(BT,Z)⊗H1(T,Z) ∼= Λ⊗ Λ

where we have used that H3(T,Z) ∼= {0}. A generator of H3
G(G,Z) maps to

twice a generator of Λ ⊗ Λ. This can be verified explicitly using the Cartan

model for equivariant cohomology.2 Moreover, Λ ⊗ Λ has a natural choice of

a generator: λ ⊗ λ where λ is any generator of Λ. We trivialize H3
G(G,Z) by

picking the generator that is mapped to twice the distinguished generator of

Λ ⊗ Λ. An isomorphism class of τ is given by an integer k ∈ H3
G(G,Z) ∼= Z

and degree n ∈ Z/2Z.

2See e.g. [AB84]
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The integer k specifies the action of Π on Λτ : a generator π shifts Λτ

by the character κ(π) specified uniquely by 〈κ(π), π〉 = 2k. To compute the

rank of K-theory in question, it remains to determine the action of W = {±1}

on Λτ . The action on Λτ ⊗ R fixes an element x. There are two possibilities:

either x ∈ Λτ or x ∈ 1
2
Λτ . In the former case, sending x to 0 ∈ Λ gives

an isomorphism between Λ and Λτ as Waff spaces. Proposition 5.2.12 below

implies that this is in fact the case. We see that there are k − 1 free orbits of

Λτ under the action of Waff and therefore

K
(1,0,k)
G (G) ∼= Z⊕k−1.

Proposition 5.2.12 ([FHT11a, Lemma 4.20]). Let G be a compact simply-

connected group and τ a twisting of G//G. Restricting the twisting to T//N ,

the construction of Section 2.5 defines an action of W on Λτ . This action has

a fixed point.

Proof. The twisting τ restricted to {e}//G determines a graded central exten-

sion which restricts to one on T .

1 // T // Gτ

��

// G //

��

1

1 // T // T τ // T // 1

The set Λτ is the set of splittings of T → T τ and the action of W is by

conjugation by elements in Gτ . Since G is simply connected, there is a splitting

Gτ → T. Restricting this splitting to T τ ⊂ Gτ gives the desired element in

Λτ .

73



5.3 Other Components

We only consider the case where G = G1oF with F acting by diagram

automorphisms and G1 simply connected. Fix an element f ∈ F ⊂ G and

let G(f) be the stabilizer of the component fG1. We use the notation of

Section 4.2. We analyze the group Kτ
G(f)(fG1). The full K-theory of G//G

is then the direct sum of these K-theory groups for f belonging to different

conjugacy classes of π0(G).

We first consider the subgroupoid fT//N which has the same coarse

moduli space as fG1//G(f) by Proposition 4.2.1. The Mackey decomposition

construction of Section 2.5 applied to fT//N gives rise to a W -equivariant

covering space π : Y → fT and a twisting τ ′ ∈ Twist(Y //W ) such that

Kτ ′
W (Y )cpt

∼= Kτ
N(fT ). Denote by Λτ the fiber over f . It is a W̃ -equivariant Λ

torsor. The entire group W does not act on Λτ since W does not fix f .

Definition 5.3.1. The holonomy around T defines a W̃ equivariant map

κ : Π→ Λ

Definition 5.3.2. A twisting τ is called regular on fG1 if the holonomy map

σ : Π→ Λ is injective.

If τ is regular on fG1, then Y is a W -equivariant vector bundle over a

finite number of points that we now locate. Define the following group

Waff = {(x, h) ∈ toW | h−1 · f · exp(2πx) · h = f}
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We have that Waff acts on Λ. To describe the action, first note that t

acts on Y by parallel transport: for y ∈ Y , t ∈ T , denote the parallel transport

of y along the path π(y) · exp(s · t) for s ∈ [0, 2π] by λ + t. This action is

equivariant with respect to the W action on Y and t. We thus get an action of

t oW on Y which moreover maps fibers to fibers of the projection Y → fT .

The group Waff is the stabilizer of the fiber over f . Explicitly, the action is

given by

λ.(t, h) = (λ+ t).h

Define also the following subgroup

Π̃ = Waff ∩ (t× (T/T ))

The kernel of the projection π1 : Π̃→ t is T f/T , which is the trivial group by

Lemma 4.2.6. We will identify Π̃ with π1(Π̃) ⊂ t which is a lattice containing

Π. For ξ ∈ Λτ , λ ∈ Λ, (t, h) ∈ Waff , we have

(ξ + λ).(t, h) = ξ.(t, h) + λ.h

and therefore the action of Π̃ on Λτ is equivariant with respect to the Λ-action

on Λτ . It is therefore given by a homomorphism Π̃ → Λ which restricts to κ

on Π. It should not cause confusion if we call this homomorphism κ as well.

κ : Π̃→ Λ

Proposition 5.3.3. If τ is regular on fG1, then there exists a Waff -

equivariant map

σ : Λτ → t.
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If Gf
1 is semi-simple, then σ is unique.

Proof. The space Λτ
R := Λτ ⊗ R is an affine space for t∗ with an equivariant

W̃ action. Since W̃ is a finite group, there exists a W̃ fixed point of Λτ
R which

identifies it with t∗. Let σ be the inverse of the R-extension κR : t → t∗. It

is manifestly equivariant with respect to Π o W̃ . Since the action of Π̃ is by

translation by κ, it is also equivariant with respect to Π̃. Since Π̃ and W̃

generate Waff , the result follows.

A map σ determines an injective map

σ′ : Λτ/κ(Π)→ Y

λ 7→ λ− σ(λ)

The subgroup Π ⊂ Waff acts on Λτ by the homomorphism κ and the

quotient group Waff/Π is isomorphic to W . In particular, this defines a W

action on Λτ/κ(Π) and the map σ′ is W -equivariant. This map expresses Y as

a W -equivariant vector bundle over Λτ/κ(Π) with constant fiber t. By Thom

isomorphism, we again get

Kτ ′−t
W (Y ) ∼= Kσ′∗τ ′−t

W (Λτ/κ(Π))

Let

w : fT//N → fG1//G(f)
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be the inclusion map. Locally, on a neighborhood of f ′ ∈ fT the map w has

the form of the local restriction map we considered in Section 5.1.

gf
′
//Gf ′ x7→f ′·exp(x) // fG1//G(f)

t//N(Gf ′)

ι

OO

// fT//N

OO

where N(Gf ′) is the normalizer of T in Gf ′ .

Proposition 5.3.4. [FHT11b, Theorem 7.9] If τ is a regular twisting on fG1,

then w∗ ◦ w∗ : Kτ
G(f)(fG1)→ Kτ

G(f)(fG1) is the identity map.

Proof. The proof is analogous to the proof of Proposition 5.2.5

Definition 5.3.5. A weight λ ∈ Λτ is regular if π ◦ σ′(λ) is a regular element

of G. Denote the set of regular weights by Λτ
reg.

Proposition 5.3.6. [FHT11b, Theorem 7.10] Assume τ is a regular twisting

on fG1 and fix σ : Λτ → t, a Waff -equivariant map. Then

Kτ
G(f)(fG1) ∼= Kσ′∗τ ′−t

W (Λτ
reg/κ(Π)).

Proof. The proof is analogous to the proof of Proposition 5.2.7

Proposition 5.3.7. A weight ξ ∈ Λτ is regular if and only if it has trivial

stabilizer in Waff
1
. In particular, we have

Kτ
G(f)(fG1) ∼= Kσ′∗τ ′−t

H (Λτ
reg/Waff

1
).

where H := Stabπ0(G)(fG1).
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Proof. The proof is analogous to the proof of Proposition 5.2.8.

Proposition 5.3.7 identifies K-theory classes in Kτ
G(fG1) which are

pushforwards from regular orbits in fG1. In the cases we will be consider-

ing those classes can be pushed forward from {f}//Gf instead. We now fix a

condition on the action of Waff on Λτ which will ensure that that is the case.

Condition 5.3.8. For every Waff -orbit Õi ⊂ Λτ
reg there is an element βi ∈ Õi

such that

Hi := StabWaff
(βi) ⊂ H ⊂ Π̃ oW f

1 oH

Let Oi ⊂ Λτ
reg be the W̃ orbit of βi. Then

⋃
iOi × t//W̃ is equivalent

to Y reg//W with the equivalence map given by (λ, t) 7→ λ + t. The stabilizer

condition ensures that this map is injective.

Proposition 5.3.9. If Condition 5.3.8 is satisfied, we have

Kτ
G(f)(fG1) ∼=

⊕
i

Kτ ′−t
W̃

(Oi) ∼=
⊕
i

Kτ ′−t
Hi

({βi})

We now discuss the action of Waff on Λτ .

Proposition 5.3.10. If the isomorphism class of τ restricted to {f}//Gf
1 has

trivial component in H3

Gf1
(∗,Z), then there is a unique Waff equivariant iso-

morphism Λ ∼= Λτ where the action of Waff ⊂ t × W on Λ is given by

λ.(t, w) = κ(t).w + λ.w.

Proof. The twisting τ restricted to {f}//Gf
1 determines a central extension

1→ T→ G̃f
1 → Gf

1 → 1 (5.3.11)
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which restricts to a central extension

1→ T→ T̃ → T → 1

whose set of splittings is Λτ . The Weyl group of Gf
1 is W f

1 and its action on Λτ

is given by conjugation. The condition on τ in the statement of the proposition

is equivalent to sequence (5.3.11) splitting. Precomposing a splitting G̃f
1 → T

with the inclusion T̃ ↪→ G̃f
1 defines a twisted weight λ0 which is fixed by W f

1 .

