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Abstract

Theory of n-complements with applications is presented.

1 Introduction

Recall two key concepts for us.

Definition 1. Let (X/Z 3 o,D) be a pair with a [proper] local morphism
X/Z 3 o and with an R-divisor D on X. Another pair (X/Z 3 o,D+)
with the same local morphism and with an R-divisor D+ on X is called an
R-complement of (X/Z 3 o,D) if

(1) D+ ≥ D;

(2) (X,D+) is lc; and

(3) K +D+ ∼R 0/Z 3 o.

In particular, (X/Z 3 o,D+) is a [local relative] 0-pair. [Note that the
neighborhood of o for another pair can be different from the original one.]

The complement is klt if (X,D+) is klt.

Definition 2 ([Sh92, Definition 5.1]). Let n be a positive integer, and
(X/Z 3 o,D) be a pair with a local morphism X/Z 3 o and with an R-
divisor D =

∑
diDi on X. A pair (X/Z 3 o,D+), with the same local

morphism and with a Q-divisor D+ =
∑
d+
i Di on X, is an n-complement of

(X/Z 3 o,D) if

∗Partially supported by NSF grant DMS-1400943 and the MPIM grant.

1



(1) for every prime divisor Di on X,

d+
i ≥

{
1, if di = 1;

b(n+ 1)dic /n otherwise;

(2) (X,D+) is lc; and

(3) K +D+ ∼n 0/Z 3 o.

The number n is called a complementary index . [Note that the neighborhood
of o for another pair can be different from the original one.]

The n-complement is monotonic if D+ ≥ D.

Remark 1. (1) By (2) of Definitions 1 and 2, D+ is a subboundary. So, by
(1) of both definitions, D is a subboundary too. By (1) of both definitions,
d+
i = 1 if di = 1.

Again by (1) of both definitions D+ is a boundary if so does D.
(2) Immediate by definition an n-complement is monotonic if and only

if it is an R-complement. In general, an n-complement is not monotonic.
However, the latter property can happen for certain n-complements or mul-
tiplicities, boundaries, e.g., for hyperstandard ones [PSh08, Theorem 1.4 and
Lemma 3.5] [B, Theorem 1.7]. (Cf. [HLSh, Theorem 1.6] vs Example 5, (4)
below.)

It is not surprising that the existence of an n-compliment does not imply
the existence of an R-compliment. But by (1) of Definition 2 and since
b(n+ 1)dic /n is very close to di for every di ∈ [0, 1) and sufficiently large
n, the multiplicity d+

i for an n-compliment become ≥ di or very close to di.
This observation and the remark (1) will be used in a proof of the easy part
of Theorem 1 below, one of our main results.

However, if di ≥ 1 then b(n+ 1)dic /n > 1 and typically > di. On the
other hand, if di < 0 then b(n+ 1)dic /n < 0 and typically < di.

(3) By (3) of Definition 2, the (Cartier and log canonical) index of K+D+

divides n, in particular, nD+ is integral. Thus D+ is automatically Q-divisor.
(4) If X/Z 3 o is proper then ∼R in (3) of Definition 1 can be replaced

by the numerical equivalence ≡ in the following two cases:

X/Z 3 o has weak Fano type [ShCh, Corollary 4.5]; or

D+ is a boundary [A05, Theorem 0.1,(1)] [G, Theorem 1.2].
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(5) We can define also R- and n-complements for pairs (X/Z,D) with not
necessarily local morphisms. But they have more complicated behaviour. In
this situation it is better to use the relative version ∼Z ,∼n,Z and ∼R,Z of
linear equivalences instead of the usual one∼,∼n and∼R respectively (see 1.1
below). Then the local over Z existence of R-complements usually implies the
existence of an R-complement over Z (see Addendum 8, [ShCh, Corollary 4.5]
and cf. Proposition 9). However, for local over Z n-complements, the index
n can depend on a point o ∈ Z. To find a universal n is a real challenge (cf.
Addendum 1).

For both cases of (4), ≡ over Z is equal to ∼R,Z .

Example 1. (1) Every relative log Fano pair (X/Z,B) over a quasiprojective
variety Z with a boundary B has an R-complement (X/Z,B+). However,
∼R should be replaced by its relative version ∼R,Z (cf. Remark 1, (5)). In
other words, in this situation (3) of Definition 1 has the following form:

K +B+ ∼R ϕ
∗H and K +B+ ≡ 0/Z,

where ϕ : X → Z and H an R-ample divisor on Z. [Recall that] we suppose
that Z is quasiprojective.

(2) By definition every pair (X/Z, 0) with wFtX/Z has a klt R-complement
(see Fano and weak Fano types in 1.1 below and cf. [PSh08, Lemma-Definition 2.6,
(ii)]).

(3) Every complete 0-pair (X,D) has an R-complement and D+ = D.
Moreover, if D+ = D = B is a boundary then K +D+ = K +B ∼R 0⇔≡ 0
[A05, Theorem 0.1,(1)] [G, Theorem 1.2].

Every relative proper 0-pair (X/Z,D) also has an R-complement, e.g.,
D+ = D. However, D+ = D always if the pair is local and nonklt over o
near every connected component of Xo, the central fiber. (Cf. with Maximal
lc 0-pairs in Section 11.)

(4) Let (X,D) be a pair with a toric variety X and with torus invariant
D. Then, for any morphism X/Z and any positive integer n, (X/Z,D) has
an n-compliment if D is a subboundary. If K + D is R-Cartier the last
assumption is equivalent to the lc property of (X,D). For instance, we can
take D+ equal to the sum of invariant divisors. The complement is torus
invariant too. This is a rear case where we can use ∼ instead of its relative
version ∼Z .

For complete toric X, D is a subboundary if and only if (X,D) has an
R-compliment. In this situation, the invariant complement is unique.
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(5) Every n-complement (P1, B+) of (P1, 0) corresponds to a polynomial
f ∈ k[x] of the degree 2n:

B+ = (f)0/n,

such that every root of f has multiplicity ≤ n = (deg f)/2 (cf. the semista-
bility of polynomials). Indeed, for an appropriate affine chart A1 = P1 \ ∞
with a coordinate x, we can assume that B+ is supported in A1 and nB+

is given by the zeros of some polynomial f in x. Notice that B+ is effective
by (1) of Definition 2. By (3) of the definition (deg f)/n = − degKP1 = 2
and f has the required degree. The multiplicities of roots ≤ n by (2) of
Definition 2:

multB+ =
1

n
multa f ≤ 1, a ∈ k.

If P1 is defined over algebraically nonclosed field k, we can construct a n-
complement (P1, B+) over k taking a sufficiently general polynomial f in k[x].
(Its roots belong now to k.) Such a polynomial exists: take a polynomial
with simple roots. E.g., for n = 2, f is a quadratic polynomial with nonzero
discriminant.

Theorem 1. Let (X/Z 3 o,B) be a pair with a wFt morphism X/Z 3 o and
a boundary B on X. Then (X/Z 3 o,B) has an R-complement if and only
if (X/Z 3 o,B) has n-complements for infinitely many positive integers n.

The hard part of the theorem about existence of n-complements will be
stated more precisely in Theorem 2 below and proved in Section 4. The
converse statement follows from the closed property for R-complements in
Theorem 6 below and proved in Section 4.

Restrictions on complementary indices. Let I be positive integers, ε
be a positive real number, v be a nonrational vector in a finite dimensional
R-linear space Rl, and e be a direction in the rational affine span 〈v〉 of v.
Usually we are looking for n-complements with n satisfying the following
properties: for n there exists a rational vector vn ∈ 〈v〉 such that

Divisibility: I divides n;

Denominators: nvn is integral, that is, nvn ∈ Zl;

Approximation: ‖vn − v‖ < ε/n.
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Anisotropic approximation:∥∥∥∥ vn − v
‖vn − v‖

− e
∥∥∥∥ < ε.

If ε ≤ 1/2, vn is unique and is the best approximation with denominator n.
Note that ‖ ‖ denotes the maximal absolute value norm [Sh03, Notation 5.16].

Most of applications of the theory of complements are based on these
restrictions. The choice of n in applications depend on I, ε, v, e but also on
the dimension d.

Theorem 2 (Existence of n-complements). Let I, ε, v, e be the data as in
Restrictions on complementary indices above and (X/Z 3 o,B) be a pair
with a wFt morphism X/Z 3 o and a boundary B on X. Suppose also that
(X/Z 3 o,B) has an R-complement. Then (X/Z 3 o,B) has n-complements
for infinitely many positive integers n under Restrictions on complementary
indices with the given data.

Originally, it was expected that, in a given dimension d, there exists
a finite set of complementary indices n such that the existence of an R-
complement implies the existence of an n-complement. This is not true if
d ≥ 3 (see Examples 11, (1-3)). We have only the following slightly weaker
form of the expectation.

Theorem 3 (Boundedness of n-complements). Let d be nonnegative integer,
∆ ⊆ (R+)r,R+ = {a ∈ R | a ≥ 0}, be a compact subset (e.g., a polyhedron)
and Γ be a subset in the unite segment [0, 1] such that Γ ∩ Q satisfies the
dcc. Let I, ε, v, e be the data as in Restrictions on complementary indices.
Then there exists a finite set N = N (d, I, ε, v, e,Γ,∆) of positive integers
(complementary indices) such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data;

Existence of n-complement: if (X/Z 3 o,B) is a pair with wFt X/Z 3 o,
dimX ≤ d, connected Xo and with a boundary B, then (X/Z 3 o,B)
has an n-complement for some n ∈ N under either of the following
assumptions:

(1) (X/Z 3 o,B) has a klt R-complement; or
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(2) B =
∑r

i=1 biDi with (b1, . . . , br) ∈ ∆ and additionally, for every R-divisor
D =

∑r
i=1 diDi with (d1, . . . , dr) ∈ ∆, the pair (X/Z 3 o,D) has an

R-complement, where Di are effective Weil divisors (not necessarily
prime); or

(3) (X/Z 3 o,B) has an R-complement and, additionally, B ∈ Γ.

Addendum 1. We can relax the connectedness assumption on Xo and sup-
pose that the number of connected components of Xo is bounded.

Moreover, it is enough to suppose the boundedness up to local (even for-
mal) isomorphisms over Z 3 o of corresponding neighborhoods.

Addendum 2. We can relax also the assumption that the base field k is
algebraically closed and suppose only that chark = 0.

Similarly, the theorem holds for G-pairs where G is a finite group.

Remark 2. (1) The set N (d, I, ε, v, e,Γ, r) is not unique by Divisibility and
Approximation in Restrictions on complementary indices and depends on
the data d, I, ε, v, e,Γ, r. We use for N notation N (d, I, ε, v, e,Γ, r) only to
show parameters d, I, ε, v, e,Γ, r, on which depend the choice of N . Actually,
we need only the partial data d, I, ε, v, e and N = N (d, I, ε, v, e) under the
assumption (1) of the theorem.

Below we use also some other sets for boundary multiplicities instead of
Γ and with a different meaning (cf. 6.10).

(2) If v is nonrational then 〈v〉 is not a point and has a direction. Other-
wise there are no directions and Anisotropic approximation is void. Nonethe-
less the other properties hold if we take vn = v for every n ∈ N and suppose
that I is sufficiently divisible. In this situation we get N = N (d, I, ε, v).

(3) Denominators property means that vn has rational coordinates with
denominators (dividing) n. We already noticed that by Approximation prop-
erty, if ε ≤ 1/2 then vn is the best rational approximation of v with those
denominators.

(4) Our main results and applications work for any base field k of char-
acteristic 0 and G-pairs.

For certain boundaries it is enough a single complementary index, e.g.,
for boundaries with only hyperstandard multiplicities [PSh08, Theorem 1.4]
[B, Theorem 1.7]. Alas, it is not true in general.
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Example 2 (Nonsingle index). Let d, n be two positive integers. Take the
projective space X = Pd of dimension d with a boundary

B =
∑ 1

n+ 1
Di,

where Di runs through (d + 1)(n + 1) distinct rather general hyperplanes.
Then (X,B) is a klt 0-pair, has a klt R-complement and it is actually (X,B)
itself by Example 1, (3). However, (X,B) doesn’t have n-complements be-
cause

B+ ≥ b(n+ 1)Bc
n

=
n+ 1

n
B > B

by (1) of Definition 2. Hence, for d ≥ 1, every set N (d, I, ε, v, e) under (1-2)
of Theorem 3 has at least two indices. Similar examples exist under (3) of
the theorem.

Similarly, for any finite set of positive integers N , we can find a pair
(X,B) of dimension d which has a klt R-complement but doesn’t have n-
complements for all n ∈ N . However X of such an example should be
reducible or not connected! This is why in Theorem 3 above and Conjecture 1
below we suppose that X/Z 3 o is local with connected Xo, e.g., with a
contraction X/Z 3 o (cf. Remark 3, (2)). (Cf. also Examples 11, (1-3).)

Remark 3. (1) Taking general hyperplane sections of Z, if they are needed,
we can assume in Theorems 1-3 and in similar statements that o is a closed
point of Z. However we give a more rigorous treatment below for all points
o avoiding taking such sections.

(2) Under the assumption that k is algebraically closed, another assump-
tion that X/Z 3 o is a local morphism of [normal] varieties with connected
Xo in Theorem 3 is necessary for the finiteness of N , the boundedness of
n-complements, even in the klt case (1) (cf. Addendum 2). In particular,
for algebraically closed k and normal complete X/k, the natural morphism
X/o = Spec k is always local and Xo = X is connected if and only if X is
irreducible. By Example 2 the irreducibility is important for boundedness.

According to Addendum 1 we can replace the connectedness of Xo by the
boundedness of connected components : for a natural number N , Theorem 3
still holds if instead of the connectedness of Xo the fiber Xo has at most N
connected components. In particular, for any given pair (X/Z,B) with a
wFt morphism into a quasiprojective variety Z or a local one Z 3 o (resp.
in étale sense), with a boundary B and over any field k, by Theorem 2 and
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Proposition 9 there exists an n-complements for infinitely many n if some R-
complement exists even locally over Z. Actually, the same results expected
without the wFt assumption for X/Z and X/Z 3 o (see Conjecture 1).

Cf. Example 2 above.
Complements in a nonnormal case are a real challenge.
(3) Another challenge is construction of ε-n-complements [Sh04b] (see

Conjecture 5 below).

Main Theorems 1-3 have many important applications. Some of them are
already known but some new. Certain special applications we meet in the
course of the proof of our main theorems. Among other applications – Acc
of log canonical thresholds, etc – see in Section 12.

A few words about the proof of Theorems 1-3. The key part of the
paper is the existence and boundedness of Theorem 3 under the existence
of klt R-complements, that is, under (1) of the theorem. See the proof in
Section 10 and also at the end of Section 11. The theorem under (1) implies
the theorem under (3) from which follows the theorem under (2). See the
proof in Section 11. In its turn, Theorem 2 is immediate by Theorem 3 under
(2) and Addendum 1 or by [BSh, Corollary 1.3]. See the proof in Section 4.
Finally, Theorem 1 follows from Theorem 2 and the closed property for R-
complements. See the proof also in Section 4.

All n-complements of Theorem 3 under (1) can be obtained from n-
complements for exceptional pairs by two standard construction: lifting of
n-complements from lower dimensional bases of fibrations and extension of
n-complements from lower dimensional lc centers. These constructions are
treated respectively in 7.5 and 7.6.

Generalizations and technicalities. Both construction are applied to
appropriate birational models of pairs, in particular, we use modifications
which blow up divisors. Blowdowns of divisors preserves n-complements but
blowups do not so. To overcome this difficulty we introduce b-n-complements
in Definition 3, a birational version of n-complements. Note that every mono-
tonic n-complement is automatically a b-n-complement for log pairs (cf. Re-
marks 1, (2) and 4, (1-2)). In particular, this holds for B with hyperstandard
multiplicities and sufficiently divisible n. This is why we do not need such
a sophistication for hyperstandard boundaries. But usually, n-complements
for a boundary B with arbitrary multiplicities are not b-n-complements by
Example 6 (cf. Proposition 2). Fortunately, it is true for an appropriate low
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approximation of B which are introduced in Hyperstandard sets in Section 3.
This leads to reformulation of our main result in terms of b-n-complements
and of appropriate approximations of boundaries in Theorem 16 and Adden-
dum 57. Respectively, existence of a (klt) R-complement is transform into
existence of an R-complement for approximations of boundaries and hidden
in the proof of main results. Additionally we generalize our results for pairs
with b-boundaries, including, the Birkar-Zhang pairs. Again this is not our
caprice or aspiration for generalization but rather a necessity related to ap-
pearance of moduli part of adjunction divisors and the adjunction itself that
will be recalled in Section 7. So, we try to use these technical staff only where
they are actually needed and left to more advanced readers other possible
generalizations.

In most of results we assume that X/Z 3 o has wFt. Expected general-
izations in the nonwFt case see in Conjecture 1.

What do we use in the proof? This is a reasonable question, especially,
if we would like to understand foundations in the theory of complements and
its relation to the LMMP. Actually, we use and very essentially two Birkar’s
results and the D-MMP for Ft X/Z:

(1) boundedness of n-complements in the hyperstandard case: B ∈ Φ =
Φ(R), where R is a finite set of rational numbers in [0, 1] [B, Theo-
rem 1.7];

(2) (BBAB) boundedness of ε-lc Fano varieties [B16, Theorem 1.1]; and

(3) the D-MMP holds for every R-Cartier R-divisor D on every Ft X/Z
[Sh96, Section 5].

Actually, we use (1) only for exceptional pairs (X,B) with a boundary B ∈ Φ
and Q-factorial Ft X. Moreover, arguments as in [PSh08, Section 6] and
[HX] allow to suppose additionally that B has multiplicities only in a finite
subset of Φ and ρ(X) = 1. In this situation (1) is equivalent to an effective
nonvanishing:

(4) let d be a nonnegative integer and R be a finite set of rational num-
bers in [0, 1] then there exists a positive integer N such that for ev-
ery exceptional pair (X,B) with B ∈ R and Q-factorial Ft X with
dimX = d, ρ(X) = 1,

|−N(K +B)| 6= ∅.
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Moreover, we need the boundedness (2) only in this situation, that is, for X
as in (4). This boundedness follows from (4) and a birational boundedness in
the log general case [PSh08, Section 4] [HX] [B]. The D-MMP of (3) is well-
known and essentially follows form finiteness of (bi)rational 1-contractions
of X/Z [ShCh, Corollary 5.5] and extension results [S, Theorem 0.1] [T,
Theorem 4.1] [HM, Theorem 5.4]. Thus (4) is exactly what we need. This
key result for us is nontrivial and a fundamental one.

Boundedness of lc index in Corollary 31 will be established in two steps:
first, for hyperstandard boundary multiplicities and then the general case
based on n-complements for arbitrary boundary multiplicities (including non-
rational). For hyperstandard multiplicities, we use dimensional induction in
the local case and semiexceptional lc type of Theorem 13 in the global case
or again [B, Theorem 1.7].

1.1 Notation and terminology

By X/Z 3 o we mean a local morphism over Z, where o is a point in Z.
That is, X/Z is a morphism ϕ : X → Z into a neighborhood of the point
o in Z. We consider such morphisms as germs, that is, they are equal if so
they do over some (possibly smaller) neighborhood. Similarly, we understand
statements about local morphisms: properties, conditions, constructions, etc.
For instance, a prime Weil divisor D on X in this situation is such a divisor
that D exists over every neighborhood of o, equivalently, ϕ(D) contains o.
Note that o is not necessarily closed. Another example of this kind the log
canonical property (lc) in (2) of Definitions 1 and 2: it means lc of (X,D+)
over some neighborhood of o in Z, that is, every nonlc center of (X,D+) does
not intersect Xo, the central fiber.

Usually, we suppose that Z is quasiprojective.
Sometimes we use notation (X,D) → Z instead of a pair (X/Z,D). A

local pair (X/Z 3 o,D) is global if X = Xo. Usually, we denote such a pair
by (X,D). Similarly for bd-pairs.

We suppose always that X is a normal irreducible algebraic space or
variety over an algebraically closed field k of characteristic 0. Respectively, Z
is a quasiprojective algebraic variety or scheme over k and the neighborhoods
are in the Zariski topology. Usually, we suppose that the central fiber Xo =
ϕ−1o is connected. E.g., this holds when X/Z 3 o is a contraction.

An R-divisor D on X is an element of WDivRX, the group of Weil R-
divisors onX. Every R-divisorD has a linear presentation in terms of distinct
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prime Weil divisors Di, the standard basis of WDivRX: D =
∑
diDi, where

di = multDi D ∈ R is the multiplicity of D in Di.
For a pair (X/Z 3 o,D) with a local morphism X/Z 3 o, D =

∑
diDi is

an R-divisor on X, defined locally over Z 3 o[, that is, the prime divisors Di

intersect the central fiber Xo].
An R-divisor D =

∑
diDi on X is a subboundary if all di ≤ 1. Respec-

tively, D is a boundary if all 0 ≤ di ≤ 1.
For an R-divisor D =

∑
diDi on X and a subset Γ ⊆ R, D ∈ Γ denotes

that every di ∈ Γ. E.g., D is a subboundary if and only if D ∈ (−∞, 1].
Respectively, D is a boundary if and only if D ∈ [0, 1], the unite segment.
Tacite agreement that 0 ∈ Γ always.

K = KX denotes a canonical divisor on X. KY ditto on any other Y .
For a natural number n, two R-divisors D and D′ on X are n-linear

equivalent if nD ∼ nD′ where ∼ denotes the linear equivalence. Respectively,
∼n will denote n-linear equivalence.

Two R-divisors D and D′ are R-linear equivalent if D−D′ is R-principal,
that is, an R-linear combination of principal divisors. We denote the equiv-
alence by ∼R.

In general, a linear equivalence D ∼Z D′ or D ∼ D′/Z on X over Z
is a local linear equivalences over Z, that is, D − D′ ∼ 0 on some (open)
neighborhood of any fiber of X/Z. That is, D −D′ is locally principal over
Z. This does not imply that D−D′ ∼ 0 or principal on whole X. However,
if X/Z is proper and Z is quasiprojective then this is true modulo vertical
(base point) free divisors on X:

D −D′ ∼ V − ϕ∗H,

where V is a vertical (base point) free divisor on X and H is a very ample
divisor on Z. The difference is an integral linear combination of vertical free
divisors. Note that V is automatically vertical, if it is free, because V is
numerically trivial on every fiber of X/Z. Moreover, if X/Z is a contraction
then V = ϕ∗C, where C is a free divisor on Z [Sh19, Proposition 3]. Thus
V−ϕ∗H = ϕ∗(C−H), an inverse image of a Cartier divisor from Z. The same
holds for ∼Q,Z with vertical Q-free or Q-semiample divisors. The relative R-
linear equivalence ∼R,Z is more subtle. We usually, use this relation in the
local sense, that is, D − D′ is R-principal locally over Z. However, if X/Z
has wFt then

D −D′ ∼R V − ϕ∗H,
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for some vertical R-free divisor V on X and some ample divisor H on Z.
Moreover, if X/Z is a contraction then V = ϕ∗C for an R-free divisor C on
Z.

A linear equivalences on X over Z 3 o are local by definition: linear equiv-
alences on X over a neighborhood of o. Respectively, a numerical equivalence
≡ /Z 3 o is the numerical equivalence with respect to a (proper) local mor-
phism X/Z 3 o (or ,more generally, ≡ on every complete curve of X; cf. Nef
below).

A proper local pair (X/Z 3 o,D) is a 0-pair if (X,D) is lc and K+D ∼R
0/Z 3 o. If D is a boundary we can replace ∼R by ≡ /Z (see Remark 1, (4)
above).

Nef. In the paper, if it is not stated otherwise, we suppose that the (b-
)nef property of a divisor means nonnegative of its intersection with every
complete curve [Sh17, Remark 1]: an R-divisor D on X is nef if it is R-Cartier
and (C.D) ≥ 0 for every complete curve C in X (respectively, on a stable
model of X). It is the usual nefness if X is complete and respectively the
relative one over a scheme or a space S if X/S is proper. Notice that if D is
nef then D is nef over S for every proper X → S. That nefness is typical for
the b-nef property of Dmod (cf. Theorem 8 and Conjecture 3).

Fano and weak Fano types. Both types can be defined in terms of R-
complements.

A weak Fano type (wFt) morphism X/Z 3 o is such a proper local mor-
phism that the pair (X/Z 3 o, 0) has a klt R-complement (X/Z 3 o,B)
with big B. Equivalently, there exists a big boundary B on X such that
(X/Z 3 o,B) is a klt 0-pair. Similarly, we can define a wFt morphism X/Z.
Actually, for quasiprojective Z, the latter morphism has wFt if and only if
it has wFt locally over Z.

Respectively, a Fano type (Ft) morphism is such a morphism that the pair
(X/Z 3 o,B) is a klt log Fano for some boundary B on X. (In particular,
X/Z 3 o is proper.) Equivalently, X/Z 3 o has Ft if and only if X/Z 3 o
has wFt and projective (cf. Example 1, (1)). The same works for X/Z.

For example, every toric morphism has wFt and Ft if it is projective.

Lemma 1. Proper X/Z has wFt if and only if X/Z is a small birational
modification of Ft Y/Z.
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Proof. Almost by definition, Ft Y/Z has a klt R-complement with big B.
By Proposition 3 below every small birational modification X/Z has a klt
R-complement with big B. Thus X/Z has wFt. Notice also that the big
property is invariant under small birational modifications.

Conversely, let (X/Z,B) be a klt 0-pair with big B. A required model
Y/Z is an lc model of (X/Z, (1 + ε)B) up to possible resolution of some
divisors, where ε is a sufficiently small positive real number. We can suppose
that X is Q-factorial. Use a Zariski decomposition B = M + F , M is big.
By construction (Y/Z,BY ) is also a klt 0-pair where BY is the image of B
on Y . Moreover, X 99K Y is a 1-contraction and contracts only prime Weil
divisors D of X trivial with respect to K+B. They have the log discrepancy
a(X,B,D) = a(Y,BY , D) ∈ (0, 1]. By [Sh96, Theorem 3.1] we can blow up
them projectively!

Corollary 1. Let X/Z be of wFt and D be an R-Cartier divisor on X. Then
D is semiample over Z if and only if D is nef over Z.

Proof. It is sufficient to verify that if D is nef over Z then D is semiample
over Z. If X/Z has Ft it well-known. In general, by Lemma 1 there exists
a birational model Y/Z of X/Z such that X 99K Y is a small modification
(isomorphism in codimension 1) and Y/Z has Ft. We can suppose also
that Y is Q-factorial. Thus D on Y is also R-Cartier. However, the small
modification may not respect nef and semiample properties.