Since Gf
1 is semisimple, the element 0 ∈ Λ is the unique element fixed by W f

1 .

This implies that λ0 is the unique element of Λτ fixed by W f
1 and hence is also

fixed by H. The desired map is the one sending 0 ∈ Λ to λ0 ∈ Λτ .
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Chapter 6

Computation of the Twisting

In this section we compute the aspects of the twisting necessary to

compute Kτ
G(G) for the twisting

τl = dim g + tg(l) + hG

defined in Definition 3.3.3. Here, tg(l) is the transgressed level and hG =

tg(P (g) is the twisting corresponding to the canonical universal orientation.

The level we will take in our computations will be a class which pulls back to

l0 = 1 ∈ Z ∼= H4(BG1,Z) along the map BG1 → BG. We show that such

class exists in Section 6.1. We compute the holonomy map κ in Section 6.2.

In Section 6.3, we compute the restriction of hG to {f}//Gf .

6.1 Extension of a level from H4(BG1) to H4(BG)

For any compact Lie group G, there is a fibration

BG1
i // BG

π
��

Bπ0(G)

(6.1.1)

induced from the short exact sequence

1→ G1 → G→ π0(G)→ 1. (6.1.2)
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Given a level l0 ∈ H4(BG1) of G1, an extension of l0 to G is a class l ∈

H4(BG,Z) such that i∗l = l0.

Proposition 6.1.3. Suppose G1 is simple simply-connected and the sequence

(6.1.2) splits. Then any class l0 ∈ H4(BG1,Z) extends to a class l ∈

H4(BG,Z). The set of such extensions is a torsor for H4(Bπ0(G),Z).

Here, H4(Bπ0(G),Z) acts via pullback along π : BG→ Bπ0(G).

Proof. The statement follows from the Serre spectral sequence of the fibration

(6.1.1). Since G1 is simply connected it follows that

Hk(BG1,Z) =

{
Z k = 0

{0} k = 1, 2, 3

and H4(BG1,Z) is invariant under automorphisms of G1. We thus have that

the term E0,4
2 in the Serre spectral sequence is H4(BG1,Z) and an element

l0 ∈ H4(BG1,Z) extends to H4(BG,Z) if and only if it is in the kernel of the

differential map d5 : H4(BG1,Z) → H5(Bπ0(G),Z). Since we assume that

the sequence (6.1.1) splits, every non-zero class in H5(Bπ0(G),Z) lifts to a

non-zero class in H5(BG,Z) and therefore the differential d5 vanishes. Since

H4(Bπ0(G),Z) does not receive any non-trivial maps in the spectral sequence,

it follows that the set of extensions is a torsor for H4(Bπ0(G),Z).

6.2 Restriction to maximal tori

In this section we compute κ of Definition 5.3.1. Let us first consider the

case where G is simple and simply connected. Fix a level l ∈ H4(BG,Z) ∼= Z
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and consider the twisting τ = τl.

Proposition 6.2.1. Let l ∈ Z = H4(BG1,Z). Then κ : t → t∗ is a W -

equivariant symmetric map such that

〈κ(hα), hα〉 = 2(l + h∨G)

where h∨G is the dual Coxeter number of G and hα is a long simple coroot.

Proof. By Proposition 5.2.10, the holonomy map κ : Π → Λ is determined

by the restriction of the component in H3 of τ to T//T . The cohomology

group H3
T (T,Z) is torsion free, and therefore we don’t lose any information by

working with

τQ = τ ⊗Q ∈ Twist(G//G)⊗Q ∼= H3
G(G,Q)

instead. By Proposition 2.3.19 the composition

BG
g−→ BO

δ−→ k̃o ∧HQ P−→ Σ1|Twist| ∧HQ γ−1

−−→ Σ4HQ

equals 1
2
p1(g). For a simple simply-connected group G, we have p1(g) = 2h∨G ∈

H4(BG,Z) ∼= Z.1 It follows that

τlQ = tg(l + h∨G)

is the transgression of l + h∨G ∈ H4(BG,Q) ∼= Q defined in Definition 3.3.2.

1The cohomology of H4(BSO(k),R) can be identified with the space of ad-invariant
bilinear forms on so(k). The first Pontryagin class corresponds to the bilinear form (a, b) 7→
tr(ab). The pullback of p1 to H4(BG,R) is then the Killing form of g which is 2h∨G times
the image of a generator of H4(BG,Z) in H4(BG,R).
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The transgression map commutes with pull back to subgroups. Con-

sider first T ⊂ G, a maximal torus. We have H1(T,Q) = H2(BT,Q) ∼= t∗ and

H4(BT,Q) = Sym2(H2(BT,Q)). Since the conjugation action of T on T is

trivial, we have LBT = B(T//T ) = BT × T . The transgression map therefore

has the following form

BT × T × S1 e //

π

��

BT

BT × T

where e on T × S1 component is given by homotopy equivalence T ∼= ΩBT ,

and on BT by the identity map. Implicitly this used an H-space structure on

BT . For a ∈ t∗, let αa ∈ H1(T,Q), βa ∈ H2(BT,Q) correspond to a and let

η ∈ H1(S1,Q) be the dual to the fundamental class of S1. We have

e∗(αa) = αa + ηβa

It follows that

e∗(αaαb) = (αa + ηβa)(αb + ηβb)

= αaαb + η (βaαb + βbαa)

In particular

tg(αaαb) = βaαb + βbαa ∈ H3(T ×BT,Q)

belongs to the component

H1(BT,Q)⊗H2(BT,Q) ∼= t∗⊗2
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and corresponds to a symmetric bilinear form. This shows that κ is symmetric

map.

A choice of a root α of G determines a homomorphism ρ : SU(2)→ G

which sends the coroot h of SU(2) to hα. If α is a long root, this determines an

isomorphism ρ∗ : H3(G,Z)→ H3(SU(2),Z) ([BS58, Prop III.10.2]) and hence

also an isomorphism H4(BG,Z) → H4(BSU(2),Z). The map κ for SU(2) is

computed in Example 5.2.11. We thus have

〈κτl(hα), hα〉 = 〈κρ∗τl(h), h〉 = 2(l + h∨G)

where we denoted by κτ the holonomy map constructed from the twisting τ .

Consider now the case G = G1 o F where G1 is simple and simply

connected and l ∈ H4(BG,Z). We again consider the twisting τl. For f ∈

F , let the holonomy map of Definition 5.3.1 be denoted by κf : Π → Λ.

Proposition 6.2.1 computes κid in terms of the pullback of l toH4(BG1,Z) ∼= Z.

The holonomy maps at other f ∈ F turn out to be the restriction of κid to Π.

In particular, it only depends on the restriction of l to H4(BG1,Z).

Proposition 6.2.2. Let f ∈ F and ι : t→ t be the inclusion map. Then

κf = ι∗ ◦ κid ◦ ι

Proof. The holonomy map depends only on

τQ ∈ Twist(G//G)⊗Q ∼= H3
G(G,Q)
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which is the transgression of a class ω ∈ H4(BG,Q). The exact expression of

ω will not be important for this argument. Since transgression commutes with

restriction to a subgroup we can assume without loss of generality that G =

T ×Z/kZ. In this case BG = BT ×B(Z/kZ) and LBG = LBT ×LB(Z/kZ).

Consider the following diagram

LBT × S1 (id,γid,id) // LBT × LB(Z/kZ)× S1 e // BT ×B(Z/kZ)

π1

��
LBT × S1

(id,γf ,id)

44

BT

where γg ∈ LB(Z/kZ) is any element in the component of LB(Z/kZ) corre-

sponding to [g] ∈ π0(G) = Z/kZ = π0LB(Z/kZ).

The restrictions of τQ to T//T and fT//T are the pushforwards along

S1 of the pullbacks of ω to the “top” and “bottom” copies of LBT × S1 in

the diagram respectively. Clearly the two classes are the same if ω is pulled

pack from BT by π1. Since π∗1 is an isomorphism on cohomology with rational

coefficients, the result follows.

6.3 Twisting hG

We analyze the twisting hG restricted to the subgroupoid {f}//Gf .

Recall that hG is the pushforward along S1 of the following composition

LBG× S1 e−→ BG
g−→ BO

δ−→ ko1
P−→ Σ1|Twist|
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Let us first consider f = id. The subset {e}//G ⊂ G//G corresponds on the

level of classifying spaces to the subset of constant loops BG ⊂ LBG. It

follows that the restriction of hG to {e}//G is the pushforward along S1 of the

composition

BG× S1 π1−→ BG
g−→ BO

δ−→ ko1
P−→ Σ1|Twist|

In particular, the class that is being pushed forward is a pullback of a class

in BG. This pull-push procedure can be performed in any cohomoloy theory,

and therefore is given by multiplication by an element in π1(S) where S is the

sphere spectrum.

Lemma 6.3.1. Let E be any generalized cohomology theory and X be any

space. Let π : X × S1 → X be the projection map. Then the map

E∗(X)→ E∗−1(X)

ω 7→ π∗ ◦ π∗ω

is given by the action of the non-trivial element η ∈ π1(S). The push-forward is

with respect to stable framing of S1 induced by the trivialization of the tangent

bundle of S1.

Proof. Recall the construction of the stable framing corresponding to the triv-

ialization of the tangent bundle. Let M be a k-manifold and let ξ : TM → Rk

be a trivialization of TM . Fix an embedding χ : M → RN . We have an

isomorphism TM ⊕νχ ∼= RN where νχ is the normal bundle of the embedding.
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The isomorphism ξ affords an isomorphism

Rk ⊕ νχ ∼= RN

The left-hand side of this expression is the normal bundle of the embedding

M
ξ−→ RN ↪→ RN+k and hence we get a stable normal framing of M .

Let M = S1 and χ be the embedding of S1 into the unit circle in R2.

Let ξ be the embedding S1 ↪→ R3. The above construction gives rise to the

trivialization of the normal bundle of ξ which ”rotates” once as you go around

the circle. The Pontryagin-Thom collapse defines a map S3 → (S1)νξ into the

Thom space of νξ. The trivialization of νξ gives rise to a map

S3 → Σ2S1
+ (6.3.2)

Now consider E given by the sphere spectrum and ω ∈ E0(S0) cor-

responding to the identity map S0 → S0. The pullback π∗ω is given by the

map S1
+ → S0 which maps S1 to the non-base point of S0. The push-forward

π∗π
∗ω ∈ E−1(∗) ∼= E2(S3) is the composition

S3 → Σ2S1
+ → Σ2S0 ∼= S2

where the first map is (6.3.2). This is the Hopf map. Indeed, preimage of two

points forms a Hopf link. Since every spectrum is a module for the sphere

spectrum, the result follows.

Corollary 6.3.3. The restriction of the twisting hG to {e}//G is g− dim g.
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Proof. By Lemma 6.3.1 and the discussion preceding it, the restriction of hG

is η ◦ P applied to the virtual rank 0 bundle given by BG
g−→ BO

δ−→ k̃o. By

Corollary 2.3.21, it is also the composition

BG
g−→ BO

δ−→ k̃o
π−→ ko

ρ−→ |Twist|

which is precisely the twisting g− dim g.

On {f}//Gf , hG is obtained by the push-forward of

BGf × S1 → BG
g−→ BO

δ−→ k̃o
P−→ Σ1Bwist.

The composition BGf × S1 → BG → BO(dim g) classifies the vector bundle

over BGf×S1 given by the vector bundle g over BGf by restricting the action

of G to Gf and with the holonomy f around S1.

Lemma 6.3.4. Let M be a space and V be a finite-dimensional R-vector

bundle over M . Let φ be an automorphism of V which covers the identity map

on M . This gives rise to a vector bundle (V, φ) on M × S1 obtained by gluing

the ends of V × [0, 1] on the boundary by φ. Assume further that the fixed

subspace V φ is a subvector bundle of V . Then the push-forward in ko-theory

π∗[(V, φ)] = η · [V φ] ∈ ko−1(M)

where η is the nontrivial class in π1 of the sphere spectrum.

Proof. We first compute the push-forward in KO theory. By the index the-

orem, the push-forward of a vector bundle W on M × S1 is obtained by the
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index of the Dirac operator. Introducing a connection ∇ along the fibers, we

get a Dirac operator acting on sections of W ⊗ Cl1 where Cl1 is viewed as

Clc(TS1) − Cl1 bimodule via the trivialization of TS1. Point by point, the

kernel of the Dirac operator is a finite-dimensional vector space and has a

remaining right Cl1 action. If the kernels form a vector bundle over M , then

this vector bundle with right Cl1 action represents the push-forward of W in

KO−1(M) via the Atiyah-Bott-Shapiro construction.

In our case, there is a natural connection on the fibers of (V, φ) with the

holonomy φ. The kernel of the Dirac operator consists of flat sections and is

therefore V φ⊗Cl1. In particular, it is the product of the class V φ ∈ KO0(M)

and Cl1 ∈ KO−1(M). By Lemma 6.3.1, the class Cl1 is the action of η on the

class 1 ∈ KO0(M). It follows that the push-forward in KO of (V, φ) is η · V φ.

The homotopy fiber of the connective covering map ko → KO has

homotopy groups in degrees −2 and below. Since a topological space has

homotopy groups only in non-negative degrees, if a class in KOi(M) for i < 2

lifts to a class in koi(M), then the lift is unique. The push-forward in ko

theory of (V, φ) is a lift of the push-forward of this class in KO. The class

η · [V φ] is the unique such lift.

Proposition 6.3.5. The restriction of the twisting hG to {f}//Gf is isomor-

phic to gf − dim g.

Proof. By Lemma 6.3.4, the push-forward of ((g, f)− dim g) ∈ ko0(BGf×S1)

along S1 is η ·(gf−dim g). The statement now follows from Proposition 2.3.20.
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Chapter 7

R(G)-Module Structure

Let X be the “pair of pants” bordism from S1
∐
S1 to S1. The stack

of flat G connections on X is represented by the groupoid G × G//G where

G acts by conjugation on both copies of G. The construction in Section 3.1

applied to X gives rise to the map

Kτ
G(G)⊗Kτ

G(G)→ K
π∗1τ+π∗2τ
G (G×G)

µ∗−→ Kτ
G(G)

where µ∗ is the pushforward along the multiplication map of G. In particular,

the construction in Section 3.1 gives an isomorphism of twistings

µ∗τ ∼= π∗1τ + π∗2τ + g. (7.0.1)

Here, we used that T (G × G) is the equivariantly trivial vector bundle g ⊕ g

and hence there is an isomorphism of virtual vector bundles

T (G×G)− µ∗T (G) ∼= g.

Restricting 7.0.1 to {e} × {e} ⊂ G×G we get

τ
∣∣
e
∼= τ

∣∣
e

+ τ
∣∣
e

+ g

and hence

τ
∣∣
e
∼= g.
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We verified this isomorphism independently in Corollary 6.3.3. This allows us

to define the pushforward map

ι∗ : K0
G({e})→ Kτ

G(G)

where ι : {e} → G is the inclusion of the identity element. The following

diagram commutes

K0
G({e})⊗Kτ

G(G) //

ι∗⊗id

��

K
π∗2τ
G ({e} ×G) ∼ //

(ι×id)∗
��

Kτ
G(G)

Kτ
G(G)⊗Kτ

G(G) // K
π∗1τ+π∗2τ
G (G×G)

µ∗ // Kτ
G(G)

.

The top row is the action of K0
G(∗) on G-equivariant K-theory coming from

the ring structure of K. In this section we compute the pushforward map ι∗

and the K0
G(∗) action on Kτ

G(G). As such, we will obtain partial Pontryagin

product structure on Kτ
G(G).

In all our situations, the twisting will satisfy Condition 5.3.8 and there-

fore all classes Kτ
G(G) will be push-forwards from {f}//Gf . We have τ

∣∣
{e}
∼= g

and for most cases, we will have τ
∣∣
{f}//Gf

∼= gf . We start by studying equiv-

ariant twistings over a point.

7.1 Twistings of {∗}//N

Let G = G1 o F where F acts by diagram automorphisms and G1 is

simple and simply connected. Applying Mackey decomposition construction

of Section 2.5 to T CN and the trivial twisting gives rise to τN ∈ Twist(Λ//W )
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and an isomorphism

KN(∗) ∼= KτN
W (Λ)cpt

Proposition 7.1.1. The twisting τN is trivializable.

What is more important than abstract trivializability is the particular

trivialization that we exhibit in the proof. It will be used throughout.

Proof. We trivialize τN by constructing a τN twisted line bundle over Λ. By

construction, such a line bundle is equivalent to a representation of N with

a 1-dimensional weight-space for every weight. For every W1 orbit O′ ⊂ Λ,

there is a unique G1 irreducible representation VO′ with a maximal weight in

this orbit. Let O be a W orbit in Λ which is a union
⋃
iO′i of W1-orbits. We

produce an action of G on V :=
⊕

i VO′i . The action of G1 is already specified

so it suffices to give an action of F on V . Let λi ⊂ O′i be the dominant weight

in the orbit O′i and trivialize the weight spaces Vλi ⊂ VO′i . For f ∈ F , f(λi) is a

dominant weight since f acts by diagram automorphisms. We define the action

of f on VO′i to be the one that sends 1 ∈ Vλi to 1 ∈ Vf(λi). The action on the

rest of the space VO′i follows since WO′i is generated by Vλi as a representation

of G1. It is straight-forward to check that this defines a representation of G.

The direct sum
⊕

λ∈O Vλ is a representation of N with 1-dimensional weight

spaces. Taking the direct sum of these representations for every W orbit O

defines the desired representation.
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Consider now the twisting

ν := g− t

It is of interest because when Condition 5.3.8 is satisfied, the summand of

Kτ
N(T ) corresponding to Kτ

G(G1) consists of classes which are pushforwards of

classes in Kν
N({e}). The Mackey decomposition gives rise to an isomorphism

Kν
N(∗) = Kν′

W (Λν)cpt

We will construct a trivialization of ν ′ on a subset of Λν by constructing ν-

twisted representations of N with 1-dimensional weight spaces.