By definition there exists a big over Z boundary B on X such that
(X/Z,B) is a klt 0-pair. This implies that there exists a boundary B′ on X
and some positive ε such that (X,B′) is klt and K +B′ ∼R,Z εD. The semi-
ampleness conjecture implies the required statement. The conjecture holds
for Ft X and for wFt X too. Indeed it is enough to verify that KY + B′

gives a b-contraction over Z or (Y/Z,B′) has a minimal model. We do not
know the pleudoeffective over Z property of D because X/Z is not projec-
tive. Instead we know that (C.D) ≥ 0 for every curve C on X over Z not
passing through a subset of codimension ≥ 2. The same property holds for
KY +B′ ∼R,Z εD on Y/Z. It is sufficient for existence of a minimal model.

Corollary 2. Let d be a nonnegative integer. There exists a positive integer
N depending only on d such that if X/Z has wFt with dimX = d and D is
a nef over Z Cartier divisor on X then ND is base free over Z.
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Proof. If D is big over Z the corollary follows the relative version of [K93,
Thorem 1.1]. The numerically trivial over Z case can be reduced to Ft
by Lemma 1 and holds by ibid. Otherwise by Corollary 1 there exists a
contraction f : X → V/Z and an Q-ample divisor A on V such that f ∗A ∼Q,Z
D. If we can replace the Q-ample property and respectively ∼Q,Z by m-
ample (that is, mA is ample Cartier) and ∼m,Z , there m is a positive integer
depending only on d, then we get a required effective semiampleness for D
because V has also Ft. Below we slightly modify this idea. It is easy by the
(relative) LMMP over V to get a Mori klt fibration g : T → W/V such that

X 99K T is a birational 1-contraction, composition of extremal divisorial
contractions and flips; they preserve nef, semiample and freeness prop-
erty under the birational transformation of D;

DT , the birational transform of D on T , is nef over Z and numerically trivial
over W ; it is enough to verify that DT is free over Z;

there exists a nef and big over Z Q-Cartier divisor DW on W and a positive
integer m, depending only on d, such that g∗DW ∼ DT and mDW is
Cartier; here we use the boundedness of torsions for the relative case;
W/V, V have wFt.

Thus the freeness of N ′mDT over Z follows from that of N ′mDW in the big
over Z case.

For a natural number l, Rl denotes the arithmetic R-linear space of di-
mension l. It contains a lattice of integral vectors Zl, a Q-linear subspace Ql

of rational vectors, and is defined over Z and over Q:

Rl = R⊗Z Zl = R⊗Q Ql ⊃ Ql = Q⊗Z Zl ⊃ Zl.

In particular, we know whether an affine subspaces of Rl is rational , that
is, defined by linear (not necessarily homogeneous) equations with rational
or integral coefficients (rational hyperplanes). A vector v = (v1, . . . , vl) ∈
Rl is nonrational if v 6∈ Ql, equivalently, one of its coordinates vi in the
standard basis [e1 =](1, 0, . . . , 0), [e2 =](0, 1, . . . , 0), . . . , [el =](0, 0, . . . , 1) of
Rl is nonrational.

The rational affine span 〈v〉 of a vector v ∈ Rl is the smallest rational
affine subspace of Rl containing v. Hence v is rational if and only if 〈v〉 is v
itself.
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A direction of an affine R-space is a unite vector in its R-linear (tangent)
space of translations.

We use a standard norm on Rl, e.g., the maximal absolute value norm

‖v‖ = ‖(v1, . . . , vl)‖ = max ‖vi‖,

where ‖vi‖ denotes the absolute value of i-th coordinate. The norm on 〈v〉
is restricted from Rl. So, a direction in 〈v〉 is a vector e ∈ Rl such that

e+ 〈v〉 = 〈v〉 and ‖e‖ = 1.

A direction in 〈v〉 exists exactly when v is nonrational because then dimR 〈v〉 ≥
1.

b-Codiscrepancy [Sh03, p. 88]. Let (X,D) be a log pair, that is, K+D
is R-Cartier. Then D = D(X,D) will denote its b-R-divisor of codiscrepancy
or pseudo-boundary : by definition

K +D = K + D,

where K is a canonical b-divisor of X.

2 Elementary

2.1 Two basic inequalities for the Gauss integral part.

For any two real numbers a, b,

ba+ bc ≤ bac+ bbc+ 1. (2.1.1)

Proof. Any integral shift a 7→ a + n, n ∈ Z, gives an equivalent inequality.
The same holds for b. So, after appropriate shifts, we can suppose that
bac = bbc = 0. That is, 0 ≤ a, b < 1. Hence a+ b < 2 and

ba+ bc ≤ 1 = bac+ bbc+ 1.

For any two real numbers a, b,

ba+ bc ≥ bac+ bbc . (2.1.2)
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Proof. As in the proof of the inequality (2.1.1) we can suppose that bac =
bbc = 0. Then a+ b ≥ 0 and

ba+ bc ≥ 0 = bac+ bbc .

Example 3 (n-complement with P1; cf. Example 13). The main case for
existence and boundedness of n-complements in dimension 1 concerns n-
complements for (global) pairs (P1, B), where B =

∑
biPi is a boundary on

P1: bi ∈ [0, 1] and Pi are distinct (closed) points on P1. The assumption (1) in
Theorem 3 in this case can be strengthen to existence on an R-complement,
equivalently, ∑

bi ≤ 2 = − degKP1 or
∑

′bi ≤ c = 2− l, (2.1.3)

where 0 ≤ l ≤ 2 is the number of points Pi with bi = 1 (lc singularities) and∑′ runs for bi ∈ [0, 1). On the other hand, existence of an n-complement
means that ∑

′ b(n+ 1)bic /n ≤ c = 2− l. (2.1.4)

Indeed, under the inequality (2.1.4), we can take

B+ =
∆

n
+
∑

′ b(n+ 1)bic
n

Pi +
∑

′′Pi,

where ∆ is a reduced divisor supported outside of SuppB with

2n− ln−
∑

′ b(n+ 1)bic = 2c−
∑

′ b(n+ 1)bic

points and
∑ ′′ runs for bi = 1. To satisfy the inequality (2.1.4) we can joint

together small bi in larger multiplicities because, for any two real numbers a
and b,

b(n+ 1)(a+ b)c /n ≥ b(n+ 1)ac /n+ b(n+ 1)bc /n

by (2.1.2). The inequality (2.1.3) holds again. However, we need to keep
our assumption that the new multiplicities also belong to [0, 1). This allows
to suppose that all bi ≥ 1/2 with at most one exception 0 < bi < 1/2 and
we have at most 4 nonzero multiplicities bi. In this case n-complements
exits and bounded by [Sh95, Example 1.11]. Moreover, we can suppose that
Restrictions on complementary indices hold.
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Notice that c in inequalities (2.1.3-2.1.4) can be replaced by any ratio-
nal (and even real number if omit Restrictions on complementary indices).
In particular, for c = d + 1 this implies existence and boundedness of n-
complements for (Pd, B), where B =

∑
biHi, bi ∈ [0, 1], Hi are hypersurfaces

in general position and (Pd, B) has an R-complement (cf. [Sh95, Exam-
ple 1.11]).

2.2 Inductive bounds

For any positive integer n and any real numbers d1, . . . , dn,⌊
n∑
i=1

di

⌋
≤ n− 1 +

n∑
i=1

bdic . (2.2.1)

Proof. For n = 1, the inequality actually become the equality

bd1c = 1− 1 + bd1c .

For n ≥ 2, we use the upper bound (2.1.1) and induction:⌊
n∑
i=1

di

⌋
≤ 1 + bd1c+

⌊
n∑
i=2

di

⌋
≤ 1 + n− 2 +

n∑
i=1

bdic = n− 1 +
n∑
i=1

bdic .

Example 4.

1− l +
l∑

i=1

b(n+ 1)dic /n ≥

⌊
(n+ 1)(1− l +

l∑
i=1

di)

⌋
/n,

for any positive integers n, l and real numbers di. Indeed, the inequality is
equivalent to

l − 1 +
l∑

i=1

b(n+ 1)dic ≥

⌊
l∑

i=1

(n+ 1)di

⌋
,

which follows from (2.2.1).

Another application of (2.2.1). For any positive integer n and any real
number d,

bndc ≤ n− 1 + n bdc . (2.2.2)
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Proof. By the inequality (2.2.1) with d1 = · · · = dn = d.

Using the low bound (2.1.2) and induction we get, for any nonnegative
integer n and any real numbers d1, . . . , dn,⌊

n∑
i=1

di

⌋
≥

n∑
i=1

bdic (2.2.3)

and
bndc ≥ n bdc . (2.2.4)

2.3 Special upper bound

For any real numbers r, s such that r < 1 and sr is integral,

b(s+ 1)rc ≤ sr. (2.3.1)

Proof. Since sr ∈ Z and r < 1,

b(s+ 1)rc = bsr + rc = sr + brc ≤ sr.

[Even] if s = n is a positive integer then the inequality (2.3.1) is equivalent
to

b(n+ 1)rc /n ≤ r

and may not hold unless nr is integral.

Example 5. (1) For s = 1 and r = 1/2,

b(1 + 1)1/2c = 1 6≤ 1(1/2) = 1/2.

(2) However, if d ∈ Z/n and < 1 then

b(n+ 1)dc /n ≤ d < 1

and = d if and only if d ≥ 0.
(3) For any real number d < 1 and any positive integer n,

b(n+ 1)dc /n ≤ 1.
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The low bound
b(n+ 1)dc /n ≥ d

does not work in general (cf. [PSh08, Lemma 3.5] and see the next example).
(4) There exists a closed dcc subset Γ ⊂ [0, 1]∩Q with the only accumula-

tion point 1 and such that, for every positive integer n, there exists b ∈ Γ with
b(n+ 1)bc /n < b. For given n, consider a rational number b(n) < n/(n+ 1)
which is very close to n/(n+ 1). Then

n− 1

n
= b(n+ 1)b(n)c /n < b(n).

So, Γ = {b(n) | n ∈ N} is a required set.

2.4 Approximations and round down

Lemma 2. Let I, n be two positive integers, l be a nonnegative integer and
b be a real number such that I|n, b, l/I ∈ [0, 1) and ‖b− l/I‖ < 1/I(n + 1).
Then

b(n+ 1)bc /n =

⌊
(n+ 1)

l

I

⌋
/n =

l

I
.

Proof. ⌊
(n+ 1)

l

I

⌋
/n =

⌊
nl

I
+
l

I

⌋
/n =

nl

I

1

n
=
l

I

because I|n. Let δ = ‖b− l/I‖. Then δ < 1/I(n + 1) and b = l/I ± δ. For
b = l/I + δ,⌊

(n+ 1)(
l

I
+ δ)

⌋
/n =

⌊
nl

I
+
l

I
+ (n+ 1)δ

⌋
/n =

nl

I

1

n
=
l

I
.

For b = l/I − δ, l ≥ 1 and⌊
(n+ 1)(

l

I
− δ)

⌋
/n =

⌊
nl

I
+
l

I
− (n+ 1)δ

⌋
/n =

nl

I

1

n
=
l

I
.

Lemma 3. Let n be a positive integer and b be a real number such that
b ∈ [0, 1) and ‖b− 1‖ < 1/(n+ 1). Then

b(n+ 1)bc /n = 1.
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Proof. Use the proof of Lemma 2 with I = l = 1 and b = 1− δ.

Similarly we can verify the following estimations.

Lemma 4 ([Sh06, Lemma 4]). Let n be a positive integer, b be a real number
and bn = m/n,m ∈ Z, be a rational number with the denominator n such
that

| b− bn |= ε/n.

Then

(1) b+ = b(n+ 1)bc /n ≤ bn if ε < 1− b;

(2) b+ ≥ bn if ε ≤ b; and

(3) b+ = bn if ε < min{b, 1− b}.

3 Technical

We introduce now a b-version of Definition 2. It will be crucial for our
induction.

Definition 3. Let n be a positive integer and (X/Z 3 o,D) be a log pair
with a local morphism X/Z 3 o and with an R-divisor D. A pair (X/Z 3
o,D+), with the same local morphism and with a Q-divisor D+ on X, is a
b-n-complement of (X/Z 3 o,D) if (X/Z 3 o,D+) is an n-complement of
(X/Z 3 o,D) and the same hold for all crepant models of (X/Z 3 o,D) and
of (X/Z 3 o,D+). Equivalently, instead of (1) in Definition 2 the following
b-version holds:

(1-b) for every prime b-divisor P of X,

d+ ≥

{
1, if d = 1;

b(n+ 1)dc /n otherwise,

where d = multP D and d+ = multP D+ are multiplicities at P of codiscrep-
ancy b-divisors D and D+ of (X,D) and of (X,D+) respectively.

The b-n-complement is monotonic if D+ ≥ D.
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Remark 4. (1) K + D,K + D+ are R-Cartier because respectively (X/Z 3
o,D) is a log pair and by Definition 2, (3). So, b-divisors D and D+ are
well-defined. Actually D is well-defined and the definition is meaningful
only if (X,D) is a log pair (cf. the remark (2) below). Moreover, the
definition is birational : we can replace (X/Z 3 o,D) by a log pair (X ′/Z 3
o,D′) with a model X ′/Z 3 o of X/Z 3 o. Indeed, then (X/Z 3 o,D+)
is a b-n-complement of (X ′/Z 3 o,D′) if (X/Z,D+) is (b-)n-complement of
(X ′/Z,D′), where D′ = D(X ′, D′) (cf. (10) in 7.5). In this situation we have
induced b-n-complement (X ′/Z 3 o,D+

X′) of (X ′/Z 3 o,D′).
If (X/Z 3 o,D) is not necessarily a log pair then we can also consider

b-n-complements taking its small log pair model when such a model exists.
For instance we can take a Q-factorialization. In general, it is not expected
that b-n-complements are birationally invariant, even for small birational
modifications, if they are noncrepant (cf. Proposition 3 below). However, if
(X/Z 3 o,D) has a b-n-complement for a maximal (small) model then the
b-n-complements are well-defined under small birational modifications (see
Construction 2 and Statement 8).

(2) There are no reason to introduce b-R-complements because usual R-
complements already do so. Indeed, if (X/Z 3 o,D) is a log pair then (1-3)
of Definition 1 are equivalent respectively to

(1) D+ ≥ D;

(2) (X,D+) is lc; and

(3) K + D+ ∼R 0.

We can use ≡ over Z 3 o instead of ∼R if X/Z 3 o has wFt (see Remark 1,
(4)). Since by Proposition 3 below small birational modifications preserve
R-complement we get (3) for every small log model of (X/Z 3 o,D) (when
it exists). These models may have different b-codiscrepancies. In particular,
the inequality (1) also holds for the largest one D] in Construction 2 (see
Statement 8).

Example 6. (1) Let (X/Z,D+) be an n-complement of (X/Z,D). Then
(X/Z,D+) is a monotonic b-n-complement of itself. It is enough to verify
(1-b) of Definition 3. That is, for every d+,

d+ ≥

{
1, if d+ = 1;

b(n+ 1)d+c /n otherwise.
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It follows from the inequality in Example 5, (2). Indeed, d+ ∈ Z/n and ≤ 1
by Definition 2, (2-3).

The complement is monotonic: D+ ≥ D+.
(2) Let (X/Z,D+) be a monotonic n-complement of a log pair (X/Z,D).

Then (X/Z,D+) is a monotonic b-n-complement of (X/Z,D). This follows
from Proposition 1 below. This is why we do not need to state this property
explicitly for n-complements of pairs with hyperstandard boundary multi-
plicities [PSh08] [B] even we use it in the course of proof.

(3) Let

(A2 3 P, 1

3
(L1 + L2 + L3))

be a local pair on the affine plane A2 with three distinct lines L1, L2, L3

passing through a point P . Then (A2, 0) with D+ = 0 is an 1-complement
of this pair but (A2, 0) is not a b-1-complement of the pair. Indeed, let E be
the exceptional divisor of the usual blowup of P . Then d+ = multP D+ = −1
but

d = multP D(A2,
1

3
(L1 + L2 + L3)) = 0

and b2 · 0c /1 = 0 > −1 = d+.

The next important for us technic were developed by Birkar and Zhang
[BZ].

bd-Pairs. In general, it is a pair (X/Z,D + P) with an R-divisor D and
another data P

(Birkar-Zhang) P is a b-R-Cartier divisor of X, defined up to ∼R;

(Alexeev) P =
∑
riLi, where Li are mobile linear systems on X and ri are

real numbers (the systems are not necessarily finite dimensional if X is
not complete);

(b-sheaf) P =
∑
riFi, where Fi are invertible sheaves on a proper birational

model Y/Z of X/Z and ri are real numbers; sheaves are defined up to
isomorphism.

It is easy to covert the b-sheaf data into the Birkar-Zhang data: to replace
every sheaf Fi by a b-divisor Hi, where Hi is a divisor on Y with OY (Hi) '
Fi. Similarly, we can convert the Alexeev data into the Birkar-Zhang data: to
replace every linear system Li by Hi for its (sufficiently general) element Hi
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on a model Y , where the linear system is free. However, a converse does not
hold in general. In the paper usually a bd-pair means a Birkar-Zhang one or
a translation into it of an Alexeev or b-sheaf one (cf. [PSh08, Corollary 7.18,
(ii)]). In particular, for every bd-pair (X,D + P), a pair (X,D + PX) with
the trace PX is well-defined. So, PX is an R-divisor defined up to ∼R.

A pair (X/Z,D+P) is a log bd-pair if (X/Z,D+PX) is a log pair, that is,
K+D+PX is R-Cartier. So, we can control log singularities of (X/Z,D+P)
but not in a usual sense because PX is defined up to ∼R. Respectively, the
b-divisor of codiscrepancy D = D(X,D + PX) is not unique but does so up
to P : Ddiv = D− P is a b-divisor which depend only on (X/Z,D + P) and
is the same for every P up to ∼R. Note also that Ddiv,X = D is the trace.
So, we can defined lc, klt, etc (X/Z,D + P) (cf. subboundaries in [Sh92]
and [Sh96, 1.1.2]). Similarly, numerical properties also can be imposed on
(X/Z,D+PX) and thus on (X/Z,D+P). After that we can introduce a lot
of concepts from the LMMP for those pairs. E.g., a log bd-pair (X/Z,D+P)
is (bd-)minimal if

(X,D+P) is lc, or equivalently, Ddiv is a b-subboundary, that is, for every
prime b-divisor P , multP Ddiv ≤ 1; and

K + D + PX is nef over Z, or equivalently, K + D is b-nef over Z, e.g.,
P has associated b-divisor P (= P for Birkar-Zhang pairs) and X/Z
has a proper birational model Y/Z with a nef R-divisor H such that
K + D = K + Ddiv + P = H.

In other words, singularities are controlled by the divisorial part Ddiv and
positivity properties by whole D. It is not a new phenomenon. Since P
has no a fixed support for the Alexeev and b-sheaf data it does not effect
singularities: they only related to Ddiv. A corresponding theory for pairs with
nonnegative multiplicities ri is well-known as the MMP for Alexeev or mobile
pairs [C, Defenition 1.3.1 and Section 1.3]. The Birkar-Zhang data, defined
up to an R-linear even numerical equivalence, shares the same property of
singularities and a version of the LMMP.

Crepant bd-models. (Cf. crepant 0-contractions in 7.1.) We say that two
bd-pairs (X ′/Z ′, D′+P), (X/Z,D+P) are birationally equivalent or crepant ,
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if both pairs are log bd-pairs and there exists a commutative diagram

(X ′, D′ + P) 99K (X,D + P)
↓ ↓
Z ′ 99K Z

,

where the horizontal arrow (X ′, D′ + P) 99K (X,D + P) is a crepant proper
birational isomorphism, another horizontal arrow Z ′ 99K Z is a proper bi-
rational isomorphism. The crepant property for the horizontal arrow is
similar to the case of usual pairs and means that D′ = DX′ = Ddiv,X′ =
(Ddiv)X′ ,D′div = D(X ′, D′ + PX′) = D(X,D + PX) = Ddiv. We say also that
(X ′/Z ′, D′ + P) is a (crepant) model of (X/Z,D + P). Notice that crepant
bd-pairs have the same b-R-divisor P .

Example 7. Let ϕ : X ′ → X be a birational contraction. Then the crepant
bd-pair (X ′, D′ + P) of (X,D + P) has D′ given uniquely by equation

ϕ∗(K +D + PX) = D′ + PX′ .

Indeed, ϕ∗(K +D+PX) = D(X,D+PX)X′ = (Ddiv +P)X′ = D′+PX′ and
D′ = DX′ .

The typical example of bd-pairs is related to log adjunction, where D,Ddiv

are respectively divisorial and b-divisorial parts of adjunction, and P is the
(b-)moduli part of adjunction (see 7.1).

However, to have a good theory even for log bd-pairs we need more re-
strictions [BZ]. We follow Birkar and Zhang, and always suppose that every
bd-pair satisfies

(index m) mP is a Cartier b-divisor for the Birkar-Zhang data and P is
defined up to ∼m, where m is the positive integer; respectively, for the
Alexeev and b-sheaf data every mri ∈ Z;

(positivity) P is a b-nef R-divisor of X for the Birkar-Zhang data; respec-
tively for the Alexeev and b-sheaf data every ri is a nonnegative real
number, every Fi is a nef invertible sheaf. In particular, the b-nef
property over Z can be applied to proper X/Z (cf. Nef in Section 1).

Such a bd-pair (X/Z,D+P) will be called a bd-pair of index m, where m is
a positive integer. So, for bd-pairs of index m: P is b-nef, in particular, P
is b-nef over S in the usual sense for every proper X/S.
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The sum D+P is formal. Hence really the bd-pair is a triple (X/Z,D,P).
If (X/Z,D+PX) is not a log pair then we can take its small birational log

model (Y/Z,D + PY ) with the birational transform of D. b-Codiscrepancy
D = D(Y,DY + P) and Ddiv depend on the model but P is same. So, in
statements, where we use pairs (X/Z,D + P), in the results which con-
cern birational concepts, e.g., b-n-complements, we add the assumption that
(X/Z,D+PX) is a log pair (cf. Addendum 30 for exceptional n-complements
and similar addenda for other type of n-complements).

Note for applications that if P is a b-sheaf than

mP = ⊗F⊗mrii ' OY (H)

is invertible nef and PX = HX/m, where H is a nef Cartier divisor on
Y . Thus in this situation the b-sheaf data implies the Birkar-Zhang one.
Respectively, for the Alexeev data, H ∈ mP = L and PX = H, the birational
image of a sufficiently general H, where L is a free linear system on Y .
The Alexeev data is more restrictive and actually is required for general
applications (cf. Conjecture 1 and Corollary-Conjecture 1). However, for
wFt or Ft X/Z the Birkar-Zhang data works very well (cf. Example 16 and
Corollary 34).

For bd-pairs it is better to join P with the canonical divisor and consider
the b-divisor K +P , respectively, PX with K in the R-divisor K +PX . The
b-divisor K + P for bd-pairs of index m is defined up to ∼m and behave as
K but not as b-Cartier divisor P .

If P = 0 then we get usual pairs or log pairs (X/Z,D) with Ddiv = D =
D(X,D). The same holds for models Y/Z of X/Z over which P is stabilized :
P = PY . In this case (Y,DY + P) is lc (klt, etc) if and only if (Y,DY ) is lc
(respectively, klt, etc).

Complements can be defined for bd-pairs too. We consider as Birkar and
Zhang [B, Theorem 1.10 and Definition 2.18, (2)] usually bd-pairs (X/Z,D+
P) of index m and their complements (X/Z,D+ + P) with other required
birational models, e.g., (X]/Z,D]

X] +P), such that the models will have the
same birational part P .

Definition 4. Let (X/Z 3 o,D + P) be a bd-pair with a [proper] local
morphism X/Z 3 o and with an R-divisor D on X. Another bd-pair (X/Z 3
o,D+ +P) with the same local morphism, same P and with an R-divisor D+

on X is called an R-complement of (X/Z 3 o,D + P) if

(1) D+ ≥ D;
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(2) (X,D+ + PX) is lc, or equivalently, D+
div is a b-subboundary; and

(3) K+D++PX ∼R 0/Z 3 o, or equivalently, K+D+ = K+D+
div+P ∼R 0/Z.

In particular, (X/Z 3 o,D+ + P) is a [local relative] 0-bd-pair.
The complement is klt if (X,D+) is klt.
If (X/Z 3 o,D+P) is a log bd-pair then (1) can be also restated in terms

of b-divisors:

(1) D+
div ≥ Ddiv or D+ ≥ D.

Definition 5. Let n be a positive integer, and (X/Z 3 o,D+P) be a bd-pair
with a local morphism X/Z 3 o and with an R-divisor D =

∑
diDi on X. A

bd-pair (X/Z 3 o,D+ +P) with the same local morphism, same P and with
an R-divisor D+ =

∑
d+
i Di on X, is an n-complement of (X/Z 3 o,D + P)

if

(1) for all prime divisors Di on X,

d+
i ≥

{
1, if di = 1;

b(n+ 1)dic /n otherwise;

(2) (X,D+ + P) is lc or equivalently, D+
div is a b-subboundary; and

(3) K+D++PX ∼n 0/Z 3 o, or equivalently, K+D+ = K+D+
div+P ∼n 0/Z.

The n-complement is monotonic if D+ ≥ D, or equivalently, D+
X ≥ DX or

D+
div ≥ Ddiv, when (X/Z 3 o,D + P) is a log bd-pair.

A log bd-pair (X/Z 3 o,D++P) is a b-n-complement of (X/Z 3 o,D+P)
if instead of (1) in Definition 2 the following b-version holds:

(1-b) for all prime b-divisors P of X,

d+ ≥

{
1, if d = 1;

b(n+ 1)dc /n otherwise,

where d = multP Ddiv and d+ = multP D+
div are multiplicities of (the divisorial

part of codiscrepancy) b-divisors Ddiv = D − P and D+
div = D+ − P of

(X,D + P) and of (X,D+ + P) respectively.
The b-n-complement is monotonic if D+ ≥ D or D+

div ≥ Ddiv.
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Remark 5 (Cf. [B, Theorem 1.10 and Definition 2.18, (2)]). Both comple-
ments and many other constructions meaningful for arbitrary pair (X/Z 3
o,D) with a b-divisor D. We use and develop these concepts only for bd-pairs
(X/Z 3 o,D+P) of index m and actually for a boundary D. Moreover, usu-
ally for n-complements we suppose that m|n, e.g., as in Corollary 6.

Now we can state a bd-version of Theorem 3.

Theorem 4 (Boundedness of n-complements for bd-pairs). Let d be a non-
negative integer, m be a positive integer, ∆ ⊆ (R+)r,R+ = {a ∈ R | a ≥ 0},
be a compact subset (e.g., a polyhedron) and Γ be a subset in the unite seg-
ment [0, 1] such that Γ ∩ Q satisfies the dcc. Let I, ε, v, e be the data as
in Restrictions on complementary indices. Then there exists a finite set
N = N (d, I, ε, v, e,Γ,∆,m) of positive integers (complementary indices)
such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data;

Existence of n-complement: if (X/Z 3 o,B+P) is a bd-pair of index m with
wFt X/Z 3 o, dimX ≤ d, connected Xo and with a boundary B, then
(X/Z 3 o,B + P) has an n-complement for some n ∈ N under either
of the following assumptions:

(1-bd) (X/Z 3 o,B + P) has a klt R-complement; or

(2-bd) B =
∑r

i=1 biDi with (b1, . . . , br) ∈ ∆ and additionally, for every R-
divisor D =

∑r
i=1 diDi with (d1, . . . , dr) ∈ ∆, the pair (X/Z 3 o,D +

P) has an R-complement, where Di are effective Weil divisors (not
necessarily prime); or

(3-bd) (X/Z 3 o,B + P) has an R-complement and, additionally, B ∈ Γ.

Addendum 3. We can relax the connectedness assumption on Xo and sup-
pose that the number of connected components of Xo is bounded.

This theorem with Theorem 3 will be proven in Section 11. However, we
start from some generalities about complements.

Proposition 1 (Cf. [Sh92, Lemma 5.3]). Let (X/Z,D), (X/Z,D′) be two
(log) pairs with divisors D ≥ D′ and (X/Z,D+) be a (respectively b-)n-
complement of (X/Z,D). Then (X/Z,D+) is a (respectively b-)n-complement
of (X/Z,D′) too.
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The same holds for monotonic (respectively b-)n-complements.

Addendum 4. The same holds for R-complements of pairs and bd-pairs.

Addendum 5. The same holds for bd-pairs (X/Z,D+P), (X/Z,D′+P) with
the same b-part P and with a (b-)n-complement (X/Z,D+ +P) of (X/Z,D)
respectively.

Proof. Immediate by the monotonicity of b c: if d′ ≤ d < 1 then

b(n+ 1)d′c /n ≤ b(n+ 1)dc /n ≤ 1

and Example 5, (3).
Similarly we treat bd-pairs of Addendum 5.
Addendum 4 is immediate by definition.

Corollary 3. Let (X/Z,D+) be an n-complement of (X/Z,D). Then (X/Z,D+)
is an R- and monotonic n-complement of (X/Z,D[n]) where D[n] has the fol-
lowing multiplicities, for every prime divisor P on X,

multP D[n] =

{
1, if d = 1;

b(n+ 1)dc /n otherwise.

Proof. Immediate by Definition 2, Proposition 1 and Example 6, (1).

Proposition 2. Let n be a positive integer, D be an R-divisor with normal
crossing on nonsingular X and (X/Z,D+) be an n-complement of (X/Z,D).
Then (X/Z,D+) is also a b-n-complement of (X/Z,D).

The same holds for a bd-pair (X/Z 3 o,D + P) with normal crossings
only for SuppD and stable P over X.

Proof. (Local verification.) The statement is meaningful because X is non-
singular and (X,D) is a log pair. We need to verify only Definition 3, (1-b).

Step 1. It is enough to verify that

D(X,D[n]) ≥ (D(X,D))[n], (3.0.1)

where, for an R-divisor D =
∑
diDi and/or a b-R-divisor D =

∑
diDi,

D[n] =
∑

di[n]Di
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and the rounding x[n] is defined in 6.13. Indeed, by Definition 2, (1) and (3.0.1),

D+ ≥ D[n] and D+ = D(X,D+) ≥ D(X,D[n]) ≥ (D(X,D))[n].

Hence Definition 3, (1-b) holds for (X,D+) with respect to (X,D).
Step 2. It is enough to verify that, for every crepant blowups (monoidal

transformations) ϕ : (Y,DY ), (Y,D[n],Y )→ (X,D), (X,D[n]) of a point o ∈ X,

D[n],Y ≥ DY,[n] (3.0.2)

holds. The blowups can be considered birationally, that is, over a neigh-
borhood of (scheme) point o. Indeed, (3.0.1) for b-R-divisors follows from
the corresponding inequality for every prime b-divisor E. Since E can be
obtained by a sequence of blowups, the required inequality in E follows
from (3.0.2) by induction.

Step 3. It is enough to verify that

1−m+
m∑
i=1

b(n+ 1)dic /n ≥

⌊
(n+ 1)(1−m+

m∑
i=1

di)

⌋
/n, (3.0.3)

where m is a positive integer and di are real numbers < 1. Indeed, let l ≥ 1
be the codimension of o in X and D =

∑l
i=1 diDi near o, where di are real

numbers ≤ 1, the prime divisors D1, . . . , Dl are with normal crossings and o
is the generic point of their intersection ∩li=1Di. It is enough to verify the
inequality (3.0.2) in the only exceptional divisor E of ϕ. For this, we can
suppose that di = 1 only for i > m and di < 1 otherwise.

Then

multE DY = 1− l +
l∑

i=1

di = 1− l + l −m+
m∑
i=1

di = 1−m+
m∑
i=1

di.

So, multE DY,[n] is the right side of (3.0.3), except for the case, when multE DY =
multE DY,[n] = 1. In the last case m = 0 and all di = 1. Note that in this case

the left side is also 1 and (3.0.3) holds. Thus we can suppose that m ≥ 1.
On the other hand,

D[n] =
m∑
i=1

b(n+ 1)dic
n

Di +
l∑

i=m+1

Di
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near o. Hence

multE D[n],Y = 1− l+ l−m+
m∑
i=1

b(n+ 1)dic /n = 1−m+
m∑
i=1

b(n+ 1)dic /n,

the left side of (3.0.3).
Finally, (3.0.3) is the inequality of Example 4 in 2.2.
The bd-pairs can be treated ditto because P is stable over X.

Proposition 3. Every small birational modification preserves R- and n-
complements for pairs and bd-pairs.

The same holds for b-R-complements if X/Z has wFt and the small mod-
ification preserves the log pair property.

See Remark 4, (1) about b-n-complements.

Proof. Immediate by definition.
The statement about b-R-complements holds by Addendum 8. Indeed, if

(X/Z,D) has a b-R-complement then so does (X], D]
X]) by the addendum.

On the other hand, a maximal model exists under the assumptions of Con-
struction 2. Moreover, by the construction, the assumptions and maximal
models are invariant of small birational modifications of pairs (X/Z,D) or
bd-pairs (X/Z,D + P). (Cf. Remarks 4, (2).)

Hyperstandard sets. By definition [PSh08, 3.2] every such set has the
form

Φ = Φ(R) = {1− r

l
| r ∈ R and l is a positive integer},

where R is a set of real numbers. Usually, we take for R a finite subset
of rational numbers in [0, 1]. Additionally, we suppose that 1 ∈ R. So,
0 = 1−1/1 ∈ Φ. (Every standard multiplicity 1−1/l ∈ Φ too.) We say that
Φ is associated with R.

Such a presentation for Φ is not unique. The following presentation of
hyperstandard sets is crucial for us (see Proposition 4 below). It has the form
G(N ,R) = Γ(N ,Φ), the set associated withN and R or Φ (see Proposition 5
below), with the elements

b = 1− r

l
+

1

l
(
∑
n∈N

mn

n+ 1
) = ϕ+

1

l
(
∑
n∈N

mn

n+ 1
),
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where r ∈ R, l is a positive integer, ϕ = 1−r/l ∈ Φ, and mn are nonnegative
integers. Usually, we suppose that N is a finite set of positive integers.
By construction every b ≥ 0. Additionally we suppose that b ≤ 1. Thus
b ∈ [0, 1] ∩Q.

The set Γ(N ,Φ) is a dcc set of rational numbers in [0, 1] with the only
accumulation point 1. Actually, the set is a hyperstandard by Proposition 4
and by Proposition 5 below depends only on Φ. Conversely, every hyperstan-
dard set has this form for N = ∅.

For Φ ⊆ Φ′ and N ⊆ N ′, Γ(N ,Φ) ⊆ Γ(N ′,Φ′) holds. By our as-
sumptions, the minimal R = {1} and N = ∅. Thus Γ(∅, {1}) = Φ({1})
is the standard set without 1 and it is contained in every Γ(N ,Φ). Put
Γ(N ) = Γ(N , {1}). The last set contains 0 and the fractions m/(n+ 1), n ∈
N ,m ∈ Z, 0 ≤ m ≤ n + 1 of the great importance for us. This is why we
suppose that 1 ∈ R.

Proposition 4. Let N be a finite set of positive integers and R be a finite
set of rational numbers in [0, 1]. Then there exists a finite set of rational
numbers R′ in [0, 1] such that

Γ(N ,Φ) = Φ(R′).

More precisely,

R′ = {r −
∑
n∈N

mn

n+ 1
| r ∈ R and every mn ∈ Z≥0} ∩ [0,+∞).

Proof. Take b ∈ Γ(N ,Φ). Then by definition b = 1− r′/m, where

r′ = r −
∑
n∈N

mn

n+ 1
.

(Cf. with R in [PSh08, p. 160].) Since every mn ≥ 0 and r ≤ 1, r′ ≤ r ≤ 1
too. On the other hand, b ≤ 1. Hence r′ ≥ 0 and the set R′ is finite rational
in [0, 1].

Proposition 5. Let N be a set of positive numbers and R,R′ be two sets
of rational numbers in [0, 1] such that Φ = Φ(R) = Φ(R′). Then Γ(N ,Φ) =
G(N ,R) = G(N ,R′).
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Proof. Immediate by definition and the property that every r′ ∈ R′ has the
form r′ = r/m for some positive integer m if R is the minimal (actually,
smallest) set such that Φ = Φ(R).

Corollary 4 (cf. [Sh95, Lemma 2.7]). Let N be a finite set of positive integers
and R be a finite set of rational numbers in [0, 1]. Then Γ(N ,Φ) satisfies the
dcc with only one accumulation point 1. Equivalently, for every positive real
number ε, the set of rational numbers

Γ(N ,Φ) ∩ [0, 1− ε]

is finite.

Addendum 6. If N 6= ∅ then 1 ∈ Γ(N ,Φ).

Proof. Immediate by definition or Proposition 4.
If n ∈ N , then

1 = 1− 1

1
+
n+ 1

n+ 1
∈ Γ(N ,Φ).

Construction 1 (Low approximations). Let N be a nonempty finite set of
positive integers and R be a finite set of rational numbers in [0, 1]. Then by
Corollary 4 and Addendum 6, for every b ∈ [0, 1], there exists and unique
(best low approximation) largest b′ ≤ b in Γ(N ,Φ). We denote that b′

by bN Φ. Respectively, for a boundary B on X, BN Φ denotes the largest
boundary on X such that BN Φ ≤ B and BN Φ ∈ Γ(N ,Φ).

Respectively, for a boundary BY on Y , put BY,N Φ = (BY )N Φ.
We can and will apply also this construction for the divisorial part B of

a bd-pair (X/Z,B + P), when B is a boundary.

Notation:
bΦ = b∅ Φ;
BΦ = B∅ Φ but we suppose that 0, 1 ∈ Φ;
bn Φ = b{n} Φ;
Bn Φ = B{n} Φ;
bn 0 = bn {0};
Bn 0 = Bn {0}
etc
B], Bn Φ

] = (Bn Φ
])X ; for different birational model Y of X: Bn Φ

]
Y =

(Bn Φ
])Y .

32



Proposition 6. N ⊆ N ′,Φ ⊆ Φ′ ⇒ BN Φ ≤ BN ′ Φ′.

Proof. Immediate by definition.

Proposition 7. Let B,B+ be two boundaries on the same variety and n
be a positive integer such that B+ ∈ Z/n, n ∈ N , and B+ satisfies (1) of
Definition 2 with respect to BN Φ . Then B+ satisfies (1) of Definition 2
with respect to B.

Proof. Let P be a prime divisor on the variety. Put b+ = multP B
+, b =

multP B. Then multP BN Φ = bN Φ. By our assumptions b+ = m/n ∈
[0, 1],m ∈ Z.

If b = 1 then bN Φ = 1 and by our assumptions b+ = 1. This gives (1) of
Definition 2 for b.

If b < 1 then by definition bN Φ ≤ b < 1 too. It is enough to verify that

b(n+ 1)bc /n = b(n+ 1)bN Φc /n,

Put b′ = m/(n+ 1), where

m = max{m ∈ Z | m

n+ 1
≤ b}.

Then by our assumptions and definition b′ ∈ Γ(N ,Φ). Hence b′ ≤ bN Φ ≤
b < 1. So, by the monotonicity of b c and by construction

b(n+ 1)b′c /n = b(n+ 1)bN Φc /n = b(n+ 1)bc /n,

in particular, the required equality. Indeed, b′ = m/(n + 1) ≤ b < (m +
1)/(n+ 1) and

b(n+ 1)bc /n = m/n = b(n+ 1)b′c /n.

The threshold m/(n + 1) plays an important role in the paper through
Γ(N ,Φ).

Corollary 5. Let B,B+ be two boundaries on the same variety and n be
a positive integer such that B+ ∈ Z/n, n ∈ N and B+ ≥ BN Φ. Then B+

satisfies (1) of Definition 2 with respect to B.
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Proof. Immediate by Proposition 7. Indeed B+ ≥ BN Φ implies (1) of Defi-
nition 2 with respect to BN Φ by arguments in Example 6, (1) and the proof
of Proposition 1.

Corollary 6. Let (X/Z,B) be a pair with a boundary B such that (X/Z,BN Φ)
has an n-complement (X/Z,B+) with n ∈ N . Then (X/Z,B+) is an n-
complement of (X/Z,B) too.

The same holds for bd-pairs of index m (X/Z,B + P), (X/Z,BN Φ +
P), (Z/Z,B+ + P) under assumption m|n.

Proof. Immediate by Proposition 7 because B+ ∈ Z/n by (3) of Definition 2.
For bd-pairs we use (3) of Definition 5 and our assumption m|n (cf. Re-

mark 5). [Indeed, m|n implies that B+ ∈ Z/n in this case too.]

Construction 2 (Maximal model or adding fixed components). Let (X/Z,D)
be a pair such that

X/Z has wFt; and

−(K +D) is (pseudo)effective modulo ∼R,Z , or equivalently,

there exists D+ ≥ D such that K +D+ ∼R,Z 0 (an nonlc R-complement).

Warning: (X/Z,D+) is not necessarily lc and an R-complement of (X/Z,D).
Consider a Zariski decomposition −(K + D) = M + F , where M,F are

respectively the R-mobile and fixed parts of −(K + B) over Z. Such a
decomposition exists by Lemma 1 and [ShCh, Corollary 4.5]. In addition,
there exists a commutative triangle

(X,D)
ψ
99K (X], D]

X])
↘ ↙

Z

,

where ψ is a birational morphism making M R-free [-semiample] over Z as
follows. First, we make a small birational modification X 99K Y/Z such that
M is R-Cartier on Y , e.g., we can use a Q-factorialization. By Lemma 1
we can suppose also that X/Z has Ft. Second, we can apply the M -MMP
to Y/Z. This gives X]/Z. Put D]

X] = D + F , where D,F are birational
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transforms of D,F on X]. Constructed transformation X 99K X]/Z is small
and

−(KX] +D]
X]) = −(KX] +D)− F = M

is the birational transform of M . So, −(KX] + D]
X]) is R-free [-semiample]

over Z. All relative varieties in the construction and, in particular, X]/Z
have wFt. Finally, we can take any crepant model of (X]/Z,D]

X]) and usu-
ally denote in the same way. Every such a model is assumed to be a log pair
and its morphisms to previously constructed X] is rational but not neces-
sarily regular. For those pairs X]/Z has not necessarily wFt. But all pairs
(X]/Z,D]

X]) are log pairs. They have the same b-R-divisor D] = D(X], D]
X]).

By definition D]
X] = D]

X] , where the last divisor is the trace of D] on X].
We can take the trace on any birational model of X/Z, e.g., for X itself:
D] = D]

X = D + F . However, D] is stable (BP) only over such birational
models X]/Z that D] = D(X],D]

X]) is the b-codiscrepancy. Equivalently,

M] = −(KX] +D]
X]) is stable over those models but the stabilization is

different (Cartier): M] =M]
X] .

Note also, that if we apply −(K+D)-MMP to X/Z we get (anticanonical
model) (X]/Z,D]

X]) and possibly contract some divisors, e.g., components
of F . To construct the model we use antiflips. So, the model is maximal in
contrast to a minimal one. It is also maximal and even largest with respect
to D]. For any log pair [model] (Y/Z,D]

Y ) of the [bd-]pair (X/Z,D]),

D(Y,D]
Y ) ≤ D]

and = holds exactly when (Y/Z,D]
Y ) is a maximal model of (X/Z,D).

Equivalently,
MX] ≤MY =M]

and = holds exactly when (Y/Z,D]
Y ) is maximal, where MX] ,MY are bira-

tional transform of M on X], Y respectively. However, to establish this in
such a more general situation it is better to use the negativity [Sh95, 2.15]
(see Lemma 5 below).

The same construction works for a bd-pair (X/Z,D + P) such that

X/Z has wFt; and

−(K +D + PX) is (pseudo)effective modulo ∼R,Z , or equivalently,

there exists D+ ≥ D such that K +D+ + PX ∼R,Z 0.
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A maximal model in this case will be a log bd-pair (X/Z,D]
X] + P) with

same P . That is, D] = D]
div + P or P] = P . We add the fixed part F only

to the divisorial part: (D + PX)] = D] + PX . However, the R-free over Z
property holds for −(KX] +D]

X] + PX]) but usually not for −(KX] +D]
X]).

The construction actually works for any b-divisor P under our assumptions.
By construction, the assumptions and maximal models are invariant of

small birational modifications of pairs (X/Z,D) or bd-pairs (X/Z,D + P).

Proposition 8 (Monotonicity I). Let (X/Z,D) be a pair under the assump-
tions of Construction 2. Then for every D+ ≥ D such that K +D+ ∼R,Z 0,
D+ ≥ D] and D] ≥ D. Moreover, D] ≥ D if (X/Z,D) is a log pair.

Addendum 7. D ≥ 0 implies D] ≥ 0.

Addendum 8. (X/Z,D) has an R-complement if and only if (X], D]
X]) is

lc, equivalently, (X,D]) is lc or D] is a b-subboundary.

Addendum 9. The same holds for bd-pairs.

Proof. Immediate by definition and Construction 2. Notice for this that
D+ = D(X,D+) is a birational invariant of (X/Z,D+), that is, every model
(Y/Z,D+

Y ), D+
Y = D+

Y , of (X/Z,D+) is crepant. In Addendum 8, an R-
complement of (X]/Z,D]

X]) exists if it is lc (cf. Examples 1, (1-2)).
Similarly we can treat bd-pairs.

Corollary 7 (Monotonicity II). Let (X/Z,D) be a pair under the assump-
tions of Construction 2 and D′ be an R-divisor on X such that D′ ≤ D. Then
(X/Z,D′) also satisfies the assumptions of Construction 2 and D′] ≤ D].

Lemma 5 (b-Negativity). Let D,D′ be two b-R-divisor of a variety or space
X with a proper morphism X → S to a scheme S such that

(1) D′ is b-pseudoantinef;

(2) D′X ≥ DX ; and

(3) D is stable over X, that is, D = DX (cf. [Sh03, Discent of divisors 5.1]).

Then D′ ≥ D.
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Proof. The b-psedoantinef means that D′ = limn→∞Dn, where the limit is
weak (multiplicity wise) and every Dn is a b-antinef. So, we can suppose
that D′ is itself b-antinef. Take any birational proper model Y/X of X over
which D′ is stable. Then D′Y ≥ DY by [Sh92, Negativity 1.1]. Apply to
D = D′Y − DY and to the birational contraction Y → X. This implies
D′ ≥ D because we can take an arbitrary high model Y .

Corollary 8 (Monotonicity III). Let (X/S,D) be a log pair with proper
X → S and D′ be a (pseudoBP) b-R-divisor of X such that

(1) K + D′ is b-pseudoantinef; and

(2) D′X ≥ D.

Then D′ ≥ D, where D = D(X,D).
The same holds for a log bd-pair (X,D + P) with

(1-bd) K + D′ + P is b-pseudoantinef; and

and D = D(X,D + P)− P.

Proof. Immediate by Lemma 5 with D = K + D and D′ = K + D′. Assump-
tions (1-2) of the corollary correspond respectively to (1-2) of the statement.
Since (X,D) is a log pair, D is defined. So, D = DX and D is stable over X
as a b-R-Cartier divisor by definition.

Respectively, for the bd-pair, D = K+D+P and D′ = K+D′+P , that
is, the b-divisorial part is the same.

Note that (1) implies the pseudoBP property of D′, the limit of BP b-R-
divisors.

Proof of Corollary 7. Immediate by Corollary 8. Apply the corollary to a
maximal model (X], D′]

X]) with a birational 1-contraction ψ : X 99K X] such

that D′]
X] = ψ(D′).

(Non)existence of R-complements has the local nature. The same holds
for n-complements.

Proposition 9. Let (X/Z 3 o,D) be a local pair with wFt X/Z 3 o and n
be a positive integer. Then the existence of an R-complement (respectively of
an n-complement) is a local property with respect to connected components
of Xo, that is, in the étal topology.

The same holds for bd-pairs (X/Z 3 o,D + P).

37



Proof. (Cf. the proof of Step 8 of Theorem 19.)
Step 1. (Reduction to a semilocal case.) We can replace (X/Z 3 o,D)

by (X/Y 3 o1, . . . , ol, D) with wFt X/Y 3 o1, . . . , ol and connected fibers
Xo1 , . . . , Xol . We can suppose that Xoi are connected components of Xo.
Indeed, take Stein factorization X � Y → Z. Let o1, . . . , ol be the points on
Y over o. Notice that semilocal X/Y 3 o1, . . . , ol has also wFt, equivalently,
every local X/Y 3 oi has wFt. We need to verify that (X/Y 3 o1, . . . , ol, D)
has an R-complement (respectively an n-complement) if and only if every
(X/Y 3 oi, D) has and R-complement (respectively an n-complement). Ac-
tually, we need to verify only the if statement.

Step 2. (R-Complements .) Use Addendum 8. Indeed, we can suppose
that every (X/Y 3 oi, D) has and R-complement, in particular, every −(K+
D) is effective modulo ∼R over Y 3 oi. Thus Construction 2 gives (X]/Y 3
o1, . . . , ol;D

]
X]) for (X/Y 3 o1, . . . , ol, D). So, by Addendum 8 (X], D]

X]) is
lc over Y 3 o1, . . . , ol. Thus by the same addendum (X/Y 3 o1, . . . , ol, D)
has an R-complement.

Step 3. (R-Complements .) Immediate by the criterion of existence for
n-complements in terms of linear systems [Sh92, after Definition 5.1].

Similarly we can treat bd-pairs.

4 Constant sheaves

Componentwise constant sheaves. We consider constant sheaves F on
a variety T of Abelian groups, vector spaces, monoids, convex cones, union
of monoids, polyhedrons with a polyhedral decomposition and of sets. E.g.,
if F is a constant sheaf of Abelian groups A then, for every point t ∈ T ,
Ft = A and, for every connected open subset S ⊆ T , FS = Γ(S,F) = A,
where = means the canonical isomorphism given by the restriction. Usually
in description of such a sheaf F we give its sections Ft for closed points. We
also give its global sections FT . For connected T , FT = Ft = A under the
restriction.

Below by a constant sheaf we mean also a sheaf which is constant on
every connected component of T . So, it is actually constant if T is connected.
Strictly speaking these sheaves are componentwise constant .

We need the following constant sheaves. However, they are really constant
only for families of very special varieties, only over connected components
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of T and under an appropriate parametrization (cf. Addendum 22 below).
These sheaves will be sheaves of different nature: sheaves of sets, of Abelian
groups and monoids, of R-,Q-linear spaces, of finite union of monoids, of
cones and of polyhedrons.

Marked divisors D1,t, . . . , Dr,t on a family X/T of varieties Xt, are its
sections over t. Actually, they form an ordered set. For connected T , sections
form an ordered set of global divisors D1,T , . . . , Dr,T on X. The identification
of sections is given by the restriction Di,t = Di,T |Xt . So, divisors should be

good and the family X/T too. Usually, we consider distinct prime Weil
divisors Di,t.

Abelian group generated by marked divisors Dt = Dt(D1,t, . . . , Dr,t). We
consider this group as a subgroup of WDivXt. The group Dt is free Abelian
of rank r with the standard basis D1,t, . . . , Dr,t if the divisors are distinct
prime. The corresponding constant sheaf we denote by D = D(D1, . . . , Dr).
Similarly, we can define real and rational (sub)spaces DR,DQ with DR,t ⊆
WDivRXt,DQ,t ⊆ WDivQXt generated by divisors Di,t; D ⊆ DQ ⊆ DR.
If divisors Di,t are linearly free (in particular, distinct) in WDivXt then
DR,t = Dt ⊗ R,DQ,t ⊗Q.

We will use also constant divisors

KXt ∈ D,PX,t ∈ DQ.

KT = KX/T ∈DT = ZD1,T ⊕ · · · ⊕ ZDr,T ;

DR,T = RD1,T ⊕ · · · ⊕ RDr,T ;

PX = PX,T ∈DQ,T = QD1,T ⊕ · · · ⊕QDr,T .

Warning: usually we do not suppose that P exits globally but Pt exists for
every closed t ∈ T , PX,t exists for every t ∈ T and PX = PX,T exists too.
However, if P exists globally over T then PT = P is meaningful and PX is
its trace on X.

Abelian monoid of effective divisors generated by marked divisors D+
t =

D+
t (D1,t, . . . , Dr,t) ⊆ WDivXt with elements Dt ∈ Dt,Z≥0. The monoid

D+
t is free Abelian of rank r with the standard basis D1,t, . . . , Dr,t if the

divisors are distinct prime. The corresponding constant sheaf we denote
by D+ = D+(D1, . . . , Dr). Similarly, we can define closed convex rational
polyhedral (sub)cones D+

R,t ⊆ DR,t,D
+
Q,t ⊆ DQ,t generated by divisors Di,t.
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D1,T , . . . , Dr,T ∈D+
T = Z≥0D1,T ⊕ · · · ⊕ Z≥0Dr,T ;

D+
R,T = R+D1,T ⊕ · · · ⊕ R+Dr,T , R+ = [0,+∞);

D+
Q,T = Q+D1,T ⊕ · · · ⊕Q+Dr,T , Q+ = R+ ∩Q.