We have the following decomposition of g

g = t⊕ P

where

P =
⊕
α∈∆+

Pα

and Pα is the real subspace of gα ⊕ g−α. The twisting ν is therefore given by

the N -equivariant vector space P . The corresponding central extension of N

is the following pullback

N ν

��

// Pinc(P )

��
N // O(P )

with the Z/2Z grading given by composition N → O(P )
det−→ {±1}. There is

a splitting on the level of Lie algebras t→ tν induced from the splitting of Lie
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algebras

so(P )→ spinc(P ) ∼= so(P )⊗ C

given by sending so(P ) to the real subspace of so(P )⊗C. This lets us identify

Λν with a subset of t∗. It is a translate of Λ. The spinor representation S(P ),

i.e., the irreducible representation of Clc((P ), is a ν-twisted Z/2Z graded

representation of N . As a T ν representation, it is the tensor product of S(Pα)

for α ∈ ∆+. The character of S(Pα) is eα/2− e−α/2 and therefore the character

of S(P ) is the Weyl denominator

∏
α∈∆+

eα/2 − e−α/2.

By the Weyl character formula, the character of S(P ) is also

∑
w∈W1

ε(w)ew(ρ)

where ρ = 1
2

∑
α∈∆+ α is the Weyl vector and ε(w) ∈ {±1} is the determinant

of the action of w on t. A standard fact in Lie theory is that ρ is the sum of

the fundamental weights. In particular, if a dominant weight λ does not lie of

a wall of the Weyl chamber, then it pairs positively with every positive coroot

and hence λ− ρ is also dominant.

Definition 7.1.2. Let Λν
reg ⊂ Λν be the subset of weights on which W1 acts

freely.

Proposition 7.1.3. The twisting ν ′ is trivializable on Λν
reg.
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Proof. For O a W -orbit of a dominant λ ∈ Λ, VO ⊗ S(P ) is a Z/2Z graded ν

twisted representation of N where VO is as in the proof of Proposition 7.1.1.

By the Weyl character formula, it has 1-dimensional weight spaces, supported

on O′, the W orbit of λ+ ρ. Denote this representation by ṼO′ . Union of the

orbits O′ as O vary is precisely Λν
reg. Direct sum of these representations gives

rise to a ν ′ twisted Z/2Z-graded line bundle over Λν
reg.

Definition 7.1.4. For ξ ∈ Λν
reg, let

ε(ξ) = ε(w) ∈ {±1}

where w is such that ξ.w is dominant.

Proposition 7.1.5. The isomorphism of twistings

π∗1(τN) + π∗2(ν ′) ∼= µ∗(ν ′)

over Λ × Λν
reg ∩ µ−1Λν

reg of Proposition 2.5.4 with respect to trivializations of

Proposition 7.1.1 and Proposition 7.1.3 is given by the trivial line bundle with

the grading on (λ, ξ) being ε(ξ) · ε(ξ + λ).

Proof. If L1, L2 are the τN , ν
′ twisted line bundles trivializing τN and ν ′, then

the line bundle in question is π∗1L1 ⊗ π∗2L2 ⊗ µ∗L−1
2 with their corresponding

gradings. Note that L1 is positively graded everywhere and the grading of L2

is given by ε. The result follows.

95



7.2 Pushforward from Kν
N(∗)

Recall that τ
∣∣
{e}//G

∼= g and we have the push-forward map K0
G(∗) →

Kτ
G(G).

Remark 7.2.1. It follows from the properties of the push-forward map that the

composition

KG(∗) ι∗ // Kτ
G(G1) res // Kτ

N(T )

equals the composition

KG(∗) ι∗ // Kg
G(g)cpt

res // Kg
N(t)cpt

π∗ // Kg−t
N (∗) (7.2.2)

followed by the push-forward Kg−t
N (∗)→ Kτ

N(T ).

Proposition 7.2.3. The composition (7.2.2) is given by the tensor product

with S(P ). For O a W orbit of Λ, it maps the G-representation VO defined in

the proof of Proposition 7.1.1 to the class 1 ∈ K0
W (O′) ∼= Kν′

W (O′) ⊂ Kν′
W (Λν)

where O′ is the W orbit of ξ + ρ for any dominant weight in O.

Proof. Let Gg be the graded extension of G given by the pullback

T

��

T

��
Gg

��

// Pinc(g)

��
G Ad // O(g)

.

There is an action of G on Cl(g) induced from the adjoint action on g. The

Atiyah-Bott-Shapiro construction associates to a Cl(g)-module with an action
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of Gg which is equivariant with respect to the Cl(g)-action, a class in Kg
G(g).

With this construction, the map KG(∗) ι∗−→ Kg
G(g) is given by

V 7→ V ⊗ S(g).

Similarly, the map K∗N(∗) ι∗−→ K∗+t
N (t) is given by tensoring with S(t). The

result then follows from the fact that g = t⊕ P .

We now assume that the twisting τ satisfies Condition 5.3.8 and we

make the choices of βi ∈ Λτ
reg. By Proposition 5.3.9, we have

Kτ
G(G1) ∼= Kτ ′

W (Yreg)cpt
∼=
⊕
i

Kτ ′

W (Yi)cpt
∼=
⊕
i

Kτ ′−t
Hi

({βi})

where Yreg ⊂ Y is the subset containing Λτ
reg and Yi is the union of component

containing the W orbit of βi. The last equality is by Thom isomorphism, or

equivalently, via the push-forward map W (βi) ↪→ Yi.

Fix an element βi ∈ {βi} and an element π ∈ Π. Let O be the W

orbit of βi, and let O′ be the W orbit of βi + κ(π). The orbit O′ belongs to

the same component of Yreg as O and therefore the image of Kν′
W (O′) under

the push-forward map Kν′
W (Λτ

reg)cpt → Kτ ′
W (Yreg)cpt belongs to the summand

isomorphic to Kν′
W (O). We thus get a map

r : Kν′

W (O′)→ Kν′

W (O).

Proposition 7.2.4. The map r is the push-forward along the W -equivariant

map

s : O′ → O

which maps βi + κ(π) to βi.
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Proof. The map r is the push-forward along the inclusion O′ ↪→ Yi followed

by the push-forward along the projection Yi → O. The push-forward map is

invariant under homotopy. There is a homotopy h : I ×O′ → Yi between the

inclusion map O′ ↪→ Yi and the map O′ → O defined in the statement of the

proposition. The image of βi + κ(π) under this homotopy is the lift to Y of

the loop determined by π. This homotopy defines an isomorphism of twistings

ν ′∼=s∗ν ′ with respect to which the push-forward s : Kν′
W (O′) → Kν′

W (O) is

defined.

Definition 7.2.5. Let δ be the Z/2Z graded line bundle corresponding to

the automorphism of twistings ν ′∼=s∗ν ′ over O′//W defined in the proof of

Proposition 7.2.4.

The line bundle δ is well defined since both ν ′ and s∗ν ′ are trivialized.

Let

H ′ = StabW (βi + κ(π)).

Since βi + κ(π) is in the same connected component of Y as βi, the group H ′

is a subgroup of Hi = StabW (βi).

The groupoid {βi+κ(π)}//H ′ is equivalent to O′//W . We will compute

the isomorphism class of the restriction of δ to this smaller groupoid. Consider

the restriction of τ to the subgroupoid T//H ′. The loop in T determined by π

is preserved by H ′ and therefore defines an automorphism of the restriction of

τ − t to {e}//H ′ which is a graded line bundle we denote by Lτ−tπ,H′ . It depends
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only on τ − t and the group H ′, and not the other choices we have made in

this section.

Lemma 7.2.6. The line bundle δ is given by the graded line bundle

ε(βi)ε(βi + κ(π))Lτ−tπ,H′

In particular, if Lτ−tπ,H′ is trivial, then δ is given by the trivial line bundle with

the grading ε(βi) · ε(βi + κ(π))

Proof. The result is obtained by restricting to the subgroupoid T//T oH ′ and

observing that ν ′ is trivialized by a line bundle whose grading at ξ is given by

ε(ξ).

Proposition 7.2.7. If GH′
1 is simply connected, then the line bundle Lτ−tπ,H′ is

trivial.

Proof. The twisting t is pulled back from a point and therefore Lτ−tπ,H′ = Lτπ,H′ .

The twisting τ on the other hand extends to a twisting over GH′
1 //H ′. Since

GH′
1 is simply connected, the loop determined by π is contractible in it.

Condition 7.2.8. The line bundle Lτ−tπ,H′ is trivial for all choices of βi and π.

We compute the push-forward map Kν
W (Λν

reg)cpt → Kτ ′
W (Yreg)cpt when

τ satisfies Condition 7.2.8. Since we trivialized all the twistings in sight, it can

now be phrased in terms of pushforward of non-twisted K-theory of discrete

groupoids.
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Definition 7.2.9. For X a discrete groupoid, let ZC[X] be the center of the

groupoid algebra of X. It is a subset of functions on morphisms of X. We

have

K0(X)cpt ⊗ C ∼= ZC[X].

Moreover, since K0(X)cpt is torsion-free, ZC[X] contains all the information

of K0(X). In the case of a global quotient, for χ ∈ ZC[S//H], we denote by

χh the function

χh : S → C

s 7→ χ(s
h−→ s.h)

The push-forward and pull-back in K0 along a map X → Y of discrete

groupoids corresponds to the analogous operations on ZC[X] viewed as a set

of functions. The non-trivial K-orientations are given by line bundles over X

which correspond to elements in K0(X). Push-forward with respect to such

orientation correspond to precomposing with multiplication with correspond-

ing classes in ZC[X].

Corollary 7.2.10. Consider the diagram

KW (Λν
reg)cpt

��

ι∗ // Kτ
W (Yreg)cpt

∼ // KW (
⋃
Oi)

��
P : ZC[Λν

reg//W ] // ZC[
⋃
Oi//W ]

Fix βi ∈ {βi} and let h ∈ Hi = StabW (βi). Assuming Condition 7.2.8, we

have

P (χ)h(βi) = ε(βi)
∑
π∈Π

ε(βi + κ(π))χh ((βi + κ(π)))
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where ε(βi) ∈ {±1} is defined in Definition 7.1.4.

Corollary 7.2.11. Let ι : Λν
reg → Yreg, βi ∈ {βi}, h ∈ Hi, A ∈ KN(∗) and

B ∈ Kν′
W (Λν)cpt. Assume further that ε(βi) = 1. Then the restriction of the

KN(∗) action map KN(∗)⊗Kτ
N(T )→ Kτ

N(T ) to the direct summand in Kτ
N(T )

corresponding to Kτ ′
W (Yreg)cpt is given on the level of character maps by

χ(A⊗ ι∗(B))h(βi) =
∑
π∈Π

∑
λ1∈Λ; λ2∈Λνreg
λ1+λ2=βi+κ(π)

ε(λ2)χ(A)h(λ1) · χ(B)h(λ2)

7.3 Pushforward from Kν
Nf ({f})

For other components of G//G the story is very similar and we will be

brief.

Condition 7.3.1. The restriction of tg(l) to {f}//N f vanishes. In this case,

6.3.5 implies that τl|{f}//Nf
∼= gf .

We also assume that Condition 5.3.8 is satisfied. By Proposition 5.3.9,

we have

Kτ
G(f)(fG1) ∼= Kτ ′

W (Y reg)cpt
∼=
⊕
i

Kτ ′

W (Y i)cpt
∼=
⊕
i

Kτ ′−t
W̃

(Oi) ∼=
⊕
i

Kτ ′−t
Hi

(βi)

Fix an element βi ∈ {βi} and an element π ∈ Π̃. Let O be the W̃ orbit of βi,

and let O′ be the W̃ orbit of βi+κ(π). It belongs to the same component of the

groupoid Y reg//W as O 1 and therefore the image of Kτ ′
W (O′) in Kτ ′

W̃
(Y reg)cpt

1It might be in a different component of the space Y reg but related by a morphism in W
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belongs to the summand Kτ ′

W̃
(O). We get a map

r : Kτ ′

W̃
(O′)→ Kτ ′

W̃
(O).

which is again the the push-forward along the W̃ -equivariant map

s : O′ → O

which maps βi + κ(π) to βi.

Assuming τ
∣∣
{f}//Gf

∼= gf , we trivialize τ ′ − t = ν ′ on Λτ
reg as in Propo-

sition 7.1.3. The K-orientation of s is then again given by a line bundle δ.

Let

H ′ = StabW̃ (βi + κ(π)).

The groupoid {βi + κ(π)}//H ′ is equivalent to O′//W̃ .

There is a line bundle Lτ−tπ,H′ over {f}//H ′ which is constructed analo-

gously to the one in the case of the component of the identity. If π ∈ Π then

the construction is exactly analogous. For a general π, recall that Π̃ ⊂ t×T/T

and choose t ∈ T such that π = (x, [t]) for x ∈ t. The group H ′ fixes x ∈ t

and acts on 〈T , t〉, the subgroup generated by T and t. We can pullback the

twisting τ by the map of groupoids

xR/ (Π ∩ xR) //〈T , t〉oH ′
f exp−−−→ fT//N

The action of t on the groupoid on the left is by translation by x. In particular,

the groupoid is locally equivalent to xR/xZ//T o H ′ which is a circle acted

on trivially by T o H ′. The pullback of τ defines an automorphism of the
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restriction of τ to a base-point and hence an equivalence class of a line bundle

over ∗//T o H ′. The character for the action of T is κ(π) and Lτ−tπ,H′ is the

representation restricted to H ′ ⊂ T oH ′.

We again have δ = ε(βi)ε(βi + π)Lτ−tπ,H′ and under the condition that

Lτ−tπ,H′ is trivial we have the following computation of the KN(∗) action on the

summand isomorphic to Kτ
G(f)(fG1) in Kτ

N(fT ).

Corollary 7.3.2. Let ι : Λτ
reg → Y reg, βi ∈ {βi}, h ∈ Hi, A ∈ KN(∗) and

B ∈ Kν′

W̃
(Λτ )cpt. Assume further that ε(βi) = 1. Then the restriction of the

KN(∗) action map KN(∗) ⊗ Kτ
N(fT ) → Kτ

N(fT ) to the direct summand in

Kτ
N(fT ) corresponding to Kτ ′

W (Y reg)cpt is given on the level of character maps

by

χ(A⊗ ι∗(B))h(βi) =
∑
π∈Π̃

∑
λ1∈Λ; λ2∈Λνreg
λ1+λ2=βi+κ(π)

ε(λ2)χ(A)h(λ1) · χ(B)h(λ2)

The KG(∗) action is obtained by first restricting a representation to N .
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Chapter 8

G = SU(3)o Z/2Z

8.1 Lie Theory

Let G1 = SU(3) ⊂ GL3(C). The Lie algebra g = su(3) consists of

skew-hermitian matrices. Fix the maximal torus

T =


α β

γ

∣∣∣ α, β, γ ∈ T; αβγ = 1


and let t be its Lie algebra. Choose the following basis of t

η1 = i

1
0
−1

 ; η2 = i

0
1
−1


and let {ξ1, ξ2} be its dual basis. The lattices Π,Λ are generated by {η1, η2},

{ξ1, ξ2} respectively. The Weyl group W1 is the symmetric group Sym3 which

acts by permuting the three basis vectors in C3 the GL3(C) acts on.

There are six roots

±(ξ1 − ξ2),±(2ξ1 + ξ2),±(ξ1 + 2ξ2)

with the corresponding coroots

±(η1 − η2),±η1,±η2.
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We fix the following set of simple roots

α1 = (ξ1 − ξ2), α2 = (ξ1 + 2ξ2)

and consider an outer automorphism that interchanges the coresponding co-

roots. One such automorphism is given by complex conjugation followed by

conjugation by
(

0 0 −1
0 1 0
−1 0 0

)
. We denote it by γ and let G = G1 oγ Z/2. The

action of γ on t is given by

γ =

(
1 1
0 −1

)
in the basis {η1, η2}.

There are two connected components of G//G corresponding to f = e

and f = γ. We analyze the group Waff for the second case. We have

• Π = 〈η1〉,

• Λ = 〈ξ1〉,

• [T/T ]f = {±1} with non-trivial element given by exp 1
2
η2,

• Π̃ = 〈1
2
η1〉,

• W f
1 = {id, (1, 3)} ⊂ Sym3 = W1. It acts on t by multiplication by −1.

8.2 Twisting τ (level 1)

Let l ∈ H4(BG,Z) be a class that pulls back to 1 ∈ Z ∼= H4(BG1,Z)

and let τ be the twisting corresponding to level l, τ = τl = dim g+ tg(l) + hG.
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By Proposition 6.2.1, the map κ : t→ t∗ is

κ =

(
8 4
4 8

)
in the basis {ηi} and {ξi}. Indeed, this map is symmetric, Weyl invariant and

satisfies 〈κ(hα), hα〉 = 2(1 + h∨G) = 8 for any coroot hα.

The restriction of the twisting τl to {f}//Gf when f = γ is non-trivial

and therefore the analysis of Section 7.3 does not apply directly. In this case

though, we will not need the full strength of that computation and simply

knowing the action ofWaff on Λτ will suffice. We will show that the component

in H3
Gf

({f},Z) of τ vanishes and therefore, by Proposition 5.3.10 the action

of Waff on Λτ is isomorphic to that on Λ.

Proposition 8.2.1. The component of τ in H3
Gf

({f},Z) ∼= Z/2Z vanishes.

Recall that we have τ = τl = dim g + tg(l) + hG. We analyze the

summands tg(l) and hG separately.

Lemma 8.2.2. The restriction of tg(l) ∈ H3(G//G,Z) to H3({f} //Gf
1 ,Z) ∼=

Z/2 is non-zero iff l restricts to an odd integer in H4(G1,Z) ∼= Z.

Proof. Here l ∈ H4(BG,Z) and tg(l) is given by π∗e
∗l.

LBG× S1 e //

π
��

BG

LBG
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where LBG, the loop space of G, is the classifying space of G//G. Restricting

to {f} //Gf
1 corresponds to restriction to

BGf
1
∼= {γf} ×ΩBGf1

PBG ⊂ ΩBG×ΩBG PBG ∼= LBG

where γf ∈ ΩBG ∼= G is a loop corresponding to the element f. Hence we

have the following diagram

BGf
1 × S1 //

��

LBG× S1 e //

π

��

BG

BGf
1

// LBG

where the composition in the top row is given by

BGf
1 × S1 ∼= B

(
Gf

1 × Z
)
→ B(G)

induced by the homomorphism

Gf
1 × Z → G

(x, n) 7→ xfn

We have H4(BG,Z) ∼= Z⊕Z/2, and we are interested in the transgression of a

class l ∈ H4(BG,Z) pulling back to 1 ∈ H4(BG1,Z)1. We have H3(BGf
1 ,Z) =

Z/2 and the reduction mod-2, H3(BGf
1 ,Z)→ H3(BGf

1 ,Z/2) is injective. The

image is the the class w3 ∈ H3(BSO(3),Z/2).2 We can therefore reduce the

1There are two such classes and they differ by a pullback of a class in H4(BZ/2,Z),
which transgresses to 0.