Monoid of linearly effective divisors Et ⊆ WDivXt with elements Dt ∈
Dt, which are effective modulo ∼. In general the monoid is not finitely gen-
erated. The corresponding constant sheaf we denote by E = E(D1, . . . , Dr).
Similarly, we can define (sub)cones ER,t ⊆ DR,t,EQ,t ⊆ DQ,t with elements
Dt ∈ R,Q, which are effective modulo ∼R,∼Q respectively. In general those
cones are not closed rational polyhedral. However, for wFt X/T , the monoid
finitely generated by Corollary 9 and cones are closed convex rational poly-
hedral [ShCh, Corollary 4.5]. Moreover, the monoid and cones have finite
decompositions into respectively finitely generated monoids, convex rational
polyhedral cones (possibly not closed) such that the components correspond
to the same rational 1-contraction [ShCh, Corollary 5.3].

D+
T ⊆ ET = EX = {D ∈ DT | D is effective modulo ∼};

D+
R,T ⊆ ER,T = ERX = {D ∈ DR,T | D is effective modulo ∼R};

D+
Q,T ⊆ EQ,T = EQX = {D ∈ DQ,T | D is effective modulo ∼Q}.

Important submonoids and subcones of semiample, nef, mobile divisors
Dt

sAt,Neft,Mt ⊆ Et, sAR,t,NefR,t,MR,t ⊆ ER,t, sAQ,t,NefQ,t,MQ,t ⊆ EQ,t

have constant sheaves sA = sA(D1, . . . , Dr), sAR = sAR(D1, . . . , Dr), sAQ =
sAQ(D1, . . . , Dr) etc for Nef,M,E. Global sections are respectively

sAT = {D ∈ DT | D is semiample};
sAR,T = {D ∈ DR,T | D is semiample};
sAQ,T = {D ∈ DQ,T | D is semiample}.

Etc for Nef,M.

Warning 1 (cf. [ShCh]). Here we use sA,Nef,M and E for the absolute case
with multiplicities in Z. For E,C we use ∼, etc instead of ≡. We also use
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absolute ∼, etc but not relative ∼T , etc. Of course the last substitution
needs appropriate parametrization (cf. Step 3 in the proof of Proposition 10
below).

lc Divisors lct ⊆ WDivX with elements Dt ∈ Dt, such that (Xt, Dt)
is lc. The corresponding constant sheaf we denote by lc = lc(D1, . . . , Dr).
Similarly, we can define closed convex rational polyhedrons (possibly non-
compact, e.g., di ≤ 1 correspond to subboundaries) [Sh92, (1.3.2)] lcR,t ⊆
DR,t, lcQ,t ⊆ DQ,t with elements Dt ∈ R,Q respectively, such that (Xt, Dt) is
lc.

Similarly, for bd-pairs, lctPt ⊆ WDivX with elements Dt ∈ Dt, such
that (Xt, Dt + Pt) is lc as a bd-pair. The corresponding constant sheaf we
denote by lcP = lc(D1, . . . , Dr,P). Similarly, we can define closed convex
rational polyhedrons [Sh92, (1.3.2)] lcR,tPt ⊆ DR,t, lcQ,tPt ⊆ DQ,t with ele-
ments Dt ∈ R,Q respectively, such that (Xt, Dt +Pt) is lc. For the constant
sheaf property, it is better to suppose that the b-divisor P exists globally
over T but this is not applicable in our paper (cf. the proof of Addendum 30
in Step 8 of the proof of Theorem 7).

Divisors with R-complement Ct ⊆WDivX with elements Dt ∈ Dt, such
that (Xt, Dt) has an R-complement. The corresponding constant sheaf we
denote by C = C(D1, . . . , Dr). Similarly, we can define convex sets CR,t ⊆
DR,t,CQ,t ⊆ DQ,t with elements Dt ∈ R,Q respectively, such that (Xt, Dt)
has an R-complement (cf. Theorem 6).

Similarly, for bd-pairs, CtPt ⊆WDivX with elements Dt ∈ Dt, such that
(Xt, Dt+Pt) has an R-complement as a bd-pair. The corresponding constant
sheaf we denote by CP = C(D1, . . . , Dr,P). Similarly, we can define convex
sets CR,tPt ⊆ DR,t,CQ,tPt ⊆ DQ,t with elements Dt ∈ R,Q respectively, such
that (Xt, Dt + Pt) has an R-complement (cf. Addendum 25).

By definition and our assumptions, for K ∈ D, K+PX ∈ DQ, respectively

C ⊆ −K − ER, CP ⊆ −K − PX − ER

(see Addenda 24 and 25). Respectively, if every Xt is Q-factorial, then

C ⊆ lc∩(−K − ER), CP ⊆ lcP ∩ (−K − PX − ER)

(see again Addenda 24 and 25) Etc over R,Q. In general = does not hold
even over R (however, cf. the exceptional case in Step 3 of the proof of
Theorem 7).

lcT = {D ∈ DT | (X,D) is lc}, lcR,T = {D ∈ DR,T | (X,D) is lc}, lcQ,T = {D ∈ DQ,T | (X,D) is lc}.
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CT = {D ∈ DT | (X/T,D) has an R-complement}.
Etc over R,Q.

Notice also that lcR,CR are usually not compact. However, for effective
divisors D both sets lc,C are compact because in this case D is a boundary,
a compact condition.

Sheaf Cl = ClX/T of Abelian class groups of Weil divisors modulo ∼
with CltX/T = ClXt and ClT X/T = ClX/T . Respectively, ClRX/T,ClQX/T
with ClR,tX/T = ClRXt,ClQ,tX/T = ClQXt and ClR,T X/T = ClRX/T,ClQ,T X/T =
ClQX/T . The relative class group ClX/T is defined modulo relative ∼T .
Respectively, ClRX/T,ClQX/T modulo ∼R,T ,∼Q,T .

Other important subsheaves in Cl include invertible sheaves, classes of
semiample, nef, mobile, effective and torsion divisors

Pic = PicX/T, sAmp = sAmpX/T,Nef = Nef X/T,Mob = MobX/T,Eff = Eff X/T,TorX/T,

etc for R,Q with

Pict = PicXt, sAmpt = sAmpXt,Nef t = Nef Xt,Mobt = MobXt,Eff t = Eff Xt,Tort = TorXt

and

PicT = PicX/T, sAmpT = sAmpX/T,NefT = Nef X/T,MobT = MobX/T,EffT = Eff X/T,TorT = TorX/T

etc for R,Q. Notice that TorR = TorQ = 0 is trivial. Cf. Warning 1.
Sheaves Pic,Tor are sheaves of Abelian groups. Sheaves PicR,PicQ are

sheaves of respectively R- and Q-linear spaces. Sheaves sAmp,Nef ,Mob,Eff
are sheaves of Abelian monoids. Their R,Q versions are sheaves of convex
cones.

Remark: Usually sAmpRXt,NefRXt,MobRXt,EffRXt are considered in
N1Xt, the space of R-divisors of Xt modulo the numerical equivalence ≡
[ShCh, Section 4]. However, in the paper we usually consider wFt Xt and ≡
is ∼R in this situation [ShCh, Corollary 4.5].

Proposition 10. Let Xt, t ∈ T , be a variety or an algebraic space in a
bounded family of rationally connected spaces. Then ClXt has bounded rank
r. More precisely, for appropriate parametrization X/T , every Xt has marked
distinct prime divisors D1,t, . . . , Dr,t such that, for every D ∈WDivXt,

D ∼ d1D1,t + · · ·+ drDr,t

for some d1, . . . , dr ∈ Z.
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Addendum 10. lc, lcR, lcQ are also constant.

Addendum 11. lcP , lcRP , lcQP are constant if P defined over T .

Addendum 12. Sheaves ClX/T,TorX/T,D,P,N are constant,

ClX/T = D/ ∼= D/P,ClT X/T = DT/ ∼= DT/PT and ClXt = Dt/ ∼= Dt/Pt,

TorX/T = Tor(ClX/T ) = N / ∼= N /P,

TorT X/T = Tor(ClT X/T ) = NT / ∼= NT /PT and TorXt = Tor(ClXt) = Nt / ∼= Nt /Pt

for every (closed) t ∈ T , where P,N are respectively subsheaves of principal
and of numerically trivial over T divisors in D. Canonical isomorphisms are
given by homomorphisms Dt → ClXt, Dt 7→ Dt/ ∼= Dt/Pt. The following
sheaves

ClRX/T,ClQX/T,PR,PQ,NR,NQ

are also constant and

ClRX/T = (ClX/T )⊗ R,ClQX/T = (ClX/T )⊗Q,

NR = PR = N⊗R = P⊗R,NQ = PQ = N⊗Q = P⊗Q,
TorRX/T = TorQX/T = 0.

Addendum 13. If additionally every Xt has only rational singularities then
the following sheaves

PicX/T,PicRX,PicQX/T,Car,CarR,CarQ

are also constant and

PicX/T = Car / ∼= Car /P,

PicRX/T = (PicX/T )⊗R = CarR / ∼R= CarR /PR,PicQX/T = (PicX/T )⊗Q = CarQ / ∼Q= CarQ /PQ,

CarR = Car⊗R,CarQ = Car⊗Q,
where Car is the subsheaf of Cartier or locally principal divisors in D.

PicT X/T = CarT / ∼= CarT /PT and PicXt = Cart / ∼= Cart /Pt,

for every (closed) t ∈ T . Canonical isomorphisms are induced by the homo-
morphism D→ ClX/T . Equivalences ∼Q,∼R can be replaced by ≡ /T .
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Proof. Step 1. We can suppose that every Xt is nonsingular, projective, the
family X/T is smooth, X,T are nonsingular, irreducible. Use a resolution of
singularities, reparametrization and Noetherian induction. For every closed
t ∈ T , Xt is again rationally connected.

Indeed, let Y → X/T be a resolution and reparametrization such that
Y → X and Yt → Xt, t ∈ T are birational. We can suppose that X,T also
satisfies required properties. By definition there are canonical surjections

ClY/T � ClX/T,ClYt � ClXt,

and the first one commutes with restrictions. Indeed, the group of Weil
divisors on Y modulo ∼ is the group of Cartier divisors on Y modulo ∼ and
goes canonically to the group of Weil divisors on X modulo ∼. The same
works for Yt → Xt. Note also that the restriction of divisor commutes with
its image. Since we consider relative ClY/T we need to take the quotient
of ClY modulo the vertical over T divisors or to take sufficiently small T .
(We can suppose that they are pullbacks of Cartier divisors from T .) Their
images are also vertical over T .

The nonexceptional over Xt marked distinct prime divisors on Yt goes to
marked distinct prime divisors on Xt. Recall, that by definition of marked di-
visors: D1,t = D1|Yt , . . . , Ds,t = Ds|Yt on Yt, where D1, . . . , Ds are prime divi-

sors on Y . Suppose thatD1, . . . , Ds are required generators. LetD1,t, . . . , D1,r, r ≤
s, be the only nonexceptional among them, equivalently, D1, . . . , Dr be the
only nonexceptional over X among D1, . . . , Ds. Then

D(D1, . . . , Ds)/ ∼=D(D1, . . . , Dr)/ ∼
⊕

D(Dr+1, . . . , Ds) = ClY/T = ClYt =

D(D1,t, . . . , Dr,t)/ ∼
⊕

D(Dr+1,t, . . . , Ds,t.

Note that for distinct prime divisors Dr+1, . . . , Ds with exceptional Dr+1 +
· · ·+Ds, D(Dr+1, . . . , Ds)/ ∼= D(Dr+1, . . . , Ds) (e.g., by [Sh92, 1.1]). Thus
the required statements for Xt follows from that of Yt. Note for this that
D(D1, . . . , Dr),D(D1,t, . . . , Dr,t) are birational invariants with respect to blow-
downs on X,Xt respectively.

For sufficiently small T we can use ∼ instead of ∼T (see Step 3). We can
replace quotients by ∼ by that of P, the principal divisor sheaf. (For ∼T we
can use locally over T principal divisors.)

In the following we suppose that X/T,Xt satisfy required properties.
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Step 2. ClX/T = PicX/T is constant sheaf of PicXt. The equation
holds because X is nonsingular and all Weil divisors are Cartier. For closed
points t ∈ T , Xt is rationally connected. Hence PicXt is a finitely generated
Abelian group. (This follows from the finite generation of the Neron-Severi
group and from the vanishingH0(Xt,Ω

1
Xt

) = 0; e.g., see [Kol91, Corollary 3.8,
Chapter IV].) This implies also that PicX/T is locally constant in étal topol-
ogy. Moreover, the monodromy is finite because it transforms ample divisors
into ample ones of the same degree. By rational connectedness again there
are only finitely many of those divisors up to ∼. After a base change we can
suppose that the monodromy is trivial and PicX/T is constant.

Note that if we are working over k = C then PicX/T is the constant sheaf
of PicXt = H2(Xt,Z). The same holds in characteristic 0 by the Lefshchetz
principal.

Step 3. Search for generators. Take a closed point t ∈ T and generators
D1,t, . . . , Dr,t of ClXt = PicXt. More precisely, their classes module ∼ are
those generators. By construction and Step 2 there exists horizontal divi-
sors D1, . . . , Dr such that D1,t ∼ D1|Xt , . . . , Dr ∼ Dr|Xt . Replacing every

Di,t by the restriction Di|Xt we get equation instead of ∼. Since X/T is

projective, sufficiently general Di are reduced with reduced restriction Di,t

for every t ∈ T and with pairwise disjoint support. When it is needed, we
can take sufficiently general t, that is, a nonempty open subset in T . The
prime components of Di corresponds to the prime components of Di,t. Take
prime components of all Di,t we get required marked distinct prime divisors
D1,t, . . . , Dr,t for every t ∈ T . (Possible with a different r.) Here we need
again a finite covering of T related to the monodromy of components. By
construction Di,t generate WDivXt = CDivXt modulo ∼ for every t. This
concludes the proof of the proposition and Addendum 12. By construction,
for every closed t ∈ T the natural homomorphism

D→ Dt/ ∼= ClXt = ClX/T

is surjective. Its kernel consists of divisorsD ∈ D such thatD ∼ 0 is principal
modulo vertical divisors. In general, we can’t remove vertical divisors. But
for every given linear equivalence we can make this if we consider smaller
T . Since we have a finitely generated Abelian group DT , PT is finitely
generated too and it is enough finitely many relations and we can get a
required sufficiently small T .

Assume that Y/T is a log resolution of X/T : the exceptional divisors
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Ei,t with the birational transform of D1,t, . . . , Dr,t are normal crossing. In
this situation we can use the arguments of the proof of [Sh92, (1.3.2)] for
Addendum 10.

Addendum 11 can be verified similarly, assuming that the log resolution
is sufficiently high: P is stable over X. The latter means that P is defined
over T .

Addendum 12 for Tor and N follows from the fact that topologically or
numerically trivial divisors in the rationally connected variety Xt correspond
to torsions of Tor(H2(Xt,Z)) = Tor(PicXt). That is, they are torsions
modulo ∼.

Addendum 13 is immediate by Addendum 12 under the rationality of
singularities. Indeed, the divisors of Cart correspond to the divisors on the
resolution Yt which are linearly trivial over Xt, equivalently, vertical Cartier
on Yt over Xt [Sh19, Propositions 2-3]. By the assumption, ∼ over Yt is
≡ /T up to torsions. This implies the constant property for sheaf of Q-
Cartier divisors CarQ ∩D. The Cartier divisors of the last sheaf are Q-Cartier
Weil divisors of Cartier index 1. This is an open condition with respect to
T . A Noetherian induction concludes the proof. We need to use here also
the boundedness of the Cartier index that follows from the boundedness of
torsions.

Theorem 5. Let X/Z be a wFt morphism. Then the classes of effective Weil
divisors in ClX/Z form a finitely generated Abelian monoid Eff X/Z. The
same holds for classes effective Cartier divisors in ClX/Z.

Addendum 14. More precisely, there exists a finite set of classes C1, . . . , Cr ∈
ClX/Z of effective divisors with b-free mobile part over Z, in particular,
their Zariski decomposition over Z is defined over Z, and a finite set of
classes W1, . . . ,Ws ∈ ClX/Z of effective Weil divisors such that every class
E ∈ ClX/Z of an effective Weil divisor has the form

E = Wj + n1C1 + . . . nrCr, every ni ∈ Z≥0. (4.0.4)

Addendum 15. If X is Q-factorial, then we can suppose additionally that
every Ci is the class of an effective Cartier divisor.

For us a different presentation of effective classes in terms of prime divisors
will be more important, especially, on the level of divisors (cf. Step 6 in the
proof of Theorem 7).
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Finite linear presentation. Let X/Z be a morphism and D1, . . . , Dr be
a finite collection of distinct prime divisors on X. They give a monoid of
effective Weil divisors supported on D1 + · · ·+Dr

D+ = D+(D1, . . . , Dr) = {d1D1+· · ·+drDr | d1, . . . , dr ∈ Z≥0} ⊆ D = D(D1, . . . , Dr).

The monoid is Abelian with 0 and free, finitely generated. We say that D+

is a linear representative if every effective divisor E on X is in D+ modulo
∼:

E ∼Z d1D1 + · · ·+ drDr ∈ D+.

For local X/Z 3 o, it is enough ∼ instead of ∼Z .
The same can be defined for Cartier divisors with effective indecompos-

able Cartier generators, not necessarily prime. An effective Cartier divisor
D is indecomposable, if D > 0 and D = C1 + C2, where C1, C2 are effec-
tive Cartier then D = C1 for C1 > 0, otherwise D = C2. However, Cartier
generators may be not free in CDivX.

Corollary 9. Let X/Z be a wFt morphism. Then there exists a linear rep-
resentative finitely generated by prime Weil divisors monoid D+. The same
hold for Cartier divisors with effective indecomposable Cartier generators.

Addendum 16. Every (R-linearly) effective R-divisor E is R-linearly equiv-
alent to an element in D+

R . Respectively, every (Q-linearly) effective Q-
divisor E is Q-linearly equivalent to an element in D+

Q.

Proof. Immediate by Theorem 5. Take as generators of D+ distinct prime
components Di of effective Weil divisors Ej such that classes of Ej generate
Eff(X/Z).

Effective Cartier generators can be replace by indecomposable ones.
The addendum is immediate. If Weil divisors W1, . . . ,Wn are linearly

equivalent to effective divisors E1, . . . , En ∈ D+ respectively, then

D = r1W1 + · · ·+ rnWn ∼R r1E1 + · · ·+ rnEn ∈ D+
R

for every real numbers r1, . . . , rn ≥ 0. The same works for over Q.

Corollary 10. Let X/Z be a wFt morphism. Then the classes of effective
exceptional divisors of X/Z in ClX/Z is a finite union of free finitely gen-
erated Abelian saturated monoids of classes of effective exceptional divisors.
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Respectively, the classes of effective linearly fixed over Z divisors in ClX/Z
belong to a finite union of orbits with action of free saturated monoids of
classes of exceptional divisors.

In particular, exceptional and effective linearly fixed divisors supported a
finite reduced divisor.

Addendum 17. FixX/Z = F has finite support and is a finite union of
orbits with action of exceptional submonoids of Exc+. Every saturated sub-
monoid in Exc+ is exceptional.

Exceptional divisors here and everywhere include birationally exceptional
divisors, that is, divisors contractible by a rational 1-contraction.

Proof. A sum of (effective) exceptional divisors can be nonexceptional. For
a wFt morphism or, equivalently, for a Ft morphisms X/Z the exceptional
divisors belong to a union of exceptional divisors corresponding to birational
1-contractions X 99K Y/Z. The exceptional divisors of such a contraction
form a free Abelian group generated by the prime exceptional divisors of this
contraction. Respectively, the effective exceptional divisors of this contrac-
tion form a free Abelian saturated monoid generated by the prime excep-
tional divisors of this contraction. The required results follows from [ShCh,
Corollary 4.5 and Proposition 5.14].

An effective linearly fixed divisor is the only divisor in its linear system.
A sum of those divisors is effective but not necessarily linearly fixed. By
Corollary 9 every effective linearly fixed divisor D is supported in D1 + · · ·+
Dr, that is, D = n1D1+· · ·+nrDr, ni ∈ Z≥0. On the other hand, nonnegative
integral multiplicities ni can be arbitrary large only for exceptional Di. This
concludes the statement about effective linearly fixed divisors.

In Addendum 17, = holds because every effective fixed divisor is unique
in its class modulo ∼. An exceptional submonoid of Exc+ in the addendum
is the monoid of effective exceptional divisors for a birational 1-contraction
X 99K Y/Z. Respectively, saturation means that if n1E1 + · · · + nmEm
belongs to the submonoid, where every ni ∈ N and every Ei is an effective
Weil divisor, then every Ei belongs to the submonoid.

The proof of Theorem 5 will be reduced to the following [general fact
from algebra].
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Lemma 6. Let C be a (free) Abelian monoid generated by a finite set of
generators C1, . . . , Cr, and S be a set with a transitive action of C and T be
a subset in S closed under the action of C. Then T is finitely generated over
C, that is, can be covered by finitely many orbits of C in T .

Proof. Induction on r. The case r = 0 has empty set of generators and S is
has at most one element.

Suppose now that r ≥ 1 and S 6= ∅. Then by transitivity there exists an
element 0 ∈ S such that every element s ∈ S has the form

s = 0 + n1C1 + · · ·+ nrCr, every ni ∈ Z≥0,

where + denotes the action. We can suppose also that T 6= ∅. Then T has
an element

t = 0 +m1C1 + · · ·+mrCr, every mi ∈ Z≥0.

This element gives a big orbit t + C in T . This means that for all other
element

t′ = 0 +m′1C1 + · · ·+m′rCr, every m′i ∈ Z≥0

in T some m′i < mi. The elements t′ with fixed m′i belong to the orbit

S ′ = 0 +m′iCi + C ′,

where C ′ is a free Abelian submonoid in C generated by Cj with j 6= i. By
induction on r the intersection S ′ ∩T can be covered by finitely many orbits
of C ′. Since we have finitely many subsets as S ′ in S, T can be covered by
finitely many orbits of C.

Proof of Theorem 5. Step 1. (Monoid.) If E,E ′ ∈ Eff X/Z are classes of
effective Weil divisors D,D′ then E +E ′ is the class of effective Weil divisor
D + D′. The zero class of Eff X/Z is the class of 0 ≥ 0. So, Eff X/Z is a
Abelian monoid.

Step 2. Taking a Q-factorialization ϕ : Y 99K X with a small birational
modification of Lemma 1, we can suppose that X is Q-factorial and X/Z
has Ft. Since ϕ is a small birational transformation, it preserves required
generators according to the commutative diagram

Eff Y/Z ⊂ ClY/Z
↓ ↓ ϕ∗

Eff X/Z ⊂ ClX/Z
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with vertical isomorphisms.
Step 3. Generators Ci. We find generators modulo ∼Q. The classes of

effective Weil divisors map naturally (on generators over R+) into the cone
of effective divisors:

c : Eff X/Z → EffRX/Z ⊂ ClRX/Z = (ClX/Z)⊗Z R,

a class modulo ∼Z goes to the class modulo ∼R,Z or ≡ over Z. (The im-
age generate the cone over R+.) The cone EffRX/Z is closed convex rational
polyhedral [ShCh, Corollary 4.5]. It has a rational simplicial cone decomposi-
tion. So, it is enough to establish the required finite generatedness of classes
of effective Weil divisors over any rational simplicial cone Q ⊆ EffRX/Z.
Moreover, we can suppose that Q is standard with respect to the lattice

(ClX/Z)/Tor ⊂ ClRX/Z,

where Tor denotes the subgroup of torsions in ClX/Z. In other words,
the primitive vectors e1, . . . , er of edges of Q generate the monoid Q ∩
((ClX/Z)/Tor). By definition and construction, for every ei, some posi-
tive multiple Ci = miei is linear equivalent to an effective Weil divisor. By
[ShCh, Proposition 5.14] we can take Ci which satisfy Addenda 14 and 15.
The b-free assumption means that, after a small birational modification of
X/Z, the mobile part of Ci become the class of a linearly free divisor over Z.
In this situation, the Zariski decomposition of every Ci is defined in ClX/Z,
in particular, over Z. We can suppose also that the positive integers mi

are sufficiently divisible, e.g., kill torsions: for every mi, mi Tor = 0. So, a
lifting of Ci to ClX/Z is well-defined: we identify Ci ∈ Q with the lifting
Ci = mie

′
i ∈ ClX/Z, where e′i ∈ ClX/Z goes to ei ∈ Q. Every class Ci in

ClX/Z is not a torsion and belongs to Eff X/Z. The free Abelian monoid C
generated by C1, . . . , Cr will be considered as a submonoid in Eff X/Z and
in Q.

Step 4. Generators Wj. The submonoid C acts naturally on Eff X/Z,Q
and on c−1Q: for every element n1C1 + · · ·+ nrCr ∈ C, a class E ∈ Eff X/Z
goes to

E + n1C1 + · · ·+ nrCr ∈ Eff X/Z

under the action of n1C1 + · · ·+ nrCr. Indeed, if E ∈ c−1Q, then

c(E + n1C1 + · · ·+ nrCr) = c(E) + n1C1 + · · ·+ nrCr ∈ Q
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and
E + n1C1 + · · ·+ nrCr ∈ c−1Q.

So, if E ∈ c−1Q ∩ (Eff X/Z), then for every n1C1 + · · ·+ nrCr ∈ C,

E + n1C1 · · ·+ nrCr ∈ c−1Q ∩ (Eff X/Z)

and C acts on c−1Q ∩ (Eff X/Z). The required finite generatedness over Q
means that there exists finitely many classes W1, . . . ,Ws ∈ c−1Q∩ (Eff X/Z)
such that every class E ∈ c−1Q ∩ (Eff X/Z) has the form (4.0.4).

Step 5. Reduction to Lemma 6. Actually, it is enough to establish this
for every orbit E +C of c−1Q. The orbits are not disjoint but finitely many
of them cover c−1Q: for finitely many E1, . . . , El ∈ c−1Q,

c−1Q = ∪li=1(Ei + C).

Indeed, the same holds for Q with

Ej = n1e1 + · · ·+ nrer, every 0 ≤ ni < mi.

The required classes for c−1Q are the liftings of these Ej, that is, the elements
of c−1Ej. Every last set is finite and has as many elements as Tor.

The required finite generatedness of (E +C) ∩ (Eff X/Z) for every given
class E + C, that is, the intersection can be covered by finitely many orbits
under the action of C, follows from Lemma 6.

The version with Cartier divisors can be established similarly.

Proposition 11. Let Xt, t ∈ T , be a wFt variety or an algebraic space in
a bounded family. Then a linear representative monoid D+

t has bounded
rank r. More precisely, for appropriate parametrization X/T , every Xt has
marked distinct prime divisors D1,t, . . . , Dr,t such that for every effective D ∈
WDivXt,

D ∼ d1D1,t + · · ·+ drDr,t

for some d1, . . . , dr ∈ Z≥0.

Notice that these marked divisors also satisfy Proposition 10 (cf. Adden-
dum 22 below).

Addendum 18. The sheaf of linear representative monoids D+ = D+(D1, . . . , Dr)
is constant. Every D ∈ E is linear equivalent to an effective divisor in D+

T .
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Remark: D+ ⊆ E but not = in general.

Addendum 19. Sheaves Eff X/T,MobX/T,FixX/T,ExcX/T,Exc+ X/T,E,M,F,Exc,Exc+

are constant,

Eff X/T = E / ∼= E /P,EffT X/T = ET / ∼= ET /PT and Eff Xt = Et / ∼= Et /Pt,

MobX/T = M / ∼= M /P,MobT X/T = MT / ∼= MT /PT and MobXt = Mt / ∼= Mt /Pt,

FixX/T = F,FixT X/T = FixX/T = FT and FixXt = Ft,

ExcX/T = Exc,ExcT X/T = ExcX/T = ExcT and ExcXt = Exct,

Exc+X/T = Exc+,Exc+
T X/T = Exc+X/T = Exc+

T and Exc+Xt = Exc+
t ,

for every (closed) t ∈ T , where F,Exc,Exc+ are respectively subsheaves of
(linearly) fixed, exceptional, effective exceptional divisors over T in D and
FixX/T,ExcX/T,Exc+X/T are corresponding subsheaves in ClX/T .

The following sheaves

EffRX/T,EffQ,MobRX/T,MobQX/T,ExcRX/T,ExcQX/T,Exc+
R X/T,Exc+

QX/T

ER,EQ,MR MQ,ExcR,ExcQ,Exc
+
R ,Exc

+
Q

are also constant, generated respectively by Eff X/T,MobX/T,ExcX/T,Exc+X/T,E,M,Exc,Exc+

over R+,Q+ and

EffR,T X/T = ER,T / ∼R= ER,T /PR,T ,EffQ,T = EQ,T / ∼Q= EQ,T /PQ,T ,

MobR,T X/T = MR,T / ∼R= MR,T /PR,T ,MobQ,T = MQ,T / ∼Q= MQ,T /PQ,T ,

ExcR,T X/T = ExcRX/T = ExcR,T ,ExcQ,T = ExcQX/T = ExcQ,T ,

Exc+
R,T X/T = Exc+

R X/T = Exc+
R,T ,Exc+

Q,T = ExcQX/T = Exc+
Q,T .

Canonical isomorphisms are given by homomorphisms Dt → ClXt, Dt 7→
Dt/ ∼= Dt/Pt. Equivalences ∼Q,∼R can be replaced by ≡ /T .

Remark: We do not consider FixRX/T,FixQX/T and respectively FR,FQ
because to be fixed even under wFt is preserved for multiplicities of a divisor
if and only if it is exceptional (Zariski decomposition).

For X/Z, monoids E and M are defined respectively as effective and
mobile divisors in D modulo ∼Z . The corresponding classes in ClX/Z are
Eff X/Z and MobX/Z respectively. But F defined as divisors without ∼Z
in D and F ⊇ Exc+. The corresponding classes belong to FixX/Z and
FixX/Z = F under the canonical identification.
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Addendum 20. If additionally X/T is projective, that is, has Ft, then
sheaves of monoids

sAmpX/T = Nef X/T, sA = Nef

are constant and

sAmpX/T = sA / ∼= sA /P, sAmpT X/T = sAT / ∼= sAT /PT ,

Nef X/T = Nef / ∼= Nef /P,NefT X/T = NefT / ∼= NefT /PT .

The following sheaves of cones

sAmpRX/T = NefRX/T, sAmpQX/T = NefQX/T, sAR = NefR, sAQ = NefQ

are also constant, generated respectively by

sAmpX/T, sA

over R+,Q+ and

sAmpR,T X/T = sAR,T / ∼R= sAR,T /PR,T , sAmpQ,T = sAQ,T / ∼Q= sAQ,T /PQ,T ,

NefR,T X/T = NefR,T /NR,T ,NefQ,T = NefQ,T /NQ,T .

Canonical isomorphisms are given by homomorphisms Dt → ClXt, Dt 7→
Dt/ ∼= Dt/Pt Equivalences ∼Q,∼R can be replaced by ≡ /T .

Proof. For good properties of the family Xt, t ∈ T , we need to change it
or to take an appropriate parametrization. Usually we alternate the base T
and cut out its closed subfamilies. We use for this a Noetherian induction.
However, the key point in all proofs is a boundedness that typically means
finiteness and boundedness of generators.

Step 1. We can suppose that every Xt is Q-factorial, has Ft and there
exists a polarization Ht on Xt compatible with a complement. The latter
means that there exists an R-complement (Xt, Bt) of (Xt, 0) and effective
Et ≤ Bt such that Et ≡ hHt, where h is a positive rational number, indepen-
dent of t, and Ht is an ample Cartier divisor on Xt. For this we can convert
our family X/T into a wFt and Q-factorial Ft variety with Q-factorial Ft
fibers Xt by Lemma 1 and after a Q-factorialization. Then we can construct
an R-complement and actually a klt n-complement (X/T,B) of (X/T, 0), a
relative polarization H on X over T and an effective Q-divisor E ≤ B on
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X such that E ≡ hH/T , where h is a required positive rational number.
Moreover, by Proposition 10 we can suppose that K,B,E,H are constant,
that is, belong to DQ. Put Bt = B|Xt , Et = E|Xt , Ht = H|Xt .

In particular, boundedness of divisors or other cycles on Xt can be mea-
sured by H or, more precisely, by Ht.

Note also that sheaves Eff ,Mob,Fix,Exc,Exc+, their divisorial ver-
sions E,M,F,Exc,Exc+ and their R,Q versions are invariants of small bi-
rational modification. But sheaves sAmp = Nef , sA = Nef and their R,Q
versions depend on a model of X/T ; = holds by [ShCh, Corollary 4.5] because
every Xt has Ft.

Our main objective is to verify the constant sheaf property for E and
Eff X/T . We will be sketchy for other sheaves. By Proposition 10 we can
suppose that the sheaf of R-linear spaces ClRX/T is constant.

Step 2. Its subsheaf of closed convex rational polyhedral cones EffRX/T
is also constant. Indeed, EffRX/T is covered by finitely many convex ra-
tional polyhedral cones (countries) Pϕ (relative geography). The cone Pϕ

corresponds to a models ϕ : X 99K Y/T , where ϕ is a rational 1-contraction.
The class of an R-divisor D belongs to Pϕ if its 1-contraction ϕD (D-model)
is ϕ and the birational 1-contractions, on which D is nef, are the same (min-
imal D-models). Cones Pϕ are not necessarily closed. (They depend also
on the minimal models.) The finiteness and existence of such a covering for
EffRX/T and for EffRXt see in [ShCh, Theorem 3.4 and Corollary 5.3].

To verify that EffRX/T is constant it is easier to do this with the constant
sheaf property of cones Pϕ. For this we need to verify that the restriction

ϕ|Xt
of cone Pϕ for EffRX/T is Pϕt , where

ϕt = ϕ|Xt : Xt 99K Yt

and the corresponding models with nef Dt are restrictions too.
We can do this inductively with respect to models ϕ. We start with

ϕ = IdX , the identical model. In this case Pϕ = AmpRX/T is the cone
of ample R-divisors on X/T . The sheaf of such cones AmpRX/T is also
constant over appropriate nonempty open subset in T . Moreover, so does its
closure NefRX/T = sAmpRX/T . The equality = holds because X/T has
Ft. The closure is covered by cones Pϕ with contractions ϕ : X → Y/T given
by nef over T divisors D. Contractions Xt → Yt are restricted from those
contractions of X over T after taking an appropriate nonempty open subset
in T . Both X/T and Xt have finitely many contractions. Moreover, they are
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bounded. This allows to remove a proper closed subset in T of contraction
of Xt which are not restricted. The boundedness uses the n-complement
structure. If ϕ is a fibration then generic fibers Xy = ϕ−1y, y ∈ Y , are
bounded: (Xy, By −Ey) is a klt log Fano of bounded (local) lc index, where
By = B|Xy , Ey = E|Xy . If ϕ is birational then its exceptional locus is covered

by bounded curves C over Y and bounded itself. To find bounded curves C
we can take ones with −(C.K+B−E) ≤ 2 dimX [MM]. Since (C.K+B) = 0
then (C.H) ≤ 2 dimX/h is bounded.

Fibers and curves are treated as effective cycles. Perhaps, we need an
alteration of T to have an appropriate (constant) family of those cycles.

If EffRX/T = NefRX/T we are done. Otherwise we take a cone Pϕ of
the maximal dimension as NefRX/T with the closure intersecting NefRX/T .
In this case X is birational to Y under ϕ and Pϕ = AmpR Y/T . (Actually, we
can suppose that ϕ is an extremal divisorial contraction or small birational
modification, an extremal flop of (X/T,B).) So, we get a bounded family
of Ft varieties Yt. We can repeat above arguments and extend our constant
sheaf NefRX/T by also a constant sheaf NefR Y/T . Since we have finitely
many models ϕ and closures of their cones Pϕ are connected by the convex
property of EffRX/T , we get the constant property of EffRX/T , possible
taking a nonempty open subset in T . For the rest in T we use Noetherian
induction.

Since all cones Pϕ are rational we proved also that EffQX/T is con-
stant too. Similarly we can prove that MobRX/T,MobQX/T are constant.
Sheaves ExcX/T = Exc,Exc+X/T = Exc+ and their R,Q versions are also
constant. They are union of corresponding monoids of exceptional locus for
birational models ϕ. For = we need a marked divisors Di,t as in Proposi-
tion 10. Note that Exct,Exc

+
t are defined as divisors without ∼ in Dt. The

same marked divisors work for the constant sheaf property with other prop-
erties of ER,MR and their Q versions.

By the way we proved that sheaves NefRX/T = sAmpRX/T and their
Q version are constant too. The marked divisors as above can be used to
prove that NefR = sAR and their Q versions are constant and satisfy required
properties.

The other sheaves of integral divisors need more sophisticated technique
of the proof of Theorem 5. A Zariski decomposition is not useful here since
it is not integral usually. On the other hand, the decomposition into a fixed
and a mobile parts is not stable (Zariski) under multiplication. Thus we
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can’t reduce the constant property for Eff X/T to that of FixX/T and of
MobX/T . Cf. also Step 4.

Step 3. Eff X/T is constant. We consider Eff X/T as a sheaf of sub-
monoids in ClX/T . We use the proof of Theorem 5 with minor [modifica-
tions] improvements (cf. Lemma 6).

By Proposition 10, ClX/T is constant and there exists a natural constant
sheaf homomorphism

c : ClX/T → ClRX/T

induced by⊗R. We consider a constant rational simplicial coneQ ⊆ EffRX/T ⊆
ClRX/T as in Step 3 of the proof of Theorem 5. We can suppose also that
Q lies in the closure of a cone Pϕ in EffRX/T . We suppose also that Ci ∈ Q
are free on a nef model for Ci (cf. Addendum 14). We take also constant
classes Wj corresponding to Wj of Step 4 in the proof of Theorem 5. Notice
for this that ClR,T X/T = ClRX/T by Proposition 10. We state that re-
strictions Ci,t = Ci|Xt ,Wj,t = Wj|Xt generates c−1Q∩ (Eff Xt), possibly after

taking a nonempty open subset in T . This implies that c−1Q∩ (Eff X/T ) is
constant and Eff X/T is constant too.

For this we consider orbits W +C, where c(W ) belongs to integral points
of Q. Since the kernel of c is finite and Q is covered by finitely many orbits
c(W ) + C, the inverse image c−1Q is covered by finitely many orbits W +
C too. We verify that, for every t in some nonempty open subset in T ,
every orbit Wt +Ct has only restricted classes of Eff X/T in the intersection
with Eff Xt, where Wt = W |Xt , Ct = C|Xt . This implies required statement

about generators. If it is not true, for some W , there exist infinitely many
elements Wt+n1C1,t+· · ·+nrCr,t ∈ Eff Xt with nonnegative integers ni which
are not restricted from elements of Eff X/T . That is, there exist infinitely
many nonnegative integral vectors (n1, . . . , nr) and some t ∈ T for every
such vector that Wt + n1C1,t + · · · + nrCr,t ∈ Eff Xt is not restricted from
elements of Eff X/T . Otherwise, we can remove finitely many closed proper
subsets in T corresponding to vectors (n1, . . . , nr) of nonrestricted elements.
The effective divisors with the linear equivalence class Wt + n1C1,t + · · · +
nrCr,t are bounded. (By definition Eff Xt consists of the classes of effective
Weil divisors modulo ∼.) Replacing W by W + m1C1 + · · · + mrCr with a
fixed nonnegative integral vector (m1, . . . ,mr) and interchanging classes Ci
we can suppose that nonnegative integral vectors (n1, . . . , nr) has the form
(n1, . . . , nq, 0, . . . , 0), q ≤ r, where ni, i = 1, . . . , q, are arbitrary large: for
every nonnegative integral vector (m1, . . . ,mq) there exists (n1, . . . , nq) with
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every ni ≥ mi. This is impossible after removing a proper closed subset in
T .

Indeed, consider the contraction X ′ → Y/T corresponding to the nef
model of ϕ. By construction if the class of linear equivalence Wt + n1C1,t +
· · ·+nqCq,t ∈ Eff Xt then it has an effective divisor Dt on Xt. So, a sufficiently
general fiber X ′t,y, y ∈ Y , of X ′/Y has an effective divisor Dt,y = Dt|X′t,y in

the class of linear equivalence Wt,y = Wt|X′t,y . In other words, the class Wt

has a representative modulo ∼ with the effective restriction Dt,y, that is,
the horizontal part of the representative is effective. Those representative
are bounded as cycles on X ′/T . If the corresponding closed subset in T is
proper then we can remove this set with all classes W + n1C1 · · ·+ nqCq and
there are no nonrestricted classes. Thus we can assume that, for every t ∈ T ,
Wt has a representative modulo ∼ such that its horizontal part over Y is
effective. Adding n1C1,t+ · · ·+nqCq,t with sufficiently large n1, . . . , nq we get
Wt + n1C1,t + · · ·+ nqCq,t in Eff Xt. Indeed, n1C1,t + · · ·+ nqCq,t is the pull
back of a very ample divisor over T from Y . Thus Wt + n1C1,t + · · ·+ nqCq,t
is the restriction of W + c1C1 · · ·+ cqCq ∈ Eff X/T , a contradiction.

Theorem 5 implies that Eff X/T is finitely generated. Thus we can find
marked divisors Di and construct E ⊂ D with surjection E� Eff X/T . The
sheaf E is also constant.

Step 4. MobX/T is constant by the similar arguments as for Eff X/T
in Step 3. This allows to construct the constant sheaf M with required
properties.

FixX/T = F is constant too by Addendum 17.
Finally, we can replace ∼T by ∼ for smaller T in relations such as

Eff X/T = E / ∼ because P is finitely generated. However, for the sheaf
Eff X/T it is better to use ∼T . The same holds for other relations and over
R,Q.

Proposition 12. Let Xt, t ∈ T , be a wFt variety or an algebraic space in a
bounded family. Then for appropriate parametrization X/T sheaves C,CR,CQ
are constant.

Addendum 21. CP ,CRP ,CQP are also constant if P is defined over T
(globally).
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Addendum 22. We can suppose that all our standard sheaves are constant
simultaneously. Moreover, they are bounded or, equivalently, finitely gener-
ated.

Example 8 (cf. Step 8 Addendum 30 in Proof of Theorem 7). Consider a
family (Xt, D

′
t +Pt), t ∈ T , of exceptional wFt pairs, not assuming that P is

defined over T , but assuming that the pairs (Xt, D
′
t+PXt) form a family with

PXt = (Pt)Xt . Then sheaves CtPt ∩ {Dt ∈ Dt | Dt ≥ D′t},CR,tPt ∩ {Dt ∈
DR,t | Dt ≥ D′t},CQ,tPt ∩ {Dt ∈ DQ,t | Dt ≥ D′t} are well-defined and
constant; additionally CR,tPt ∩ {Dt ∈ DR,t | Dt ≥ D′t} is closed convex
rational polyhedral. Indeed, (Xt, Dt + Pt) is also exceptional if and only if
−(KXt + Dt + PXt) ∈ ER,t, equivalently, has an R-complement. However,
the inclusion assumption is constant and polyhedral by Addendum 19 and
[ShCh, Corollary 4.5]. We assume here that KXt ,PXt ∈ Dt are also constant.

Notice that CtPt,CR,tPt,CQ,tPt are possibly nonconstant and CRP is not
well-defined if P is not defined over T .

Proof of Proposition 12. It is enough to be constant for CR. To establish
this we can use the proof of Theorem 6 below. In particular, we can suppose
that the 1-contractions ϕt : Xt 99K Yt and cones Pϕt are constant. In this
situation, Addendum 10 implies that CR is constant.

Respectively, Addendum 11 implies Addendum 21.
Addendum 22 is immediate by proofs of Propositions 10, 11 and their

Addenda. First, we begin from the constant property of ClX/T and its
R,Q versions. Second, we add its constant subsheaves Eff X/T,MobX/T
etc and their R,Q versions. Third, we pick up marked divisors D1, . . . , Dr in
classes of ClX/T as generators of Eff X/D. This gives the constant sheaf
D, adds its constant subsheaves E,M etc and their R,Q versions. We can
suppose that marked divisors are prime and generate ClX/T . Forth, we
can include into generators prime exceptional and prime components of fixed
divisors. Here we use the finiteness of Addendum 17. Finally, for projective
Xt, we can add the constant subsheaves sAmpX/T,Nef X/T, sA,Nef and
their R,Q versions. We add constant divisors K,PXt etc, finitely many other
constant divisors or their classes.

The same works for families of bd-pairs (Xt, Dt +Pt), e.g., for sheaves as
lcRP ,CRP .
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Lemma 7. Let P be a compact rational polyhedron in ER. Then there exists
a positive integer J such that, for any rational divisor D ∈ P with qD ∈ Z,
where q is a positive integer, JqD is effective modulo ∼.

Addendum 23. If E is also constant then, for a constant compact rational
polyhedron Pt ⊆ ER,t, there exists a positive integer J such that the lemma
hold for same J for every Dt ∈ Pt (possibly after reparametrization).

Proof. Step 1. Reduction to the case when P = [D1, . . . , Dr] is a simplex.
Decompose the polyhedron into finitely many simplices P1, . . . ,Pl. Take
J = J1 . . . Jr where Ji is a required integer for Pi.

Step 2. Since every vertex Di is a rational in ER, there exists a posi-
tive integer J1 such that JiDi ∼ Ei and Ei is an effective Weil divisor. In
particular, every JiDi ∈ Z.

Step 3. We contend that J = J2
1 . . . J

2
r is a required integer. Indeed,

take D ∈ [D1, . . . , Dr] with qD ∈ Z for a positive integer q. Then D =
w1D1 · · ·+wrDr with 0 ≤ w1, . . . , wr ∈ Q, w1 + · · ·+wr = 1. Then by Step 2
every J1 . . . Jrqwi is a nonnegative integer and

JqD = Jqw1D1+· · ·+JqwrDr ∼ (Jqw1/J1)E1+· · ·+(Jqwr/Jr)Er ≥ 0 and ∈ Z.

Step 4. The addendum holds for constant vertices D1,t, . . . , Dr,t. In-
deed, every JiDi,t is constant too and JiDi,t ∼ Ei,t for some Ei,t ∈ Et. (We
do not assume that Ei,t is constant. However, it is true for an appropri-
ate parametrization by Addendum 22 if X/T has wFt and the collection of
marked divisors is sufficiently large.)

Theorem 6. Let X/Z be a wFt morphism and D1, . . . , Dr be a finite collec-
tion of distinct prime divisors on X. Then the set

CR = {D ∈ DR | (X/Z,D) has an R-complement}

is a closed convex rational polyhedron in D.

Addendum 24. If K ∈ D then

CR ⊆ (−K − ER).

Moreover, if X is Q-factorial then

CR ⊆ lcR ∩(−K − ER).
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In general, = does not hold but it is true for divisorsD such that−(K+D)
is nef over Z (cf. the proof below).

Addendum 25. For any b-divisor P of X, the same holds for the set

CRP = {D ∈ DR | (X/Z,D + P) has an R-complement}.

In Addendum 24, K should be replace by K + PX .

Actually, we need the last statement especially for bd-pairs (X/Z,D+P).

Proof. Convexity of CR is by definition: [if (X/Z,D1), (X/Z,D2) have respec-
tively R-complements (X/Z,D+

1 ), (X/Z,D+
2 ) and a1, a2 ∈ [0, 1], a1 + a2 = 1,

then (X/Z, a1D
+
1 + a2D

+
2 ) is an R-complement of (X/Z, a1D1 + a2D2)].

It is enough to verify the statement for a sufficiently large collection of
divisors D1, . . . , Dr. In particular, we can suppose that some K ∈ D.

Step 1. Reduction to the nef and lc properties. The cone decomposition
Pϕ of EffRX/Z [ShCh, Theorem 3.4 and Corollary 5.3] (see also Step 2
in the proof of Proposition 11) induces a convex rational polyhedral cone
decomposition of ER. We use the same notation for cones Pϕ of ER as for
EffRX/Z. It is enough to establish the polyhedral property of CR for its
intersection

CR ∩(−K −Pϕ)

with the closure of every cone Pϕ of the decomposition. Indeed, Pϕ cor-
responds to a rational 1-contraction ϕ : X 99K Y/Z (and its birational nef
models). By definition, for every D ∈ CR, −(K +D) ∈ ER holds, or equiva-
lently, D ∈ −K − ER. Moreover, a birational 1-contraction ψ : X 99K X]/Z,
on which D is nef, is one of maximal models of Construction 2. By Adden-
dum 8, if D ∈ (−K −Pϕ) then, for the birational transform D]

X] of divisor

D on X], (X/Z,D) has an R-complement if and only if (X]/Z,D]
X]) is lc.

By construction, −(KX] +D]
X]) is nef over Z. On the other hand, mapping

of
−K −Pϕ → −KX] −NefRX

]/Z,D → D]
X] ,

is affine over Q with a polyhedral image, where DRX
] is generated by

the birational images Di,X] of nonexceptional divisors Di on X]. Thus
CR ∩(−K −NefR) is the preimage of lcRX

] ∩ (−KX] −NefRX
]/Z) and we

need to verify that the latter is closed rational polyhedral. Notice also that
K goes birationally to KX] ∈ DX].
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Step 2. We can consider only the case Pϕ = NefR with ϕ = IdX . In this
situation

CR ∩(−K −NefR) = lcR ∩(−K −NefR).

In other words, for nef −(K +D) over Z, (X/Z,D) has an R-complement if
and only if (X,D) is lc (cf. Example 1, (1)). (In this case (X,D) is a log
pair.) But lcR is a closed convex rational polyhedron [Sh92, (1.3.2)]. Thus
the above intersection is closed convex rational polyhedron too.

Step 3. Addendum 24 follows from the effective property of −(K + D)
noticed in Step 1. The rest of the addendum follows from the lc property of
R-complements [if (X/Z,D) has an R-complement and (X,D) is a log pair
then (X,D) is lc].

The pairs with a b-divisor P can be treated similarly.

Proof of Theorem 2. Immediate by [BSh, Corollary 1.3] and the rational
polyhedral property Theorem 6. (Cf. Step 5 in the proof of Theorem 7
below.) For simplicity, we can use here a Q-factorialization of X and Propo-
sition 3.

Lemma 8. Let c be a real number. Then every real number b has a suffi-
ciently close approximation by b(n+ c)bc /n for every sufficiently large (pos-
itive) real number n:

lim
n→+∞

b(n+ c)bc /n = b.

Proof. Indeed,
|(n+ c)b− b(n+ c)bc | < 1.

Hence
lim

n→+∞
b(n+ c)bc /n = lim

n→+∞
(n+ c)b/n = b.

Proof of Theorem 1. The easy part of the theorem is about the existence
of R-complements when n-complements (X/Z 3 o,B+) exist. This part is
immediate by Theorem 6 and approximation of b by b(n+ 1)bc /n in Lemma 8
with c = 1, n ∈ Z. Notice also that by Corollary 3 (X/Z 3 o,B+) is an R-
and monotonic n-complement of (X/Z,B[n]) (cf. x[n] in 6.13).

Conversely, the existence of n-complements, when an R-complement ex-
ists, is immediate by Theorem 2.
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5 Exceptional complements: explicit construc-

tion

Exceptional pairs. They can be defined in terms of R-complements. A
pair (X,D) is called exceptional if it has an R-complement and every its
R-complement is klt.

The same definition works [for pairs (X,D) with an arbitrary b-divisor
D, in particular,] for bd-pairs (X,D + P) (of index m).

Note that exceptional pairs can be defined for local pairs (X/Z 3 o,D)
but, under the klt assumption, the only exceptional pairs are global. (For
local exceptional pairs we should allow exceptional nonklt singularities; see
[Sh92, §7].)

Exceptionality is related to boundedness.

Corollary 11. Let d be a nonnegative integer and Φ = Φ(R) be a hyper-
standard set associated with a finite set of rational numbers R in [0, 1]. The
exceptional pairs (X,B) with Ft X of dimension d and with B ∈ Φ are
bounded.

The boundedness of pairs includes the boundedness of B with multiplici-
ties.

Addendum 26. The same holds for bd-pairs (X,B + P) of [fixed] index
m. In this case the boundedness includes additionally the boundedness of PX
modulo ∼m.

Q. Is the b-divisor P itself bounded modulo ∼m in higher dimensions? It
is true for surfaces because C ′2 ≤ C2 − 1 for the birational transform C ′ of
a curve C on a surface under the monoidal transformation in a point of C
[IShf, 6.1, (8)].

Proof. Follows from two fundamental results of Birkar: n-complements with
hyperstandard multiplicities and BBAB [B, Theorem 1.8] [B16, Theorem 1.1].