2The class in H3(BSO(3),Z) is β(w2) and its mod 2 reduction is w3.
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class l mod 2 to the class l̃ ∈ H4(BG,Z/2) and compute transgression in mod

2 cohomology.

Consider the map

θ : B (SU(3) o Z/2)→ B (O(6))

given by the action of SU(3) and complex conjugation on the underlying real

vector space C3
R. We claim that

θ∗(w4) = l̃.

It suffices to show that the pullback of θ∗(w4) to H4(BSU(3),Z/2) is non-

trivial. The non-trivial class in H4(BSU(3),Z/2) is the reduction mod 2 of c2

and the claim follows from the fact that w4(VR) = c2(V ) mod 2 for a complex

vector bundle V .

We thus get the diagram

BSO(3)× S1 //

��

B (SU(3) o Z/2) θ // BO(6)

BSO(3)

along which we want to compute the transgression of w4 ∈ H4(BO(6),Z/2).

Let σ ∈ H1(S1,Z/2), and w1, w2, w3 ∈ H∗(BSO(3),Z/2).3 We want to com-

pute w4 of the vector bundle over BSO(3)× S1 specified by the top row map

above and pick out the component w3 ⊗ σ. The vector bundle is V ⊕ V ⊗ L

3Of course w1 = 0 on BSO(3), but we include it right now so that the formulas below
are cleaner.
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where V is the tautological vector bundle on BSO(3) and L is the Mobius line

bundle on S1. By Whitney sum formula and the splitting principal, for any

n-dimensional vector bundle W and a line bundle L
′
, the total Stiefel-Whitney

class of W ⊗ L′ is

w(W ⊗ L′) = w(W ) + w1(L′) (n+ (n− 1)w1(W ) + (n− 2)w2(W ) + . . . )

+ w1(L′)2

((
n

2

)
+

(
n− 1

2

)
w1(W ) + . . .

)
+ . . .

In particular, for our V, L, we get

w(V ⊗ L) = · · ·+ σ(3 + 2w1 + w2) + . . .

where . . . denote the terms not containing σ and

w(V ⊕ V ⊗ L) = · · ·+ (1 + w1 + w2 + w3) · σ(3 + 2w1 + w2) + . . . .

We get that

w4(V ⊕ V ⊗ L) = w3σ + . . .

and its push-forward along BSO(3)× S1 → BSO(3) is non-zero.

Lemma 8.2.3. The component of the restriction of hG to {f}//Gf
1 in

H3(BGf
1 ,Z) ∼= Z/2 is the non-zero element.

Proof. By Proposition 6.3.5, the restriction of hG to {f}//Gf
1 is given by the

equivariant vector bundle gf − dim g. The component in H3 of the twisting

determined by a vector bundle V is β(ω2(V )) where β is the Bockstein homo-

morphism and ω2 is the second Stiefel-Whitney class. We have Gf
1
∼= SO(3)
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and the adjoint action on its Lie algebra is isomorphic to the defining repre-

sentation of SO(3). The result follows by noting that the non-trivial class in

H3(BSO(3),Z) ∼= Z/2Z is β(ω2).

Proof of Proposition 8.2.1. The proposition follows from the two lemmas

above.

8.3 Kτ
G(G)

8.3.0.1 Component of the identity

Let f = id ∈ G. We first understand the structure of Λreg/Waff (f)1

where Waff (f)1 = ΠoW1 and Λreg ⊂ Λ are the elements with trivial stabilizer

in Waff (f)1. Let P be the fundamental domain of the action of Π on Λ via

κ given by the parallelogram spanned by ( 8
4 ) , ( 4

8 ) ∈ Λ. For a fixed element

w ∈ W1, an element λ ∈ Λ is fixed by an element (π,w) ∈ Waff (f)1 for some

π ∈ Π if (w − id)(λ) ∈ κ(Π). We thus compute

U(w) := (w − id)−1(κ(Π)) ∩ P

for w ∈ W1:

• U(1, 2): {(x, x)| 0 ≤ x ≤ 12}

• U(1, 3): {(4, x)| 2 ≤ x ≤ 8} ∪ {(8, x)| 4 ≤ x ≤ 10}

• U(2, 3): {(x, 4)| 2 ≤ x ≤ 8} ∪ {(x, 8)| 4 ≤ x ≤ 10}

• U(1, 2, 3): {(4x, 4y)| 0 ≤ x, y ≤ 3}
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• U(1, 3, 2): {(4x, 4y)| 0 ≤ x, y ≤ 3}

There are 18 elements in P not belonging to the above sets forming 3 free orbits

of W1. The subgroup F = Z/2 ⊂ W permutes two of these orbits and fixes

one of them. The action satisfies Condition 5.3.8 and we pick representatives

of Waff orbits

β1 = (2ξ1 + ξ2) β2 = (3ξ1 + 2ξ2).

The corresponding stabilizers are

H1 = 〈(id, id, γ)〉 ∈ Waff (f); H2 = {0}

We thus get

Kτ
G(G1) ∼= K0

H1
({β1})⊕K0

H2
({β2}) = Z⊕2 ⊕ Z.

8.3.0.2 Component of the transposition

Let f = (id, χ) ∈ G. We have Π̃ = 〈1
2
η1〉 and κ(1

2
η1) = 4ξ1 ∈ Λ = 〈ξ1〉.

There is one free Waff (f)1 = Π̃ oW f
1 orbit Õ represented by β3 = ξ1. We

have H3 := Z/2 and Condition 5.3.8 is again satisfied and

Kτ
G(fG1) ∼= K0

H3
({β3}) = Z⊕2.

8.4 R(G) module structure

We fix the following basis of Kτ
G(G):

(1, I), (1, σ), (2, I), (3, I), (3, σ)
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where (i, V ) ∈ K0
Hi

(βi) is given by representation V . The fundamental weights

of G1 are

w1 = ξ1 w2 = ξ2 + ξ1.

The irreducible representations of G1 are labeled by pairs of non-negative inte-

gers (m1,m2) corresponding to the highest-weight representation V(m1,m2) with

highest weight m1w1 + m2w2. Let X = Z≥0 × Z≥0 be the set of isomorphism

classes of irreducible representations of G1. The representations of G are given

by Z/2 equivariant vector bundles over X as in Example 2.5.3. The action of

Z/2 on X is by exchanging the two factors. The irreducible representations

are therefore given by

W(m1,m2) := V(m1,m2) ⊕ V(m2,m1)

with m1 < m2,

W(m,m),I := V(m,m)

with Z/2 acting trivially, and

W(m,m),σ := V(m,m)

with Z/2 acting by −1.

We first analyze the map ι∗ : R(G) → Kτ
G(G). We use Proposi-

tion 7.2.3. The Weyl vector of G1 is

ρ = 2ξ1 + ξ2 = w1 + w2

We have

ι∗W(0,0),I = (1, I),
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ι∗W(0,0),σ = (1, σ),

ι∗W(0,1) = (2, I).

We determine the action of W(0,0),I,W(0,0),σ,W(0,1) on

{(1, I), (1, σ), (2, I), (3, I), (3, σ)}.

The following are the character maps, i.e. elements in ZC[Λ//W ], of the classes

in KG(∗) that we will use. We will denote by an element λ ∈ Λ the function

on Λ which equals 1 on λ and 0 everywhere else. We will write (n,m) for

nξ1 +mξ2.

χ(W(0,0),σ)e = (0, 0)

χ(W(0,0),σ)γ = −(0, 0)

χ(W(0,1))e = (0,−1) + (−1, 0) + (1, 1) + (−1,−1) + (0, 1) + (1, 0)

χ(W(0,1))γ = 0

We used the Kostant multiplicity formula to determine the weight decom-

position of W(0,1). The elements in Kτ
G(G) correspond to character maps in

ZC[Λτ
reg//W ]:

χ((1, I))e = χ((1, I))γ =
∑
w∈W1

w((2, 1))

= (1, 2) + (−1,−2) + (2, 1) + (1,−1) + (−2,−1) + (−1, 1)

χ((1, σ))e = −χ((1, I))γ =
∑
w∈W1

w((2, 1))
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χ((2, I))e =
∑
w∈W

w((2, 3))

= (2, 3) + (−1,−3) + (3, 2) + (1,−2) + (−3,−1) + (−2, 1)

+ (1, 3) + (−2,−3) + (3, 1) + (2,−1) + (−3,−2) + (−3,−3)

χ((2, I))γ = 0

The rest is a direct computation using Corollary 7.2.11. For example,

to compute W(0,1) ⊗ (2, I) we compute the corresponding character:

χ(W(0,1) ⊗ (2, I))e(β1) = 2

χ(W(0,1) ⊗ (2, I))γ(β1) = 0

χ(W(0,1) ⊗ (2, I))e(β2) = 1

χ(W(0,1) ⊗ (2, I))γ(β2) = 0

where for example the contributions to χ(W(0,1) ⊗ (2, I))e(β1) come from the

following pairs of weights which add to β1 = (2, 1) :

(−1,−1), (3, 2)

(−1, 0), (3, 1)

and the contribution to χ(W(0,1)⊗(2, I))e(β2) comes from the pair (0, 1), (3, 1).