Can be reduced to the crucial case: exceptional klt (X, 0) [B, Theo-
rem 1.3]. In this case, it is enough to establish the nonvanishing: there exists
a positive integer n, depending only on the dimension d = dimX such that
h0(X,−nK) 6= 0. After that we can use the boundedness of Hacon-Xu [HX,
Theorem 1.3].

The boundedness of boundary B means that of SuppB and the finiteness
of multiplicities of B. This holds because B is effective and its multiplicities
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are hyperstandard. Indeed, B = b1D1+· · ·+brDr and every bi ≥ 0. Moreover,
bi = 0 or bi ≥ c, where

c = min{b ∈ Φ \ 0}
is a positive rational number because Φ is a dcc set. Since −K−B is effective
modulo ∼R, deg(−K−B) ≥ 0 and degB ≤ − degK, where the degree deg is
taken with respect to a bounded polarization of X. Hence SuppB is bounded
because degK is bounded. Since (X,B) is exceptional, the set of possible
bi is finite by Corollary 4. Otherwise an n-complement (X,B), with some
bi close to 1, gives a nonklt R-complement of (X,B) [B, Theorem 1.8], a
contradiction.

Similarly for bd-pairs of index m with bounded X, PX is also bounded:

P ∼m E1 − E2,

where E1, E2 are two bounded effective Q-divisors. By construction E1, E2 ∈
Z/m. The class of PX modulo ∼R is a bounded point in the closed convex
rational polyhedral cone EffR(X). (Moreover, the class belongs to the mobile
cone MobR(X).) Indeed, by definition (X,B + PX) has an R-complement.
Thus −(K + B + PX) is effective modulo ∼R and deg(B + PX) ≤ − degK.
Since P is b-nef, PX is effective (even mobile) modulo ∼R [ShCh, Corol-
lary 4.5]. This implies that the divisorial part B is bounded as above. This
gives also the boundedness of the class of PX with respect to the polar-
ization. The class of mPX is integral. Thus mP modulo ∼R is E ′1 − E ′2,
where E ′1, E

′
2 are two bounded Weil divisors on X. Here we use Addenda 12,

19 and 22. In particular, for bounded family of (w)Ft varieties, sheaves
Cl,Eff ,Mob,Tor are constant and modulo Tor are subsheaves of ClR. The
classes of K,B,PX , E ′1, E ′2 and of the polarization in ClRX are restrictions
on X of corresponding sections of ClR. Moreover, ∼R can be replaced by
∼ and torsions, that is, Weil divisors D such with nD ∼ 0. The torsions
are bounded on bounded wFt varieties by Addendum 12 that gives required
presentation with E1 = E ′1/m,E2 = E ′2/m modulo torsions.

Lemma 9. Let λ : V → W be a linear or just continuous map of finite
dimensional R-linear spaces with norms and e be a direction in V such that
λ(e) 6= 0. Then, for every real number ε > 0, there exists a real number
δ > 0 such that if e′ is another direction in V with ‖e′ − e‖ < δ then

(1) λ(e′) 6= 0 too; and
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(2) ∥∥∥∥ λ(e′)

‖λ(e′)‖
− λ(e)

‖λ(e)‖

∥∥∥∥ < ε.

In other words, close directions go to close ones.

Proof. The map λ is continuous. Hence λ(e′) 6= 0 for every e′ ∈ W with
‖e′ − e‖ < δ′.

The map
λ(e′)

‖λ(e′)‖
− λ(e)

‖λ(e)‖
is also continuous for e′ ∈ W with ‖e′ − e‖ < δ′. Moreover,

lim
e′→e

λ(e′)

‖λ(e′)‖
− λ(e)

‖λ(e)‖
= 0.

This gives required 0 < δ ≤ δ′.

Theorem 7 (Exceptional n-complements). Let d be a nonnegative integer,
I, ε, v, e be the data as in Restrictions on complementary indices, and Φ =
Φ(R) be a hyperstandard set associated with a finite set of rational numbers
R in [0, 1]. Then there exists a finite set N = N (d, I, ε, v, e,Φ) of positive
integers such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data.

Existence of n-complement: if (X,B) is a pair with wFt X, dimX = d, with
a boundary B, with an R-complement and with exceptional (X,BΦ)
then (X,B) has an n-complement (X,B+) for some n ∈ N .

Addendum 27. B+ ≥ Bn Φ
] ≥ Bn Φ.

Addendum 28. nB+ is Cartier, if it is Q-Cartier and X has Ft.

Q. Does the same hold for wFt varieties with bounded Ft models?

Addendum 29. (X,B+) is a monotonic n-complement of itself and of
(X,Bn Φ), (X,Bn Φ

]), and is a monotonic b-n-complement of itself and of
(X,Bn Φ), (X,Bn Φ

]), (X], Bn Φ
]
X]), if (X,Bn Φ), (X,Bn Φ

]) are log pairs re-
spectively.
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Addendum 30. The same holds for bd-pairs (X,B + P) of index m with
N = N (d, I, ε, v, e,Φ,m). That is,

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data and m|n.

Existence of n-complement: if (X,B + P) is a bd-pair of index m with wFt
X, dimX = d, with a boundary B, with an R-complement and with
exceptional (X,BΦ+P) then (X,B+P) has an n-complement (X,B++
P) for some n ∈ N .

Addenda 27-28 hold literally. In Addenda 29 (X,B+ +P) is a monotonic n-
complement of itself and of (X,Bn Φ +P), (X,Bn Φ

]+P), and is a monotonic
b-n-complement of itself and of (X,Bn Φ +P), (X,Bn Φ

]+P), (X], Bn Φ
]
X] +

P), if (X,Bn Φ + PX), (X,Bn Φ
] + PX) are log bd-pairs respectively.

Proof. Step 1. Construction of an appropriate family of pairs. We construct
a bounded family of pairs with marked divisors such that every pair of the
theorem will be in the family and the theorem holds for every (typical) pair
(X,B) in the family if and only if it holds in any other pair of the connected
component of the family with (X,B). The boundedness implies the finiteness
of typical pairs which can be chosen. This reduces the theorem to the case
where X is a fixed Q-factorial Ft variety and B is a boundary such that

(1) B ≥ B′, where B′ ∈ Φ is also fixed, (X,B′) is exceptional; and

(2) (X,B) has an R-compliment.

Taking a Q-factorialization and by Lemma 1 we can suppose that every
X has Ft and is Q-factorial. Indeed, we use for this a small birational
modification and it preserves all required complements by Proposition 3.
However, this works only for a projective factorialization for Addendum 28.
So, by Corollary 11 the pairs (X,BΦ) associated with pairs (X,B) of the
theorem are bounded. It is enough to consider one connected family of pairs
(Xt, BΦ,t), t ∈ T . Hence we can suppose that BΦ,t = B′t ∈ Φ is fixed or
constant in the following sense. There exists a positive integer r and rational
numbers b′1, . . . , b

′
h ∈ Φ such that every pair (Xt, BΦ,t) in the family has

marked distinct prime divisors D1,t, . . . , Dh,t and

BΦ,t = B′t = b′1D1,t + · · ·+ b′hDh,t ∈ DR,t.
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(1) holds by our assumptions for every pair (X,B′) in our family. We contend
that construction of n-complements is [uniform][constant for an appropriate
parametrization [family] (see Section 4 and cf. Proposition 12), that is, if
an n-complement with required properties exists for one pair (Xt, Bt) then
the same holds with same n for every other pair of the family with the same
boundary. Possibly we need an appropriate reparametrization of Adden-
dum 22.

By Proposition 10, Addendum 12 and Proposition 11 we can suppose
that the collection [ordered set] of marked divisors D1, . . . , Dh is sufficiently
large and the parametrization is appropriate. This means that, for every pair
(Xt, B

′
t) in our family,

KXt ∼ d1D1,t + · · ·+ dhDh,t

for some d1, . . . , dh ∈ Z independent on t; so, we can suppose that a
canonical divisor is constant:

KXt = d1D1,t + · · ·+ dhDh,t ∈ Dt[= D(D1,t, . . . , Dh,t)];

and

every effective Weil divisor on Xt is linearly equivalent to an element of
a constant monoid of effective Weil divisors D+

t = D+(D1,t, . . . , Dh,t),
the monoid of effective Weil divisors generated by D1, . . . , Dh.

Actually, we need slightly more: Proposition 12 and Addendum 19. We can
assume this and that some other (standard) sheaves are also constant by
Addendum 22.

The reduction to one (typical) pair will be done in Step 3 in the special
case when B is supported on D1 + · · · + Dh, that is, B ∈ D+. The general
case will be treated in Step 7, that is, an n-complement of (X,B) under
(1-2) with n ∈ N of Step 2 below can be constructed in terms of an n-
complement of the special case. But before we reformulate the existence of
n-complements in terms of linear systems. Note also the dependence of N
on X instead of d = dimX in Step 2. Since we have finitely many typical
(X,B′) of dimension d, the total finite set N = N (d, I, ε, v, e,Φ) is a finite
union of N (X,B′, I, ε, v, e,Φ).

Step 2. (Reduction to linear complements.) Let (X,B′) be pair as in
Step 1, that is, under assumption (1). Suppose that there exists a finite
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set of positive integers N = N (X,B′, I, ε, v, e,Φ) such that, every n ∈ N
satisfies Restrictions on complementary indices and, for every boundary B
on X under (1-2), there exists n ∈ N such that

(3)
b(n+ 1)Bc /n ≥ Bn Φ;

and

(4)
−nK − b(n+ 1)Bc

is linear equivalent to an effective Weil divisor E (cf. D after [Sh92,
Definition 5.1]).

Then (X,B) has an n-complement. The same holds for the bd-pairs (X,B)
of index m|n with (possibly different) N = N (X,B′ + PX , I, ε, v, e,Φ,m).

Indeed, (X,B) has an n-complement (X,B+) with required properties,
including

B+ ≥ Bn Φ. (5.0.5)

Take
B+ = b(n+ 1)Bc /n+ E/n.

We verify only that (X,B+) is an n-compliment of (X,B). The addenda will
be explained later in Step 8. By construction and (4)

n(K +B+) = nK + b(n+ 1)Bc+ E ∼ 0.

This implies (3) of Definition 2. By (3) and Proposition 6, since B+ ≥ Bn Φ ≥
BΦ ≥ B′ and (X,B′) is exceptional by (1), (X,B+) is lc, moreover, klt. This
implies (2) and (1) of Definition 2 by Corollary 5.

Step 3. Reduction to one pair in the special case. Suppose that (X,B) =
(Xt, Bt) for some t ∈ T . The special case means that B ∈ D+ and Bt ∈ D+

R,t.
The pair (Xt, B

′
t) satisfies (1). By construction every other pair (Xs, B

′
s)

also satisfies (1). We need to verify the following. Let Bs ∈ D+
R,s be a

boundary under assumptions (1-2), then (Xs, Bs) satisfies (3-4) for some
n ∈ N of Step 2. In particular, by Step 2 (Xs, Bs) has also a required
n-complement.

By our assumptions and construction Bs = b1D1,s + · · ·+ bhDh,s satisfies
(1-2). Hence B = Bt = b1D1,t + · · · + bhDh,t also satisfies (1-2). Indeed, we
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can also treat divisors B,B′, K and Di as constant ones BT , B
′
T , KX/T , Di,T

in DR,T as in Addendum 12. Then (1) means that Bs ≥ B′s and implies

BT ≥ B′T and Bt = b1D1,t + · · ·+ bhDh,t ≥ B′t = b′1D1,t + · · ·+ b′hDh,t.

However, (2) is more advanced and requires the constant cone CR, the cone
of divisors D ∈ DR with R-complements (see Proposition 12). Since it is
constant, (2) for Bs implies that of for Bt. Actually, in the exceptional case
under (1) it is enough the effective property: CR,t ∩{Bt ≥ B′t} = (−KXt −
ER,t) ∩ {Bt ≥ B′t} means (2) under (1).

Now according to our assumptions, for (Xt, Bt), there exists n ∈ N
such that Bt satisfies (3-4). Hence Bs also satisfies (3-4). Indeed, since
Bt, Bn Φ,t ∈ DR,t, (3) is independent on t. Similarly, (4) independent on t by
Addendum 19 becauseKXt , b(n+ 1)Btc ∈ Dt and−nKXt−b(n+ 1)Btc ∈ Et.
Actually, we can choose Et ∈ D+

t and B+
t ∈ D+

Q,t.
Note that the constructed complement under (3-4) in Step 2 satisfies

B+
s ≥ Bs,n Φ.

Step 4. Preparatory for the special case. Below we consider fixed (X,B′) =
(Xt, B

′
t).

By Lemma 7 there exists a positive integer J such that,

(5) for every positive integer q, if Bq ∈ DR under (1-2) and such that qBq ∈
Z, then

−JqK − JqBq

is linear equivalent to an effective Weil divisor E.

Actually, Bq is a boundary because (X,B′) is exceptional. By Step 1, we can
suppose that K ∈ D, integral. So, (1-2) mean that

Bq ∈ CR ∩{Bq ≥ B′},

a compact rational polyhedron in CR [ShCh, Corollary 4.5]. Recall that
CR ∩{B ≥ B′} = (−K − ER) ∩ {B ≥ B′}. We apply Lemma 7 to ER ∩{D =
−K − Bq ≤ −K − B′}. Since by Addendum 19 the polyhedral is constant
over T , there exists J independent on t ∈ T by Addendum 23.

Consider divisors B ∈ CR ∩{B ≥ B′}. The multiplicities

bn Φ = multP Bn Φ,
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where P is a prime divisor on X and n is a positive integer, are not accumu-
lated to 1 for all i. Indeed, since (X,B′) is exceptional, B is a (klt) boundary.
On the other hand, by definition

bn Φ = 1− r

l
+

m

l(n+ 1)
,

where r ∈ R, m is a nonnegative integer and l, n are positive integers. We can
always find a boundary B′′ ∈ Φ between Bn Φ and B′: B ≥ Bn Φ ≥ B′′ ≥ B′.
For every prime divisor P on X,

b′′ =

{
1− r

l′
, if bn Φ ≥ 1− 1

l′
≥ b′ = multP B

′ for some positive integer l′,

b′ otherwise,

where b′′ = multP b
′′. By the klt property of B, r > 0. By construction

(X,B′′) is exceptional. Hence l′ and l are bounded by Corollary 11 and bn Φ

are not accumulated to 1. So, the set R′ of rational numbers

r′ = 1− r

l

for all multiplicities bn Φ is finite and independent of n. However, n and m
can be large.

Step 5. (Linear complements: the special case.) To find a required set
N = N (X,B′, I, ε, v, e,Φ) of Step 2 we use Diophantine approximations in
the R-linear space DR = DR(D1, . . . , Dh). The special case means that we
consider only boundaries B ∈ DR. For those boundaries BΦ, Bn Φ ∈ DR too.
For every such B under (1-2), we find n ∈ N such that (3-4) holds.

Fix for this a sufficiently divisible positive integer N : I|N,NR′ ⊂ Z and
J |N , where J of Step 4. We also suppose that N ≥ 2. Take a positive real
number δ such that δ < 1/4N , δ < ε/N , the δ-neighborhood of B in 〈B〉 lies
in CR ∩{B ≥ B′} and δ satisfies Lemma 9 for the projection pr : DR×Rl → Rl

and a direction e′ in 〈(B, v)〉 which goes to

e =
pr(e′)

‖pr(e′)‖
.

We assume also that

δ ≤ min{bi, 1− bj | i, j = 1, . . . , l, and bi > 0}
3N

.
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[Warning: the minimum for all 1 − bj but not for all bi.] The minimum is
positive because every bj < 1 by the klt property of R-complements.

Such δ exists because CR ∩{B ≥ B′} is a compact rational polyhedron
and the minimum is positive. Note also that e′ exists because the restriction
of projection

〈(B, v)〉 → 〈v〉
is surjective. Then by [BSh, Corollary 1.3] there exists a positive integer q
and a pair of vectors Bq ∈ 〈B〉 , vq ∈ 〈v〉 such that

(6) qBq ∈ Z, qvq ∈ Zl;

(7) ‖Bq −B‖ , ‖vq − v‖ < δ/q; and

(8) ∥∥∥∥ (Bq, vq)− (B, v)

‖(Bq, vq)− (B, v)‖
− e′

∥∥∥∥ < δ.

The approximation (Bq, vq) applies to the vector (B, v) in 〈(B, v)〉 ⊆ DR×Rl

with the direction e′ in 〈(B, v)〉.
Put n = Nq and vn = vq. Then vn satisfies required properties of Re-

strictions on complementary indices: Divisibility by the divisibility of N ,
Denominators by (6), Approximation by (7) and Anisotropic approximation
by (8) and Lemma 9 respectively. (The lemma is applied to the direction e′

and another direction
(Bq, vq)− (B, v)

‖(Bq, vq)− (B, v)‖
in DR × Rl.) To avoid different vn for the same n, it would be better to
suppose that ε < 1/2. Instead, we assumed above that δ < 1/4N ≤ 1/4.
Then vn independent of B and (X,B′) too.

Now we verify that, for every boundaryB′′ ∈ DR, in the δ/q-neighbourhood
of B in CR ∩{B ≥ B′}, n satisfies the properties (3-4). In other words, the
properties holds for B′′ ∈ DR if ‖B′′ −B‖ < δ/q, B′′ ≥ B′ and (X,B′′) has an
R-complement. Since CR ∩{B ≥ B′} is compact it has a finite cover by those
neighbourhoods and N is the finite set of numbers n for the neighbourhoods
of such a covering.

However we start from the property

(9)
b(n+ 1)B′′c /n = Bq.
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Equivalently, for every i = 1, . . . , h,

b(n+ 1)b′′i c /n = bi,q, b
′′
i = multDi B

′′ and bi,q = multDi Bq.

By construction and (6), bi,q ∈ Z/q ⊆ Z/n. By construction and (7)

‖b′′i − bi,q‖ ≤ ‖b′′i − bi‖+ ‖bi − bi,q‖ <
2δ

q
, bi = multDi B. (5.0.6)

Case bi = 0. By construction and (7),

‖bi,q‖ = ‖bi,q − bi‖ <
δ

q
=
Nδ

n
<

1

4n
<

1

q
.

Hence by (6) bi,q = 0. By construction b′′i ≥ 0. The inequality (5.0.6) implies

‖b′′i ‖ = ‖b′′i − bi,q‖ <
2δ

q
<

2Nδ

n
<

1

2n
≤ 1

n+ 1
.

Thus
b(n+ 1)b′′i c /n = 0 = bi,q.

Case bi > 0. By Lemma 4 it is enough to verify the inequality

‖b′′i − bi,q‖ <
min{b′′i , 1− b′′i }

n
.

By construction, our assumptions and the positivity of bi

b′′i > bi−
δ

q
≥ min{bi, 1−bj | i, j = 1, . . . , l, and bi > 0}−δ

q
≥ 3Nδ−δ

q
≥ 2Nδ.

Similarly,

1− b′′i > 1− bi −
δ

q
≥ 3Nδ − δ

q
≥ 2Nδ.

Recall, that 1− bi > 0 because (X,B) is klt. Both inequalities gives

min{b′′i , 1− b′′i } > 2Nδ.

Hence by the inequality (5.0.6)

‖b′′i − bi,q‖ <
2δ

q
=

2Nδ

n
<

min{b′′i , 1− b′′i }
n

.
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Property (3): By (9), (3) means

Bq ≥ B′′n Φ

or, equivalently, for every i = 1, . . . , l,

bi,q ≥ b′′i,n Φ.

By definition
b′′i ≥ b′′i,n Φ.

So, it is enough to disprove the case

b′′i ≥ b′′i,n Φ > bi,q.

By the inequality (5.0.6) this implies the inequalities

0 < b′′i,n Φ − bi,q <
2δ

q
.

The low estimation (5.0.8) of the difference below gives a contradiction. For
this we use the following form of numbers under consideration:

b′′i,n Φ = r +
mi

li(n+ 1)
and bi,q = r +

m

n
,

where r = 1−ri/li ∈ R′ [(not necessarily positive for general R [PSh08, 3.2])],
li is a positive integer, mi is a nonnegative integer and m is an integer. Such
an integer m exists because by construction r ∈ R′ ⊂ Z/n and bi,q ∈ Z/n
(see the choice of N and (9) above). The inequality b′′i,n Φ > bi,q implies that

mi

li(n+ 1)
>
m

n
.

Hence lim < mi. Since lim is an integer,

lim ≤ mi − 1 and bi,q = r +
m

n
= r +

lim

lin
≤ r +

mi − 1

lin
.

Note also that the assumption R ⊂ [0, 1] implies that ri ≤ 1 and

r = 1− ri
li
≥ 1− 1

li
.

72



On the other hand, b′′i,n Φ ≤ b′′i < 1. So,

mi

li(n+ 1)
= b′′i,n Φ − r < 1− 1 +

1

li
=

1

li
,

mi

n+ 1
< 1

and mi ≤ n because mi is integer. Hence

mi − 1

n
<

mi

n+ 1
and bi,q ≤ r +

mi − 1

lin
< r +

mi

li(n+ 1)
= b′′i,n Φ.

Thus by the inequality (5.0.6)

mi

li(n+ 1)
− mi − 1

lin
= r +

mi

li(n+ 1)
− r − mi − 1

lin
<

2δ

q
.

That is,

1

n
(
1

li
− mi

li(n+ 1)
) =

mi

li(n+ 1)
− mi − 1

lin
<

2δ

q
=

2Nδ

n
.

Hence
1

li
− mi

li(n+ 1)
< 2Nδ. (5.0.7)

On the other hand, by construction and the inequality (5.0.6)

1− ri
li

+
mi

li(n+ 1)
= r +

mi

li(n+ 1)
= b′′i,n Φ ≤ b′′i < bi +

2δ

q
.

Since ri ≤ 1 and 1− bi > 0, 1− bi ≥ 3Nδ, the last inequality implies

1

li
− mi

li(n+ 1)
= 1− ri

li
+

1

li
− 1 +

ri
li
− mi

li(n+ 1)
= 1− ri

li
+

1

li
− b′′i,n Φ

> 1− ri
li

+
1

li
− bi −

2δ

q
≥ 1− bi −

2δ

q
> 3Nδ − 2δ

q
. (5.0.8)

This gives by the inequality (5.0.7)

3Nδ − 2δ

q
< 2Nδ.

Equivalently,
Nq < 2
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a contradiction because N ≥ 2, q ≥ 1.
Property (4) for B′′ is immediate by (5). Indeed, Bq satisfies (1-2) by (7)

and our assumptions, qBq ∈ Z by (6), and by (9) and assumptions

−nK − b(n+ 1)B′′c = −nK − nBq =
N

J
(−JqK − JqBq)

is linear equivalent to an effective Weil divisor.
Finally, in this step it is not necessarily to suppose that X is irreducible.

It is enough a bound on the number of irreducible components of X. In
particular, we can take finitely many B in CR ∩{B ≥ B′} if the number of
boundaries is bounded. Indeed, constructions of N and of n-complements
are combinatorial: we work with the lattice D and approximations.

Step 6. Preparatory for the general case. There exists a homomorphism

µ : WDivX → D

of the free Abelian group WDivX of Weil divisors to the lattice D. For every
prime Weil divisor P on X, put µ(P ) = E, where E ∈ D such that P ∼ E.
Since P is effective we can suppose that E ∈ D+, that is, also effective.
Moreover, for the generators Di, we take µ(Di) = Di, that, is µ is a projection
on D. That is, for every divisor D in D, µ(D) = D. In particular, µ(K) = K.
By definition and construction, for every D ∈WDivX, µ(D) ∼ D.

Since µ is a homomorphisms of groups, for every two divisors D,D′ on
X and every integer n, µ(D +D′) = µ(D) + µ(D′) and µ(nD) = nµ(D).

Below we always assume that, for every prime Weil divisor P on X, µ(P )
is effective. So, we obtain a homomorphism

µ : EffWDivX → D+

of the free Abelian monoids [EffWDivX effective Weil divisors on X].
For an R-divisor D =

∑
diQi, where Qi are distinct prime Weil divisors,

put

µ(D) =
∑

diµ(Qi).

This gives a natural R-linear extension

µ : WDivRX → DR = D⊗ R

of the above homomorphism of free groups. In particular, for every r ∈ R
and every D ∈ WDivRX, µ(rD) = rµ(D) holds. For every R-divisor D in
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DR, µ(D) = D. In particular, µ(B′) = B′. Note also that, in the important
for us situation of Step 7, BΦ = B′ and µ(BΦ) = BΦ but µ(B)Φ 6= µ(BΦ) is
possible if B is not supported in D1 + · · ·+Dh.

Taking nonnegative real numbers di we obtain a homomorphism of monoids

µ : EffWDivRX → D+
R ,

[where EffWDivRX is the cone of effective R-divisors and D+
R is the cone of

effective R-divisors supported on D1 + · · ·+Dh]. It is an R+-homomorphism,
that is, for every r ∈ R+ = [0,+∞) and every D ∈ EffWDivRX, rD ∈
EffWDivRX and µ(rD) = rµ(D) holds. Note also the following monotonicity

(10) if D,D′ ∈WDivRX and D ≥ D′, then µ(D) ≥ µ(D′).

However, µ is not unique and not canonical.
We use in Step 7 the following monotonicity: for any R-divisor D

b(n+ 1)µ(D)c ≥ µ(b(n+ 1)Dc). (5.0.9)

Both sides are supported in D1 + · · · + Dh. So, it is enough to verify the
inequality for the multiplicities in every Di. Let D =

∑
djQj, where Qj are

distinct prime Weil divisors and

µ(Qj) =
h∑
i=1

ni,jDi,

where ni,j are nonnegative integers. Then

µ(D) =
∑

djµ(Qj) =
h∑
i=1

(
∑

ni,jdj)Di and multDi µ(D) =
∑

ni,jdj.

Respectively,

multQj b(n+ 1)Dc =
⌊
(n+ 1) multQj D

⌋
= b(n+ 1)djc ,

µ(b(n+ 1)Dc) =
h∑
i=1

(
∑

ni,j b(n+ 1)djc)Di

and
multDi µ(b(n+ 1)Dc =

∑
ni,j b(n+ 1)djc .
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Hence by inequalities (2.2.3-2.2.4), for nonnegative integers ni and real di,⌊
(n+ 1)(

∑
nidi)

⌋
≥
∑

ni b(n+ 1)dic

and

multDi b(n+ 1)µ(D)c = b(n+ 1) multDi µ(D)c =
⌊
(n+ 1)(

∑
ni,jdj)

⌋
≥∑

ni,j b(n+ 1)djc = multDi µ(b(n+ 1)Dc).

By definition and construction, for every D ∈WDivRX, µ(D) ∼R D. In
particular, if (X,D+) is an R-complement of (X,D) then

µ(D+) ∼R D
+ ∼R −K.

Moreover, µ(D), µ(D+) ∈ DR. By the monotonicity (10), µ(D+) ≥ µ(D).
Hence (X,µ(D+)) is an R-complement of (X,µ(D)) if (X,µ(D+)) is lc. In-
deed,

K + µ(D+) = µ(K) + µ(D+) = µ(K +D+) ∼R K +D+ ∼R 0.

If additionally D = B is a boundary then B+ = D+ is a boundary and,
under the lc property of (X,µ(B)), (X,µ(B+)), µ(B), µ(B+) are boundaries
too.

In conclusion to this step, if (X,B) has an R-complement (X,B+) and
B ≥ B′, then (X,µ(B+)) is lc and is an R-complement of (X,µ(B)). Indeed,
B+ ≥ B′ and µ(B+) ≥ µ(B′) = B′ because B′ ∈ DR. By the exceptional
property of (X,B′), (X,µ(B+)) is klt.

Step 7. (Linear complements: the general case.) We consider (X,B)
under (1-2). Moreover, we can suppose in this case that BΦ = B′. Put

B′′ =
h∑
i=1

biDi, every bi = multDi B.

Note that D1, . . . , Dh include all prime divisors P on X with

bP,Φ = multP (BΦ) = (multP b)Φ > 0.

Indeed, BΦ ∈ DR.
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By Step 6 and construction both divisors µ(B), B′′ ∈ DR and satisfy (1-
2). Thus by Step 5 we have n ∈ N which satisfies required properties (3-4)
simultaneously for µ(B) and B′′. We verify now that (3-4) holds also for B
and the same n.

Property (3): (Here we need n only for B′′.) By definition bP,n Φ is the
largest number

1− r

l
+

m

l(n+ 1)
≤ bP = multP B,

where P is a prime Weil divisor of X, r ∈ R, l is a positive integer and m is
a nonnegative integer.

Case 1 − r/l > 0. Then, for some i = 1, . . . , l, P = Di and bP = bi =
multDi B

′′. Hence (3) holds for this prime Weil divisor P .
Case 1−r/l = 0. Then l = 1, r = 1 and bP,n Φ = m/(n+1). By definition

bP ≥
m

n+ 1
.

So,

b(n+ 1)bP c /n ≥
⌊

(n+ 1)
m

n+ 1

⌋
/n =

m

n
>

m

n+ 1
= bP,n Φ.

Property (4): (Here we need n only for µ(B).) Let E be an effective Weil
divisor such that

E ∼ −nK − b(n+ 1)µ(B)c .

On the other hand, by (5.0.9)

E ′ = b(n+ 1)µ(B)c − µ(b(n+ 1)Bc)

is an effective Weil divisor. Thus by Step 6

−nK − b(n+ 1)Bc ∼ −nK − µ(b(n+ 1)Bc) =

−nK − b(n+ 1)µ(B)c+ b(n+ 1)µ(B)c − µ(b(n+ 1)Bc) =

−nK − b(n+ 1)µ(B)c+ E ′ ∼ E + E ′.

By construction E + E ′ is also effective.
Step 8. (Addenda.) By Step 2, B+ ≥ Bn Φ. So, Proposition 8 implies

Addendum 27.
Addendum 28 follows from Definition 2, (3) and from the boundedness of

canonical index , that is, the index of canonical divisors KXt for a bounded
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family X/T of Ft varieties. Note that X is Q-Gorenstein if nB+ is Q-Cartier.
The index of K on X gives the bound on the index of all KXt , t ∈ T . If N of
Step 5 will be divisible by the last index then n will be sufficiently divisible
and satisfies the addendum.

Addendum 29 is standard. For n-complements, it follows from Adden-
dum 27 and from Definition 2 for (X,Bn Φ), (X,Bn Φ

]). For b-n-complements,
it follows from Example 6, (1) and from Proposition 1 for (X,Bn Φ), (X,Bn Φ

]),
if respectively they are log pairs. Note also that (X/Z 3 o,B+) is a log pair
by definition.

For (X], Bn Φ
]
X]), we use Addendum 27 and Proposition 8. The pair

(X], Bn Φ
]
X]) is a log one by definition. The statement is meaningful because

the n-complement (X,B+) induces an n-complement for a special maximal
model (X], Bn Φ

]
X]) with a small transformation X 99K X] (cf. Proposi-

tion 3) and then for any other its crepant model by Remark 4, (1).
In this step b-n-complements of (X], Bn Φ

]
X]) is our final destination.

They give all other complements in Addendum 29 and an n-complements of
(X,B) as well. However, in many other situation we first construct a b-n-
complement for (X], Bn Φ

]
X]). The former is actually induced from this root

(exceptional) complement.
Addendum 30 about bd-pairs (X,B + P) can be treated as the case

of usual pairs with minor improvement as follows. First, (1-2) should be
replaced by

(1-bd) B ≥ B′, where B′ ∈ Φ is also fixed and (X,B′ + P) is exceptional
with fixed PX ; and

(2-bd) (X,B + P) has an R-compliment.

Note for this that by Corollary 11 and Addendum 26 we can suppose that
PX is fixed too and corresponds to a constant divisor PX,t, t ∈ T . (We do
not suppose the existence of entire constant b-divisor Pt.)

We can construct n-complements using also linear complements with same
(3-bd)=(3) and modified

(4-bd) m|n and
−nK − nPX − b(n+ 1)Bc

is linear equivalent to an effective Weil divisor E.
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In this situation we modify the effective property: CR,tPt ∩ {Bt ≥ B′t} =
(−KXt − PX,t − ER,t) ∩ {Bt ≥ B′t} means (2-bd) under (1-bd). This is
a constant compact rational polyhedron and we can use Lemma 7 again.
There exists a positive integer J such that, m|J and

(5-bd) for every positive integer q, if Bq ∈ DR under (1-2-bd) and such that
qBq ∈ Z, then

−JqK − JqPX − JqBq

is linear equivalent to an effective Weil divisor E.

Since m|J , JqPX is integral and well-defined modulo ∼ 0. The rest of proof
for usual pairs is related to boundary computations and works literally.

Addendum 28 for bd-pairs follows from Definition 5, (3) and from the
boundedness of bd-semicanonical index , that is, the index of bd-semicanonical
divisors KXt + PX,t for a bounded family X/T of Ft varieties.

6 Adjunction correspondence

Let r be a real number and l be a positive integer. The adjunction corre-
spondence with parameters r, l is the following transformations of two real
numbers b, d

d = 1− r

l
+
b

l
(direct) (6.0.10)

and
b = r − l + ld (inverse). (6.0.11)

The correspondence is 1-to-1. How the correspondence is related to the
divisorial part of adjunction for morphism see Section 7. In this section we
establish the basic properties of this correspondence (almost) without any
relation adjunction.

6.1 Linearity

Both transformations (6.0.10) and (6.0.11) are linear respectively for vari-
ables b and d.

Proof. Immediate by (6.0.10) and (6.0.11).
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6.2 Monotonicity

Both transformations (6.0.10) and (6.0.11) are monotonically strictly increas-
ing: for corresponding b1, d1 and b2, d2,

b1 > b2 ⇔ d1 > d2.

Proof. Immediate by (6.0.10) and (6.0.11) and positivity of l.

6.3 Rationality

Both transformations (6.0.10) and (6.0.11) are rational linear functions if r
is rational. So, for rational r and corresponding b, d,

b ∈ Q⇔ d ∈ Q.

6.4 Direct log canonicity (klt) (cf. [PSh08, Lemma 7.4,
(iii)])

If b ≤ r (< r) then the corresponding d ≤ 1 (respectively < 1). Note that,
for adjunction, b ≤ r means lc of b, that is, b ≤ 1 (see 7.2). So, if d is a
multiplicity of a divisor D in a prime divisor P of X then (X,D) is lc near
P . Note also that if additionally r ≤ 1 then b ≤ 1 too.

Proof. By Monotonicity

d = 1− r

l
+
b

l
≤ 1− r

l
+
r

l
= 1 (respectively < 1).

6.5 Inverse log canonicity (klt) (cf. [PSh08, Lemma 7.4,
(iii)])

If d ≤ 1 (d < 1) then the corresponding b ≤ r (respectively < r). So, if
additionally r ≤ 1 then b ≤ 1 (respectively < 1). Note that r ≤ 1 holds for
adjunction of morphisms by construction (see 7.2).

Proof. By Monotonicity

b = r − l + ld ≤ r − l + l = r (respectively < r).
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6.6 Direct positivity (cf. [PSh08, Lemma 7.4, (i)])

If b ≥ 0 and r ≤ l then the corresponding d ≥ 0. The second assumption
always holds for r ≤ 1 because l ≥ 1.

Proof. By Monotonicity and positivity of l

d = 1− r

l
+
b

l
≥ 1− r

l
≥ 0

However, the inverse positivity does not hold in general. E.g., if 0 ≤ d� 1
then b ≈ r − l and < 0 for l > r which is typical for adjunction.

6.7 Direct boundary property (cf. [PSh08, Lemma 7.4,
(iv)])

If 0 ≤ b ≤ r ≤ 1 then the corresponding d ∈ [0, 1], that is, 0 ≤ d ≤ 1.

Proof. Immediate by Direct log canonicity and positivity.

6.8 Direct hyperstandard property (cf. [PSh08, Propo-
sition 9.3 (i)])

Let R,R′′ be two finite subsets of rational numbers in [0, 1] such that 1 ∈
R,R′′. Then

R′ = {r′−l(1−r) | r ∈ R′′, r′ ∈ R, l ∈ Z, l > 0 and r′−l(1−r) ≥ 0}. (6.8.1)

is also a finite subset of rational numbers in [0, 1] and 1 ∈ R′.
For every parameters r, l such that r ∈ R′′ and b ∈ Φ = Φ(R) such that

b ≤ r,
d ∈ Φ′ = Φ(R′),

where d corresponds to b.
If additionally N is a (finite) set of positive integers then, for every b ∈

Γ(N ,Φ) such that b ≤ r,
d ∈ Γ(N ,Φ′),

where d corresponds to b.
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Proof. Rationality of elements of R′ is immediate by definition. Since r′ ≥ 0
and r ≤ 1, the set R′ is a subset of [0, 1]. Notice for this also that elements
of R′ are nonnegative by definition.

If r = 1 then r′ − l(1 − r) = r′ ∈ R. Thus the set of such numbers is
finite and 1 belongs to it.

If r < 1 then 1 − r > 0. Thus the set of numbers r′ − l(1 − r) ≥ 0 with
r′ ∈ R is finite. Recall that l is a positive integer.

By definition and our assumptions

d = 1− r

l
+
b

l
,

where r ∈ R′′ and l is a positive integer. On the other hand, if b ∈ Γ(N ,Φ)
then

b = 1− r′

l′
+

1

l′
(
∑
n∈N

mn

n+ 1
),

where r′ ∈ R, l′ is a positive integer and mn, n ∈ N , are nonnegative integers
(if N is infinite then almost all mn = 0). Hence

d = 1− r

l
+

1− r′

l′
+ 1

l′
(
∑

n∈N
mn
n+1

)

l
= 1− r′ − l′(1− r)

ll′
+

1

ll′
(
∑
n∈N

mn

n+ 1
).

By our assumptions b ≤ r. Thus by Direct log canonicity 6.4, d ≤ 1. Thus
r′ − l′(1 − r) ≥ 0,∈ R′ by (6.8.1) and d ∈ Γ(N ,Φ′). If particular, if N = ∅
then d ∈ Φ′.

6.9 n Φ inequality

Under assumptions and notation of 6.8, let b1, d
′ be real numbers such that

0 ≤ b1 ≤ r and
d′ ≥ d1,n Φ′ , (6.9.1)

where d1 corresponds to b1 by (6.0.10). Then

b1,n Φ ≤ b′, (6.9.2)

where b′ corresponds to d′ by (6.0.11).
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Proof. By 6.7, d1 ∈ [0, 1] because r ≤ 1 by 6.8. Thus the assumption (6.9.1)
and the conclusion (6.9.2) are meaningful. By definition

b1,n Φ ≤ b1 and b1,n Φ ∈ Γ(n,Φ).

Hence by 6.2
d′1 ≤ d1,

where d′1 corresponds to b1,n Φ by (6.0.10). On the other hand, d′1 ∈ Γ(n,Φ′)
by 6.8. Thus again by definition

d′1 ≤ d1,n Φ′ .

This implies that
d′1 ≤ d′

by the assumption (6.9.1). Again 6.2 implies the required inequality (6.9.2).

6.10 Direct dcc

Let Γ ⊂ [0, 1] be a dcc set and R′′ be a finite subset in [0, 1]. The the
corresponding set

Γ′ = {1− r

l
+
b

l
| r ∈ R′′, l ∈ Z, l > 0, b ∈ Γ and r ≥ b}

also satisfies dcc. Note that the last assumption equivalent to 1− r
l

+ b
l
≤ 1

(cf. Direct log canonicity 6.4).

Proof. Since r, b are bounded and r− b ≥ 0, any strictly decreasing sequence
in Γ′ has finite possibilities for l. Hence the finiteness of R′′ and the dcc for
Γ imply the dcc for Γ′.

6.11 Direct hyperstandard property for adjunction on
divisor (cf. [Sh92, Lemma 4.2])

For any subset Γ ⊆ [0, 1], put

Γ̃ = {1− 1

l
+
∑
i

li
l
bi ≤ 1 | l, li are positive integers and bi ∈ Γ} ∪ {1}.
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Then 0, 1 ∈ Γ̃,Γ ⊆ Γ̃ and
˜̃
Γ = Γ̃. Transition form Γ to Γ̃ corresponds to lc

adjunction on a divisor [Sh92, Corollary 3.10].
Let Φ = Φ(R) be a hyperstandard set associated with a (finite) set of

(rational) numbers R in [0, 1], 1 ∈ R, and N be a (finite) set of positive
integers. Then

˜Γ(N ,Φ) = ˜G(N ,R) = Γ(N , Φ̃) = G(N ,R ∪ {0}),

in particular, Φ̃ = Φ(R ∪ {0}), where

R = {r0 −
∑
i

(1− ri) | ri ∈ R} ∩ [0, 1].

The set R is (rational) finite, if R is (rational) finite, and same as R in

[PSh08, p. 160] and R = R. (If 1 6∈ R, we need to replace R by R ∪ {1}.)
Note also that Φ̃ depends only on Φ and above R is one of possible (finite)

sets in [0, 1] to determine Φ̃ (see Example 9 below and cf. Proposition 5).

Proof. It is enough to verify that ˜G(N ,R) = G(N ,R ∪ {0}). Then by

definition, for N = ∅, Φ = G(∅,R) = Φ(R) and Φ̃ = G̃(∅,R) = G(∅,R ∪
{0}) = Φ(R ∪ {0}). Additionally ˜G(N ,R) = G(N ,R ∪ {0}) = Γ(N , Φ̃) by
definition and Proposition 5.

Take b ∈ ˜G(N ,R). First, we verify that b ∈ G(N ,R ∪ {0}).
Step 1. We can suppose that b < 1. Then by definition

b = 1− 1

l
+

s∑
i=0

li
l
(1− ri

mi

+
1

mi

∑
n∈N

li,n
n+ 1

),

where l, li,mi are positive integers, li,n are nonnegative integers and ri ∈ R.
Otherwise, the only possible case b = 1. But then 1 = 1 − 0/1 ∈ G(∅, 0) ⊆
G(N ,R ∪ {0}).

More precisely, we verify that b < 1 belongs to G(N ,R) ⊆ G(N ,R∪{0}),
We can suppose that m0 ≥ m1 ≥ · · · ≥ ms.

Step 2. mi = 1 for all i ≥ 1. Otherwise, m1 ≥ 2. Then m0,m1 ≥ 2 and

b ≥ 1− 1

l
+

1

l
(1− 1

2
) +

1

l
(1− 1

2
) = 1,

a contradiction. Here we use the inequality ri ≤ 1 for every i.
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Step 3. If m0 = m ≥ 2 then l0 = 1. Otherwise, l0 ≥ 2 and

b ≥ 1− 1

l
+

2

l
(1− 1

2
) = 1.

Hence we have the following two cases.
Case 1. mi = 1 for all i ≥ 1,m0 = m ≥ 2 and l0 = 1. So,

b =1− 1

l
+

1

l
(1− r0

m
+

1

m

∑
n∈N

l0,n
n+ 1

) +
s∑
i=1

li
l
(1− ri +

∑
n∈N

li,n
n+ 1

) =

1− r0 −
∑s

i=1mli(1− ri)
lm

+
1

lm
(
∑
n∈N

l0,n +
∑s

i=1mlili,n
n+ 1

)

belongs to G(N ,R). Indeed, 0 < r0−
∑s

i=1mli(1− ri) ≤ r0 ≤ 1 and belongs
to R because respectively 1 > b and every ri ≤ 1.

Case 2. Every mi = 1. Then

b = 1− 1

l
+

s∑
i=0

li
l
(1− ri +

∑
n∈N

li,n
n+ 1

) =

1− 1−
∑s

i=0 li(1− ri)
l

+
1

l

∑
n∈N

∑s
i=0 lili,n
n+ 1

also belongs to G(N ,R) because 1 ∈ R and 1−
∑s

i=0 li(1− ri) ∈ R.
Step 4. Conversely, take b ∈ G(N ,R ∪ {0}). Now, we verify that b ∈

˜G(N ,R). By definition b ≤ 1.

Case 1. b = 1. Then b = 1 = 1 − 1/l + 1/l ∈ ˜G(∅, {1}) ⊂ ˜G(N ,R)
because 1 ∈ R.

Case 2. b < 1. Then by definition

b = 1− r

l
+

1

l

∑
n∈N

ln
n+ 1

,

where r ∈ R ∪ {0} and r > 0. Hence r ∈ R and

b = 1− r0 −
∑s

i=1(1− ri)
l

+
1

l

∑
n∈N

ln
n+ 1

= 1− 1

l
+

1

l

s∑
i=0

(1−ri)+
1

l

∑
n∈N

ln
n+ 1

.
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Note now that every

1− ri = 1− ri
1
∈ Φ = Γ(∅,Φ) = G(∅,R) ⊆ Γ(N ,Φ) = G(N ,R)

and
1

n+ 1
= 1− 1

1
+

1

n+ 1
∈ Γ(N ) = G(N , {1}) ⊆ Γ(N ,Φ) = G(N ,R).

So, b ∈ ˜G(N ,R).

Example 9. As an exception, take R = ∅. Then R = Φ = Φ(R) = ∅ too and

Φ̃ = {1− 1

l
| l is a positive integer} ∪ {1},= Φ({0, 1}),

the standard set. However, Φ̃ = Φ(R′) for R′ ⊆ {1/l | l is a positive integer}
if and only if R′ = {1, 1/2}.

6.12 Main inequality

For any positive integers n, l, any real number d, and any rational number r
such that nr ∈ Z and r ≤ 1,

r − l + l b(n+ 1)dc /n ≥ b(n+ 1)(r − l + ldc /n. (6.12.1)

Proof. The inequality (6.12.1) is equivalent to

nr − nl + l b(n+ 1)dc ≥ b(n+ 1)(r − l + ldc = b(n+ 1)(r + ld)c − (n+ 1)l

or to
nr + l + l b(n+ 1)dc ≥ b(n+ 1)(r + ld)c . (6.12.2)

For r = 1, the inequality (6.12.2) has the form

n+ l + l b(n+ 1)dc ≥ b(n+ 1)(1 + ld)c = n+ 1 + bl(n+ 1)dc ,
that is,

l − 1 + l b(n+ 1)dc ≥ bl(n+ 1)dc .
It follows from the inequality (2.2.2).

For r < 1, by upper bounds (2.1.1), (2.3.1) and (2.2.2)

b(n+ 1)(r + ld)c ≤1 + b(n+ 1)rc+ bl(n+ 1)dc ≤
1 + nr + l − 1 + l b(n+ 1)dc = nr + l + l b(n+ 1)dc ,

that completes the proof of (6.12.2).
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6.13 Inverse b(n+ 1)−c /n-monotonicity

For a real number x, put

x[n] =

{
1, if x = 1;

b(n+ 1)xc /n otherwise;

Under the assumptions of 6.12 suppose additionally that d ≤ 1. Then

b[n] ≤ b[n]

where real numbers b, b[n] correspond respectively to d, d[n] according to (6.0.11).

Proof.
Case 1. d < 1. Immediate by (6.12.1). Indeed, b < 1 by 6.5 and our

assumptions.
Case 2. d = 1, r < 1. Then d[n] = 1 = d and b = b[n] = r by (6.0.11). The

required inequality follows from our assumptions by Example 5, (2).
Case 3. d = r = 1. As in Case 2 b = b[n] = r. Since r = 1, b[n] = 1 = b[n].

6.14 Inverse inequality (1) of Definition 2

Under the assumptions and notation of 6.12-6.13, for corresponding b+, d+

according to (6.0.11),

b[n] ≤b+ ≤ r ≤ 1

⇑
d[n] ≤d+ ≤ 1.

Proof. The second inequality of the top row holds by 6.5 and the third one
by our assumptions.

Since d[n] ≤ 1, d ≤ 1 holds (cf. Remark 1, (2)). Hence by 6.13 and 6.2

b[n] ≤ b[n] ≤ b+.
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7 Adjunction

We recall some basic facts about (log) adjunction or subadjunction in the
Kawamata terminology [K98].

7.1 Adjunction for 0-contractions [PSh08, Section 7]

Let f : X → Z be a contraction of normal algebraic varieties or spaces and
D be an R-divisor on X such that

(1) (X,D) is lc generically over Z;

(2) D is a boundary generically over Z or, equivalently, Dh is a boundary,
where Dh denotes the horizontal part of D with respect to f ; and

(3) K +D ∼R,Z 0 (cf. 7.3, (3) and [PSh08, Construction 7.5]), in particular,
K +D is R-Cartier and (X,D) is a log pair.

Then there exist two R-divisors on Z:

the divisorial part of adjunction Ddiv of (X,D) → Z [PSh08, Construc-
tion 7.2]; and

the moduli part of adjunction Dmod of (X,D) → Z [PSh08, Construc-
tion 7.5]

such that the following generalization of Kodaira formula

K +D ∼R f
∗(KZ +Ddiv +Dmod) (7.1.1)

holds. It is also called the (log) adjunction formular for (X,D) → Z. The
pair (Z,Ddiv +Dmod) is a log pair and f ∗(KZ +Ddiv +Dmod) is well-defined.
The pair (Z,Ddiv + Dmod) is called the adjoint pair of (X,D) → Z. The
divisor Ddiv is unique but Dmod is defined up to ∼R.

The adjunction has birational nature. We say that two contractions
f : (X,D) → Z, f ′ : (X ′, D′) → Z ′ are birationally equivalent or crepant if
there exists a commutative diagram

(X ′, D′) 99K (X,D)
f ′ ↓ ↓ f
Z ′ 99K Z

,
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where the horizontal arrow (X ′, D′) 99K (X,D) is a crepant proper bira-
tional isomorphism, another horizontal arrow Z ′ 99K Z is a proper bira-
tional isomorphism and f ′ satisfies the same assumptions as f . In particular,
(X,D), (X ′, D′) are birationally equivalent or crepant if (X/X,D), (X ′/X ′, D′)
does so. If X is complete then this also means that (X/pt., D), (X ′/pt., D′)
does so. Notice that D′ = DX′ = D(X,D)X′ and (X ′, D′) is lc generically
over Z ′ automatically. (The property to be a boundary for D′h or, equiva-
lently, to be effective forD′h can be omitted.) We say also that f ′ : (X ′, D′)→
Z ′ is a (crepant) model of f : (X,D)→ Z. In this situation the adjoint pair
(Z ′, D′div + D′mod) is defined and (Z ′, D′div + D′mod) 99K (Z,Ddiv + Dmod) is
also a crepant proper birational isomorphism. This allows to define two b-
R-divisors Ddiv and Dmod of Z [PSh08, Remark 7.7] such that

Ddiv = (Ddiv)Z , Dmod = (Dmod)Z and D′div = (Ddiv)Z′ , D
′
mod = (Dmod)Z′ .

Of course we use that same ∼R for f ′ as in (7.1.1) and suppose that KX′ =
(K)X′ and KZ′ = (KZ)Z′ , where KZ is a canonical b-divisor of Z. Otherwise
D′mod ∼R (Dmod)Z′ . Indeed, for every prime b-divisor Q of Z there exist a
model f ′ of f and a prime divisor P on X ′ such that f ′(P ) = Q is a divisor
on Z ′. (For details see [PSh08, Section 7].) Respectively, for b-R-divisors,
(7.1.1) become

K + D ∼R f
∗(KZ + Ddiv +Dmod) (7.1.2)

and (Z,Ddiv +Dmod) become the adjoint log bd-pair of (X,D)→ Z, that is,
Ddiv = D(Z,Ddiv +Dmod)−Dmod. Actually, in our applications, Dmod will be
a b-nef b-Q-divisor and (Z,Ddiv + Dmod) will be a bd-pair of some positive
integral index (see Theorem 8 and cf. Conjecture 3).

For a bd-pair (X,D + P) and its contraction f : (X,D + P)→ Z under
assumptions

(1-bd) (X,D + P) is lc generically over Z;

(2-bd) D is a boundary and P is b-nef generically over Z; and

(3-bd) K + D + PX ∼R,Z 0, in particular, K + D + PX is R-Cartier and
(X,D + P) is a log bd-pair.

Then there exist the following R-divisors on Z and b-R-divisors of Z [F18,
Section 4]:
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the R-divisor, the divisorial part of adjunction (D+P)div,Z of (X,D+P)→
Z;

respectively, b-R-divisor (D + P)div, e.g., ((D + P)div)Z = (D + P)div,Z ;

the R-divisor, moduli part of adjunction (D + P)mod,Z of (X,D + P)→ Z;
and,

respectively, b-R-divisor (D + P)mod, e.g., ((D + P)mod)Z = (D + P)mod,Z ;

such that the following generalizations of Kodaira formula

K +D + PX ∼R f
∗(KZ + (D + P)div,Z + (D + P)mod,Z)

and
K + D(X,D + PX) ∼R f

∗(KZ + (D + P)div + (D + P)mod)

hold. It is also called the (log) adjunction formular for (X,D + P) → Z.
The bd-pair (Z, (D + P)div,Z + (D + P)mod) is a log bd-pair and f ∗(KZ +
(D + P)div,Z + (D + P)mod,Z) is well-defined. The pair (Z, (D + P)div,Z +
(D + P)mod) is called the adjoint bd-pair of (X,D + P) → Z. Indeed,
(D + P)div = D(Z, (D + P)div,Z + (D + P)mod,Z) − (D + P)mod. The b-R-
divisor (D+P)div is unique but b-R-divisor (D+P)mod is defined up to ∼R.
Actually, in our applications, (D + P)mod will be a b-nef b-Q-divisor and
(Z, (D + P)div,Z + (D + P)mod) will be a bd-pair of some positive integral
index (see Addendum 31 and cf. Conjecture 3).