This implies

W(0,1) ⊗ (2, I) = (1, I) + (1, σ) + (2, I).

Analogously, we compute the other products
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(1, I) (1, σ) (2, I)
W(0,0),I (1, I) (1, σ) (2, I)
W(0,0),σ (1, σ) (1, I) (2, I)
W(0,1) (2, I) (2, I) (1, I) + (1, σ) + (2, I)

For the other component, {f}//Gf , we don’t have τ |{f}//Gf ∼= gf , but

the Waff action on Λτ is enough in this case to compute the R(G) structure

because there is only one free Waff orbit and the translations of β3 by charac-

ters of any of W(0,0),I,W(0,0),σ,W(0,1) does not land in a κ(Π̃) shift of β3. This

is evident from the character maps of the restrictions of these classes to N f :

χ(W(0,0),σ)e = (0)

χ(W(0,0),σ)γ = −(0)

χ(W(0,1))e = 2(−1) + 2(0) + 2(1)

χ(W(0,1))γ = 0.

where the underline denotes restriction to N f . The action should be clear

from these considerations:

(3, I) (3, σ)
W(0,0),I (3, I) (3, σ)
W(0,0),σ (3, σ) (3, I))
W(0,1) (3, I) + (3, σ) (3, I) + (3, σ)

8.5 Multiplication Table

(1, I) (1, σ) (2, I) (3, I) (3, σ)
(1, I) (1, I) (1, σ) (2, I) (3, I) (3, σ)
(1, σ) (1, σ) (1, I) (2, I) (3, σ) (3, I))
(2, I) (2, I) (2, I) (1, I) + (1, σ) + (2, I) (3, I) + (3, σ) (3, I) + (3, σ)
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Chapter 9

G = Spin(8)o Sym3

9.1 Lie Theory

We first consider the group G = SO(8) and its Lie theory. We fix

four orthogonal planes P1, P2, P3, P4 ⊂ R8 and let T be the maximal torus

consisting of rotations in the planes Pi. The period lattice Π of T is generated

by elements η1, . . . , η4 ∈ t which exponentiate to rotations by 2π in planes

P1, . . . , P4 respectively. Let ξ1, . . . , ξ4 be the dual basis of Λ = hom(Π,Z) ⊂ t
∗
.

Elements of G which normalize T have to preserve the set of planes P1, . . . , P4.

It follows that up to the action of T an element in the normalizer of T permutes

the planes Pi and acts by reflection over a line on even number of planes Pi

(since it has to preserve the overall orientation). If we let R ⊂ (Z/2)×4 be

the subgroup consisting of even number of −1’s, then we can realize the Weyl

group of G as

W1 = Ro Sym4.

The action of W1 on t is the following: the subgroup Sym4 permutes the basis

elements {ηi} and the subgroup R negates an even number of basis elements.

The action on Λ is the same with {ηi} replaced by {ξi}.

We now let G1 = Spin(8) and T the pullback of T by the projection
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G1 → G. The Lie algebras of T and T are naturally identified. The period

lattice Π of T is the sublattice

Π = {
4∑
i=1

aiηi| ai ∈ Z,
4∑
i=1

ai ∈ 2Z}.

The weight lattice Λ of T is larger than the weight lattice of T :

Λ =

{
4∑
i=1

ciξi| ci ∈
1

2
Z,

{
ci ∈ Z for all i

ci ∈ 1
2
Z\Z for all i

}
.

The Weyl group of G1 is the same as the Weyl group of G with the same action

on t and t∗.

The roots of G1 are elements {±ξi ± ξj} where i, j ∈ {1, . . . , 4} and

i 6= j. The corresponding coroots are {±ηi ± ηj}. We fix a set of simple roots

α1, . . . , α4:

α1 = ξ1 − ξ2; α2 = ξ2 − ξ3; α3 = ξ3 − ξ4; α4 = ξ3 + ξ4.

The outer automorphism group of a simply connected simple group is

isomorphic to the automorphism group of the corresponding Dynkin diagram.

In the case of the group Spin(8), the Dynkin diagram is D4 whose group of au-

tomorphisms is the symmetric group Sym3 which acts by permuting the outer

nodes of D4. With the choice of simple roots as above, the correspondence

with the Dynkin diagram is given by associating the inner node of D4 to the

simple root α2 and the outer nodes to the roots α1, α3, α4. The identification

of the set {α1, α3, α4} with the set {1, 2, 3} in that order defines an action of

Sym3 on the Dynkin diagram and therefore by diagram automorphisms on g.
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The action restricted to t is given by a homomorphism ρ : Sym3 → GL(t). In

the basis {ηi}, this homomorphism is given by the following matrices

ρ((1, 2)) =
1

2


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

 , ρ((1, 3)) =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



ρ((2, 3)) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , ρ((1, 2, 3) =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1



ρ((1, 3, 2)) =
1

2


1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

 .

The above choices define an action of Sym3 on Spin(8). Let G be the

semi-direct product Spin(8)oSym3. We compute here the structures necessary

for the calculation of Kτ
G(G). We use the same notation as in Section 5.3. The

group π0(G) = Sym3 has three conjugacy classes: [id], [(2, 3)], [(1, 2, 3)]. The

groupoid G//G is therefore the union of three groupoids of the form fG1//G(f)

with f = id, (2, 3), (1, 2, 3).

We treat each case separately.

1. Case f = (2, 3)

• t = 〈η1, η2, η3〉

• Π = {
∑3

i=1 aiηi| ai ∈ Z,
∑3

i=1 ai ∈ 2Z},

• Λ =

{∑3
i=1 ciξi| ci ∈

1
2
Z,

{
ci ∈ Z for all i

ci ∈ 1
2
Z\Z for all i

}
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• [T/T ]f = {±1} with non-trivial element given by exp 1
2
η4,

• Π̃ = {
∑3

i=1 aiηi| ai ∈ Z}

• W f
1 = R o Sym3 ⊂ W1 = R o Sym4 where Sym3 ⊂ Sym4 is the

subgroup fixing the last entry.

• Zπ0(G)(fG1) = {id, (2, 3)} ⊂ Sym3.

2. Case f = (1, 2, 3)

• t = 〈η1 + η3, η2 − η3〉,

• Π = {a1(η1 + η3) + a2(η2 − η3)| ai ∈ Z},

• Λ =
{
c1

1
3
(ξ1 − ξ2 + 2ξ3) + c2

1
3
(2ξ1 + ξ2 + ξ3)| ci ∈ Z

}
. For conve-

nience, define the following basis of Λ

z1 :=
1

3
(ξ1 − ξ2 + 2ξ3) , z2 :=

1

3
(2ξ1 + ξ2 + ξ3)

• [T/T ]f = Z/3Z with a generator given by exp(1
3
η4),

• Π̃ = {a1
1

3
(η1 − η2 + 2η3) + a2(η2 − η3)| ai ∈ Z}

= {a1
1

3
(η1 − η2 + 2η3) + a2

1

3
(2η1 + η2 + η3)| ai ∈ Z}

• W f
1 has 12 elements:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
0 0 −1 0
1 0 0 0
0 0 0 −1

 ,


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,
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
0 −1 0 0
0 0 1 0
−1 0 0 0

0 0 0 1

 ,


0 0 1 0
1 0 0 0
0 −1 0 0
0 0 0 −1

 ,


0 0 −1 0
−1 0 0 0

0 1 0 0
0 0 0 1

 ,


0 −1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1

 ,


0 0 −1 0
0 1 0 0
−1 0 0 0

0 0 0 1

 ,


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 ,


−1 0 0 0

0 0 −1 0
0 −1 0 0
0 0 0 −1

 ,


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 ,


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 −1

 .

• The action of W f
1 on t∗ with respect to the basis {z1, z2} is(

1 0
0 1

)
,

(
1 1
−1 0

)
,

(
−1 0

0 −1

)
,

(
−1 −1

1 0

)
(9.1.1)

(
0 −1
1 1

)
,

(
0 1
−1 −1

)
,

(
1 1
0 −1

)
,

(
0 −1
−1 0

)
(
−1 0

1 1

)
,

(
1 0
−1 −1

)
,

(
−1 −1

0 1

)
,

(
0 1
1 0

)
.

• Zπ0(G)(fG1) = {id, (1, 2, 3), (1, 3, 2)} ⊂ Sym3.

9.2 Twisting τ (level 1)

We specialize to the twisting τl corresponding to a level l ∈ H4(BG,Z)

which pulls back to 1 ∈ Z ∼= H4(BG1,Z). By Proposition 6.2.1, we have

κ = (1 + 6)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


in the bases {ηi, ξi} since h∨G = 6.
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By Proposition 4.1.2, the fixed subgroups Gf are simply connected. In

particular that implies that H3
Gf

({f},Z) = {0} for all choices of f . Therefore

Condition 7.3.1 is satisfied and the analysis of Section 7.3 applies.

9.3 Kτ
G(G)

9.3.0.1 Component of the Identity

We would like to first understand the action of W1 on Λ/κ(Π). First,

note that it acts by homomorphisms since W1 acts on Λ by homomorphisms.

Next note that W1 preserves the subgroup J = {
∑4

i=1 ciξi| ci ∈ Z}/κ(Π). It

also fixes the point s := 7
2
(
∑

i ξi) and therefore the two J-cosets are isomorphic

as W1-sets: the isomorphism is obtained by sending 0 ∈ J to s ∈ sJ . Next

observe that J = (Z/7)
⊕

4 ⊕ Z/2 with the four elements of order 7 being 2ξi

for i = 1, . . . 4 and the element of order 2 being d := 7ξ1. Note that W1 fixes d

and preserves the subgroup (Z/7)
⊕

4 := J ′ ⊂ J . On J ′, W1 = R o Sym4 acts

manifestly by permuting the entries and negating even number of elements. It

follows that (c1, c2, c3, c4) ∈ J ′ is not fixed by any non-zero element of W1 if

and only if ci 6= ±cj for i 6= j. There is only one free W1 orbit in J ′ generated

by (0, 1, 2, 3) ∈ J ′.

In summary, there are 4 free W1 orbits in Λ/κ(Π)

O1 = 〈2ξ2 + 4ξ3 + 6ξ4〉 O2 = 〈7ξ1 + 2ξ2 + 4ξ3 + 6ξ4〉

O′2 = 〈2ξ2 +4ξ3 +6ξ4 +
7

2
(
∑
i

ξi)〉 O′′2 = 〈7ξ1 +2ξ2 +4ξ3 +6ξ4 +
7

2
(
∑
i

ξi)〉
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The group Sym3 acts on the orbits by preserving O1 and permuting

O2,O′2,O′′2 . We fix elements β1 ∈ O1 and β2 ∈ O2 such that StabWaff
(βi) ⊂

{0}o {e}o Sym3

β1 := 3ξ1 + 2ξ2 + ξ3 β2 := 10ξ1 + 2ξ2 + ξ3.

The element β1 is chosen to coincide with the Weyl vector. We have

H1 = Sym3 ⊂ {0}oW1 o Sym3

H2 = Z/2 = 〈(2, 3)〉 ⊂ Sym3 ⊂ {0}oW1 o Sym3.

The stabilizers Hi satisfy Condition 5.3.8 and therefore

Kτ
G(G1) ∼= K0

H1
({β1})⊕K0

H2
({β2}) = Z⊕3 ⊕ Z⊕2

9.3.0.2 Component of a 2-cycle

We first understand the action of W f
1 on Λ/κ(Π̃). We have that W f

1

preserves the subgroup J = {
∑3

i=1 ciξi| ci ∈ Z}/κ(Π̃) and fixes the element

7
2
(
∑

i ξi). There is only one free W f
1 orbit in J . All in all we have two orbits

generated by

β3 := ξ1 + 2ξ2 + 3ξ3 β4 :=
7

2

(
3∑
i=1

ξi

)
+ ξ1 + 2ξ2 + 3ξ3.

The stabilizers are

H4 = H3 = 〈(2, 3)〉

and they satisfy Condition 5.3.8. We have

Kτ
G(fG1) ∼= K0

H3
({β3})⊕K0

H4
({β4}) = Z⊕2 ⊕ Z⊕2
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9.3.0.3 Component of a 3-cycle

We again first understand the action of W f
1 on Λ/κ(Π̃). We have that

Λ/κ(Π̃) ∼= 〈z1, z2〉 = Z/7 ⊗ Z/7. The action of W f
1 is as in 9.1.1. Note that

Λ/κ(Π̃) is a 2-dimensional vector space over F7 and that W f
1 acts linearly. In

particular, for each non-identity element w ∈ W f
1 , the set of points in Λ/κ(Π̃)

which are fixed by w is a linear subspace of dimension 0 or 1. Moreover,

the only point in the intersection of two distinct subspaces of dimension 1 in

Λ/κ(Π̃) is the zero vector. We now list the non-identity elements of W f
1 with

eigenvalue 1 and specify the corresponding eigenspaces(
1 1
0 −1

)
=⇒

(
1
0

)
;

(
0 −1
−1 0

)
=⇒

(
1
−1

)
(
−1 0

1 1

)
=⇒

(
0
1

)
;

(
1 0
−1 −1

)
=⇒

(
2
−1

)
(
−1 −1

0 1

)
=⇒

(
−1
2

)
;

(
0 1
1 0

)
=⇒

(
1
1

) .

In particular, the union of the fixed subspaces has order 37. There are 49

elements in total in Λ/κ(Π̃), hence there is one free W f
1 orbit. This orbit is

for example generated by the element

β5 = z1 + 2z2 =
1

3
(ξ1 − ξ2 + 2ξ3) +

2

3
(2ξ1 + ξ2 + ξ3) =

5

3
ξ1 +

1

3
ξ2 +

4

3
ξ3.

For the stabilizer, we have

H5 = 〈(1, 2, 3)〉 ⊂ Sym3 ⊂ {0}oW1 o Sym3

which satisfies Condition 5.3.8 and therefore

Kτ
G(fG1) ∼= K0

H5
({β5}) = Z⊕3.
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9.4 R(G) module structure

We fix the following basis of Kτ
G(G):

{(1, I), (1, σ), (1, st), (2, I), (2, σ), (3, I), (3, σ), (4, I), (4σ), (5, I), (5, ω), (5, ω2)}

where (i, V ) ∈ K0
Hi

(βi) given by representation V of Hi, σ is the sign repre-

sentation, st is the standard irreducible representation of Sym3 and ω is the

1-dimensional representation of 〈(1, 2, 3)〉 ∼= Z/3 where (1, 2, 3) acts by e
2
3
πi.

The fundamental weights of G1 are

w1 = ξ1 w2 = ξ1 + ξ2 w3 =
1

2
(ξ1 + ξ2 + ξ3 − ξ4) w4 =

1

2
(ξ1 + ξ2 + ξ3 + ξ4).

The group Sym3 acts on the weight vectors by fixing w2 and permuting

w1, w3, w4. A representation of G is given by a tuple n = (n1, n2, n3, n4) ∈ Z×4
≥0

and a representation V of StabSym3
(n). We label such representation by Wn,V .

We first analyze the map ι∗ : R(G) → Kτ
G(G1). The map is surjective

and we will find preimages of the generators we fixed above. The Weyl vector

of G1 is

ρ = 3ξ1 + 2ξ2 + ξ1 = w1 + w2 + w3 + w4.

We have

ι∗W(0),I = (1, I)

ι∗W(0),σ = (1, σ)

ι∗W(0),st = (1, st)

ι∗W(7,0,0,0),I = (2, I)
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ι∗W(7,0,0,0),σ = (2, σ).

The twisting τ satisfies Condition 7.2.8 by Proposition 7.2.7 and there-

fore Corollary 7.3.2 gives an algorithm for computing the R(G) action. The

algorithm is the same as described in more detail for SU(3) o Z/2. We per-

formed the computation using the program Sage which is particularly adept

at performing computations in representation rings of Lie groups. We simply

record the answer here.

9.5 Multiplication Table

(1, I) (1, σ) (1, st)
(1, I) (1, I) (1, σ) (1, st)
(1, σ) (1, σ) (1, I) (1, st)
(1, st) (1, st) (1, st) (1, I) + (1, σ) + (1, st)
(2, I) (2, I) (2, σ) (2, σ) + (2, I)
(2, σ) (2, σ) (2, I) (2, σ) + (2, I)
(3, I) (3, I) (3, σ) (3, I) + (3, σ)
(3, σ) (3, σ) (3, I) (3, I) + (3, σ)
(4, I) (4, I) (4, σ) (4, I) + (4, σ)
(4, σ) (4, σ) (4, I) (4, I) + (4, σ)
(5, I) (5, I) (5, I) (5, w) + (5, w2)
(5, w) (5, w) (5, w) (5, w2) + (5, I)
(5, w2) (5, w2) (5, w2) (5, I) + (5, w)
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(2, I) (2, σ)
(1, I) (2, I) (2, σ)
(1, σ) (2, σ) (2, I)
(1, st) (2, σ) + (2, I) (2, σ) + (2, I)
(2, I) (1, I) + (1, st) + (2, I) + (2, σ) (1, σ) + (1, st) + (2, I) + (2, σ)
(2, σ) (1, σ) + (1, st) + (2, I) + (2, σ) (1, I) + (1, st) + (2, I) + (2, σ)
(3, I) (3, I) + (4, I) + (4, σ) (3, σ) + (4, I) + (4, σ)
(3, σ) (3, σ) + (4, I) + (4, σ) (3, I) + (4, I) + (4, σ)
(4, I) (3, I) + (3, σ) + (4, I) (3, I) + (3, σ) + (4, σ)
(4, σ) (3, I) + (3, σ) + (4, σ) (3, I) + (3, σ) + (4, I)
(5, I) (5, I) + (5, w) + (5, w2) (5, I) + (5, w) + (5, w2)
(5, w) (5, I) + (5, w) + (5, w2) (5, I) + (5, w) + (5, w2)
(5, w2) (5, I) + (5, w) + (5, w2) (5, I) + (5, w) + (5, w2)
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Études Sci. Publ. Math. (68), 175–186 (1989) (1988).

127



[BBCW14] M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symme-

try, Defects, and Gauging of Topological Phases, ArXiv e-prints

(October 2014), 1410.4540.

[BFM99] A. Borel, R. Friedman and J. W. Morgan, Almost commuting el-

ements in compact Lie groups, ArXiv Mathematics e-prints (July

1999), math/9907007.

[Bor61] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie
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