Adjunction for (X,D+P)→ Z also has birational nature. In this situa-
tion, we say that two contractions f : (X,D+P)→ Z, f ′ : (X ′, D′+P)→ Z ′

are birationally equivalent or crepant if there exists a commutative diagram

(X ′, D′ + P) 99K (X,D + P)
f ′ ↓ ↓ f
Z ′ 99K Z

,

where the horizontal arrow (X ′, D′ + P) 99K (X,D + P) is a crepant proper
birational isomorphism, another horizontal arrow Z ′ 99K Z is a proper bira-
tional isomorphism and f ′ satisfies the same assumptions as f . Notice that
D′ = DX′ = D(X,D+PX)div,X′−PX′ ,D(X ′, D′+PX′) = D(X,D+PX) and
(X ′, D′ + P) is lc generically over Z ′ automatically. (The property to be a
boundary for D′h or, equivalently, to be effective for D′h can be omitted.) We
say also that f ′ : (X ′, D′+P)→ Z ′ is a (crepant) model of f : (X,D+P)→ Z.
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In this situation the adjoint bd-pair (Z ′, (D + P)div,Z′ + (D + P)mod) is de-
fined, (Z ′, (D+P)div,Z′ + (D+P)mod) 99K (Z, (D+P)div,Z + (D+P)mod) is
a crepant proper birational isomorphism and

(D + P)div,Z′ = ((D + P)div)Z′ , (D + P)mod,Z′ = ((D + P)mod)Z′ .

We can modify above concepts, e.g., birational equivalence or to be
crepant, to the relative situation. However, adjunction formulae (7.1.1-7.1.2)
and muduli part of adjunction have absolute nature and defines up to ∼R.
For bd-pairs we assume the same for P . (Usually we omit S if S = pt.)

The following result about the moduli part of adjunction holds in much
more general situation [Sh13]. Actually we expect more [PSh08, Conjec-
ture 7.13] (see also Conjecture 3). But we need the result only under stated
assumptions. On the other hand, the nef property is assumed here in the
weak sense (see Nef in Section 1). In particular, the property applies to the
situation, where X is complete or it has a proper morphism X → S to a
scheme or a space S compatible with the contraction X → Z, equivalently,
X → Z is a morphisms over S and Z/S is proper.

Theorem 8 ([A04]). Under notation and assumptions of 7.1 suppose addi-
tionally that D is an effective Q-divisor generically over Z. Then Dmod is a
b-Q-divisor of Z, defined up to a Q-linear equivalence. Moreover, KZ + Ddiv

is a b-R-Cartier divisor of Z and Dmod is b-nef.

Addendum 31 ([F18, Theorem 4.1]). The same holds for every contraction
(X,D + P) → Z as in 7.1 under the additional assumptions of the theorem
and the assumption that (X,D + P) is a bd-pair of some positive integral
index.

[ Remark: the theorem holds either without the generic Q-assumption
over Z, but with a b-R-divisor Dmod of Z, or without the generic effective
property over Z. However, the effective property is very important when D
has horizontal nonrational multiplicities [Sh13] [Sh08].

About notation: For b-R-Cartier divisors we use mathcal, e.g., Dmod,P .
For b-R-divisors with BP we use mathbb: e.g., D. However, D+P ,−K have
BP and K + D is b-R-Cartier. ]

Proof. See proofs in [A04] and [F18]. Notice only that the necessary as-
sumption for the existence of Dmod that K + D ∼R f

∗L for some R-Cartier
divisor L on Z [PSh08, Construction 7.5] holds by (3) of 7.1. Similarly, in
the addendum we use (3-bd) of 7.1.
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7.2 Adjunction correspondence of multiplicities

Let f : X → Z be a proper surjective morphism, e.g., a contraction as in 7.1.
Then, for every vertical over Z prime b-divisor P of X, its image Q = f(P )
as a prime b-divisor is well-defined. For this consider a model f ′ : X ′ → Z ′

as in 7.1 of f such that P is a divisor on X ′ and f ′(P ) = f(P ) = Q is
a divisor on Z ′. Since f is proper surjective, it is also surjective on prime
b-divisors , that is, for every prime b-divisor Q of Z there exists a vertical
prime b-divisor P of X such that f(P ) = Q. Indeed, for a birational model
f ′ as above, P is any divisorial irreducible component of f ′−1Q, equivalently,
P,Q are prime divisors on X ′, Z ′ respectively and f ′(P ) = Q. The prime
b-divisors P,Q such that f(P ) = Q will be called corresponding with respect
to f .

Let f : (X,D) → Z be a morphism as in 7.1. Consider prime b-divisors
P,Q of X,Z respectively such that f(P ) = Q. Put

r = multP (D′ + cQf
′∗Q) and l = multP f

′∗Q,

where f ′ is the above model of f , D′ = DX′ = (D(X,D))X′ , cQ is the log
canonical threshold as in [PSh08, Construction 7.2] and f ′∗Q is well-defined
generically over Q. Then r is a real number ≤ 1, because (X ′, DX′ + cQf

′∗Q)
generically lc over Q and near P , and l is a positive integer such that

dQ = 1− r

l
+
dP
l

(7.2.1)

and
dP = r − l + ldQ. (7.2.2)

This is exactly the adjunction correspondence (6.0.10-6.0.11) between b =
dP = multP D

′ = multP D and d = dQ = multQDdiv. The parameters
r = rP , l = lP depend only on P but not on a model f ′ (cf. Proposition 13,
(4)). They will be called adjunction constants of (X,D)→ Z at P . Similar
constants r, l can be defined for a morphism (X,D + P)→ Z as in 7.1.

If (X,D) is lc (klt) then dP ≤ r (< r respectively). Conversely, (X,D) is
lc (klt over Z) if dP ≤ r (< r respectively) for every vertical prime b-divisor
P of X. The relative klt over Z means multP D < 1 but only for vertical P .

The same holds for adjunction of (X,D + P)→ Z as in 7.1.

Proof. By definition and construction

r = multP (D′ + cQf
′∗Q) = multP D

′ + cQ multP f
′∗Q = dP + cQl
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and cQ = (r − dP )/l. On the other hand, by definition

dQ = 1− cQ = 1− r − dP
l

= 1− r

l
+
dP
l
.

This proves (7.2.1). The latter implies (7.2.2).
It is enough to establish the independence of r, l of f ′ in the case when Z

is a curve [PSh08, Remark 7.3]; if Z is a point then every prime b-divisor P
of X is horizontal over Z. But for a curve Z, the divisor f ′∗Q can be replaces
by its Cartier b-divisor. Then r, l are independent of a proper birational
model X ′ of X over Z.

If (X,D) is lc (klt) then by definition cQ ≥ 0 (> 0 respectively). Hence
r ≥ dP (respectively > dP ) because l > 0. The converse can be established
similarly.

The same works for adjunction of (X,D + P)→ Z.

[ Remark: rP is not a multiplicity of a (b-)divisor at P , that is,
∑
rPP

is not a (b-)divisor! However it is a (b-)divisor for P/Q (cf. 7.5). ]

7.3 Index of adjunction

Let f : (X,D)→ Z be a 0-contraction as in 7.1 and I be a positive integer.
We say that the 0-contraction has an adjunction index I if

(1) K+D ∼I f ∗(KZ +Ddiv +Dmod), in particular, K+D ∼I f ∗(KZ +Ddiv +
Dmod);

(2) I is an lc index of (X/Z 3 η,D) and ID is b-Cartier generically over η,
where η ∈ Z is the generic point of Z; actually Dmod is defined modulo
Iη, the generic index;

(3) IDmod is b-Cartier and Dmod is defined modulo ∼I , in particular, K +
D ∼I,Z f ∗(KZ + Ddiv) (cf. 7.1, (3) and Corollary-Conjecture 1); and

(4) IrP ∈ Z for every adjunction constant rP of (X,D)→ Z.

Actually, (1) is equivalent to (2) and, by Proposition 13 and the reduction
in Step 1 of the proof of Theorem 9 below, (3) implies (1-2) and (4).

Respectively, a 0-contraction f : (X,D+P)→ Z of a bd-pair (X,D+P)
as in 7.1 has an adjunction index I if
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(0-bd) (X,D + P) is a bd-pair of index I, in particular, X,Z are complete
or proper over some scheme S, e.g., (X,D + P) is a bd-pair of index
m and m|I;

(1-bd) K+D(X,D+PX) ∼I f ∗(KZ+(D+P)div +(D+P)mod), in particular,
K +D + PX ∼I f ∗(KZ + (D + P)div,Z + (D + P)mod,Z);

(2-bd) I(D + P)mod is b-Cartier and (D + P)mod is defined modulo ∼I ;

(3-bd) I is an lc index of (X/Z 3 η,D+PX) and ID(X,D+PX) is b-Cartier
generically over η, where η ∈ Z is the generic point of Z; and

(4-bd) IrP ∈ Z for every adjunction constant rP of (X,D + P)→ Z.

Corollary 12 below implies that under assumptions in 7.1, if Dh is a Q-
divisor, then (X,D)→ Z has some adjunction index (cf. Corollary 31). We
need a similar result for certain families of 0-contractions.

Theorem 9. Let d be a nonnegative integer and Γ be a dcc set of rational
numbers in [0, 1]. Then there exists a positive integer I = I(d,Γ) such that
every 0-contraction f : (X,D)→ Z as in 7.1 with wFt X/Z, dimX = d and
Dh ∈ Γ has the adjunction index I.

Addendum 32. (Z,Ddiv +Dmod) is a log bd-pair of index I.

Addendum 33. There are two finite sets of rational numbers Γh(d) ⊆ Γ
and R′′ = R′′(d,Γ) ⊂ [0, 1] such that, for every 0-contraction (X,D)→ Z in
as the theorem,

Dh ∈ Γh(d); and

every nonnegative adjunction constant rP of (X,D)→ Z belongs R′′.

Addendum 34. Let Γ′′ be another dcc in [0, 1], e.g., Γ′′ = Γ. Then there
exists a dcc set Γ′ ⊂ [0, 1] such that, for every 0-contraction (X,D) → Z in
as the theorem and with lc (X,D),

Dv ∈ Γ′′ ⇒ Ddiv ∈ Γ′.

Γ′ depends on d,Γ,Γ′′ and is rational if Γ′′ is rational.
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Addendum 35. Let R be a finite set of rational numbers in [0, 1]. Then
there exists a finite set of rational numbers R′ ⊂ [0, 1] such that, for every
(finite) set of integers N and every 0-contraction (X,D) → Z in as the
theorem with lc (X,D),

Dv ∈ Γ(N ,Φ)⇒ Ddiv ∈ Γ(N ,Φ′),

where Φ = Φ(R),Φ′ = Φ(R′) are hyperstandard sets associated with R,R′

respectively. The set R′ depends on d,Γ and R.

Addendum 36. The same holds for every contraction (X,D + P) → Z as
in 7.1 under the additional assumptions of the theorem and the assumption
that (X,D+P) is a bd-pair of index m. In this situation I = I(d,Γ,m),R′′ =
R′′(d,Γ,m),Γ(d,m) depend also on m and Γ′,R′ depend respectively on d,Γ,Γ′′,m
and d,Γ,R,m. The adjoint bd-pair in Addendum 32 (Z, (D+P)div,Z + (D+
P)mod) is a log bd-pair of index I. Additionally m|I.

Proof. (Hyperstandard case.) For the general case see Section 12.
Step 1. (Reduction to relative tlc singularities.) There exists a model

f ′ : (X ′, D′)→ Z ′ of (X,D)→ Z and a boundary B on X ′ such that

(1) Dmod is stable over Z ′: Dmod = Dmod,Z′ , the Cartier closure over Z ′ [Sh96,
Example 1.1.1];

and

(2) Bh = Dh and (X ′/Z ′, B) is a 0-pair with tlc (toroidal log canonical)
singularities.

The latter means that (X ′/Z ′, B) is toroidal near lc but not klt points, in
particular, (X ′, B′) is lc, and with vertical reduced boundary: Bv ∈ {0, 1}.
Additionally, it means that Z \ SuppBdiv is nonsingular and, for every non-
singular hypersurface H in Z, (X ′, B′ + f ′∗H) is lc over Z \ SuppBdiv too
(equisingularity). (Actually, it is enough that (X ′/Z ′, B) has such a toroidal
model.) For the property (2), it is enough weak semistable reduction and rel-
ative LMMP (see also [B12, Theorem 1.1]). For (1), Z ′ should be sufficiently
high over Z by Theorem 8.

By [PSh08, Remark 7.5.1] (cf. Proposition 13), (X ′/Z ′, B) has the same
adjunction index. Thus for simplicity we can suppose that (X ′/Z ′, B) =
(X/Z,D).
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Step 2. (Adjunction index.) By (2), Ddiv ∈ {0, 1} (reduced) and (Z,Ddiv)
has lc index 1, that is, KZ+Ddiv is Cartier. Moreover, by (2) and Corollary 31
there exists a positive integer I = I(d,Γ) and a finite set of rational numbers
Γh(d) depending on d and Γ, such that

(3) K +D ∼I,Z 0; and

(4) Dh ∈ Γh(d).

Note that in this section we can prove Corollary 31 and the theorem only
for hyperstandard sets, that is, assuming Γ = Φ(R), where R is a finite set
of rational numbers in [0, 1], possibly, different from R of Addendum 35. In
this situation Γh(d) = Γh(d,R) depends only on d and R. Indeed, the proof
of Corollary 31 uses boundedness of n-complements. In the case dimZ ≥ 1
we can use dimensional induction. In the case dimZ = 0, again we can use
dimensional induction as in [PSh08, 4.13] if (X,D) is lc but not klt. Finally,
if dimZ = 0 and (X,D) is klt then (X,D) is bounded by Corollary 11
because D = Dh ∈ Φ. A different approach can use [B, Theorem 1.8] [HX,
Theorem 1.3] [HLSh, Theorem 1.6].

We can apply Corollary 31 because the construction in Step 1 does not
change the following properties of (X,D) → Z: it is still 0-contraction as
in 7.1 with wFt X/Z, dimX = d and Dh ∈ Γ. By construction the 0-
pair (X/Z,D) is maximal lc over SuppDdiv. Thus by Corollary 31 or [B,
Theorem 1.8] (3) holds over a neighborhood of SuppDdiv. By (4), Dh ∈
Γh(d). Actually, by (3), IΓh(d) ∈ Z and Γh(d) is a finite set of rational
numbers in [0, 1] ∩ (Z/I). Again by (2), for a nonsingular hyperplane H
through any point z of Z \SuppDdiv, (X/Z,D+ f ∗H) is lc over Z \Ddiv. (It
is sufficiently to take effective Cartier H such that (Z,H) is lc near z.) By
the same reason as above, (3) holds locally over z because f ∗H is Cartier.
Hence (3) holds over Z.

[Remark:] By (3), there exists a Cartier divisor L on Z such that I(K +
D) ∼ f ∗L. (An additional property of the adjunction index I which follows
from (1) of 7.3 for appropriate D and on an appropriate model of (X,D)→
Z.) Thus (1-3) of 7.3 hold by (1) and because KZ +D is Cartier (cf. [PSh08,
Construction 7.5]). Since the 0-pair (X/Z,D) is maximal lc (locally) over
SuppDdiv and K +D has Cartier index I, IrP ∈ Z for every prime b-divisor
P over SuppDdiv, that is, (4) of 7.3 over SuppDdiv. Adding f ∗H as above
we can establish (4) of 7.3 everywhere over Z. Actually in this situation,
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just (1) of 7.3 implies (2-4) of 7.3 because KZ + Ddiv is Cartier and K + D
has Cartier index I. (In general, (3) implies (1-2) and (4).)

In the proof of the step, a choice of Cartier L is crucial. The divisor L
is defined up to ∼ on Z. Canonical divisors K,KZ are also defined up to
∼ on X,Z respectively. Moreover, the linear equivalence K ∼ K ′ for K,
that is, K − K ′ should be vertical principal. Thus in K + D ∼I f ∗(L/I)
we can suppose that ∼I , that is, K + D − f ∗(L/I), is fixed. This gives
Q-divisors L/I and Dmod with Cartier index I which are defined up to ∼I .
Thus the adjunction (7.1.1) become (1) in 7.3 with ∼I instead of general ∼R
(cf. [PSh08, Conjecture 7.13 and (7.13.4)]).

Step 3. (Addenda.) Addendum 32 follows from 7.1, 7.3, (3) and Theo-
rem 8.

In Addendum 33, we can take

Γh(d) = Γ ∩ Z
I
⊆ R′′ = [0, 1] ∩ Z

I

by (2) and (4) of 7.3 (cf. (4) above).
Addendum 34 follows from (7.2.1), Addendum 33 and 6.10.
Similarly, Addendum 35 follows from (7.2.1) and 6.8 with R′ defined

by (6.8.1). Notice that R′ depends on d,Γ and R because R′′ depends on
d,Γ.

Finally, all the same works for 0-contractions of bd-pairs of Addendum 36
with the additional new parameter m and the new assumption m|I.

7.4 Generically crepant adjunctions

Let f : (X,D) → Z, f ′ : (X ′, D′) → Z ′ be two 0-contractions as in 7.1. We
say that they are birationally equivalent or crepant generically over Z or
Z ′ if there exist nonempty open subsets U,U ′ in X,X ′ respectively such
that f |U : (XU , DU) → U, f ′|U ′ : (X ′U ′ , D

′
U ′) → U ′ are crepant, where XU =

f−1U,DU = D|XU and X ′U ′ = f ′−1U ′, DU ′ = D|XU′ respectively. Equiva-

lently, X ′ → Z ′ is a model of X → Z and Dh = D′h under the birational
equivalence, where D′ = D(X ′, D′). We say also that (X ′, D′) → Z ′ is a
(crepant) model of (X,D) → Z. In this situation, X ′ → Z ′ is a model of
X → Z with given proper birational isomorphisms X ′ 99K X, g′ : Z ′ 99K Z.
Thus we can compare certain (birational) invariants of adjunction, e.g., the
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moduli part of adjunction Dmod on Z with that of D′mod on Z ′, where D′mod

is the moduli part of adjunction of (X ′, D′) → Z ′. So, Dmod = D′mod means
that D′mod = g′∗Dmod. (In our applications g′ is identical on a nonempty
open subset U ′ in X ′.) Notice that we can omit (2) in 7.1, the effective
property of Dh, D′h. In some applications we omit also the assumption that
X → Z,X ′ → Z ′ are regular. But we still assume that they are proper ratio-
nal contractions and f : (X,D) 99K Z, f ′ : (X ′, D′) 99K Z ′ are proper rational
0-contractions. Moreover, the latter ones are crepant respectively over Z,Z ′

to 0-contraction as in 7.1 (cf. Lemma 10). Thus we apply the definition and
results to the latter contractions.

The same applies to bd-pairs.
Some of important invariants of adjunction in 7.1 depend on (X,D)→ Z

only generically over Z. The same applies to bd-pairs.

Proposition 13. Let f : (X,D) → Z, f ′ : (X ′, D′) → Z ′ be two birationally
equivalent generically over Z 0-contractions as in 7.1. Then they have the
same following invariants under the birational equivalence:

(1) the moduli part of adjunction:

Dmod = D′mod and D′mod = (Dmod)Z′ ;

(2) if

K +D ∼Q f
∗(KZ +Ddiv +Dmod) and K+D ∼Q f

∗(KZ +Ddiv +Dmod)

then respectively

KX′+D
′ ∼Q f

∗(KZ′+D
′
div+D′mod) and KX′+D′ ∼Q f

∗(KZ′+D′div+D′mod);

the same holds for ∼I instead of ∼Q, where I is a positive integer;

(3) the adjunction correspondence of (b-)R-divisors;

(4) the adjunction constants lP , rP at every vertical over Z prime b-divisor
P of X; actually, lP depend only on f : X → Z generically over Z;

(5) the adjunction index I if such one exists for either of models; and

(6) the horizontal b-codiscrepancies: Dh = D′h.
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The same holds for bd-pairs with same P. In (2) and (5) the bd-pairs
have index m|I.

Proof. Up to a birational equivalence as in 7.1, we can suppose that (X/Z,Dh)
is equal to (X ′/Z ′, D′h) (cf. (1) in 7.5). In this situation we can use [PSh08,
Remark 7.5.1] for (1-2). Of course, we suppose that KX′ = K and ∼R (re-
spectively ∼Q,∼I) is the same under the birational equivalence.

(3) holds by definition (see 7.5 below).
For (4) we can use reduction to a 1-dimensional base Z [PSh08, Re-

mark 7.3, (i)]. In this case lP depends only on X → Z and r does so
additionally on Dh. Indeed, cQ depend on D but D+ cQf

∗Q depend only on
Dh.

(5-6) hold by definition and already established facts about other invari-
ants.

The same works for bd-pairs.

Corollary 12. Let (X,D)→ Z be a 0-contraction as in 7.1 and additionally
Dh be a Q-divisor. Then (7.1.1) holds with ∼Q instead of ∼R, Dmod is a b-
Q-divisor and every adjunction constant rP is rational.

The same holds for bd-pairs with a b-Q-divisor P.

Proof. We can suppose that D′ is a Q-divisor. Thus (7.1.1) holds with ∼Q,
Dmod is a b-Q-divisor and all cQ, rP are rational by construction.

Similarly we can treat bd-pairs.

7.5 Adjunction correspondence of divisors

Let f : (X,D) → Z be a 0-contraction as in 7.1. We say now that b-R-
divisor Ddiv corresponds under adjunction to the b-R-divisor D = D(X,D),
the b-codiscrepancy of (X,D). We can formally extend this correspondence
to all b-R-divisors DZ of Z: the adjunction correspondent to DZ on X is the
b-R-divisor D′ of X such that

(1) D′h = Dh; and

(2) D′v can be determined by the adjunction correspondence of multiplicities
in 7.2: for every vertical over Z prime b-divisor P ,

multP D′ = d′P = rP − lP + lPdQ ( cf. (7.2.2))
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where rP , lP are the adjunction constants of (X,D) → Z at P , Q =
f(P ) and dQ = multQDZ .

D′ is a b-R-divisor but it is not necessarily satisfies BP as the b-discrepancy
D (cf. (3) below). If we consider the correspondence for all b-R-divisors DZ

of Z then their image consists of b-R-divisors D′ of X which satisfy (1) of
the definition and D′ − D = f ∗D′Z for some b-R-divisor D′Z of Z. The pull
back f ∗ here is birational, that is, for every model f ′ : X ′ → Z ′ of X → Z,

D′X′ − DX′ = f ∗(D′Z,Z′) (7.5.1)

generically over divisorial points of Z. Such a divisor D′Z is unique and
= DZ − Ddiv by (7.2.1-7.2.2).

Equivalently, we can define the inductive limit for the correspondence
between R-divisors in the opposite directions. For every model X ′ → X
of X → Z, which is isomorphic to X → Z generically over Z, and every
b-R-divisor D′ under above assumptions (in the image), (X ′, D′) → Z ′ is a
0-contraction as in 7.1 generically over divisorial points of Z ′, where D′ =
D′X′ . Thus the R-divisor D′div is well-defined and adjunction corresponds to
the R-divisor D′. Since every prime b-divisor Q is a divisor on Z ′ for an
appropriate model X ′ → Z ′, D′div is well-defined and adjunction corresponds
to D′: D′div = DZ . We usually denote by D′div the adjunction correspondent b-
R-divisor to D′, that is, the divisorial part of adjunction for f : (X,D′)→ Z.
According to the above (cf. (7.5.1))

D′ = D + f ∗(D′div − Ddiv). (7.5.2)

Equivalently, the adjunction correspondence can be defined and determined
by the actual adjunction formula (cf. (7.1.2)):

K + D′ ∼R f
∗(KZ + D′div +Dmod), (7.5.3)

where KZ denotes a canonical b-divisor of Z. The moduli part of adjunction
independent of D′: D′mod = Dmod. By definition, Corollary 12 and 7.3, (1),
in the adjunction formula ∼R can be replaced by ∼Q, if Dh ∈ Q, and even
by ∼I , if (X,D)→ Z has an adjunction index I (cf. Proposition 13, (2)).

A similar construction works a 0-contraction (X,D+P)→ Z with a bd-
pair (X,D + P) as in 7.1. We denote by (D′ + P)div the b-R-divisor adjoint
correspondent to D′. However, in this situation D′ should satisfy the following
assumption: for every model X ′ → Z ′ of X → Z, which is isomorphic to
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X → Z generically over Z, (X ′, D′ + P) → Z ′ is a 0-contraction as in 7.1
generically over divisorial points of Z ′, where D′ = D′X′ In particular, for
D′ = D(X,D + PX) − P , (D′ + P)div = (D(X,D + PX))div = (D + P)div

holds, that is, the b-divisorial part of (X,D + P) adjunction corresponds to
the b-divisorial part of adjunction of (X,D + P)→ Z. In general

K + D′ + P ∼R f
∗(KZ + (D′ + P)div + (D + P)mod)

with the moduli part (D′ + P)mod = (D(X,D + PX))mod = (D + P)mod

independent of D′.
The correspondence for R-divisors is considered for any fixed model X ′ →

Z ′ of X → Z and generically over divisorial points. In this situation D′
satisfies BP (generically over divisorial points), e.g., by (3) below because
every R-divisor in divisorial points satisfies BP and additionally is R-Cartier.

The correspondence has the following properties.
(1) Injectivity. The adjunction correspondence of b-R-divisors and R-

divisors of Z ′ is 1-to-1 on its image in b-R-divisors and R-divisors of X ′

respectively.

Proof. Immediate by (7.2.1-7.2.2).

(2) Linearity. The correspondence is a affine R-linear isomorphisms of
affine R-spaces.

Proof. Immediate by (7.5.2).

(3) BP.
D′ satisfies BP ⇔ so does D′div.

This gives a 1-to-1 affine R-linear isomorphism of affine R-spaces of b-R-
divisors under BP. Recall that BP (boundary property) of a b-R-divisor D of
X means that there exists a model X ′ of X such that D = D(X ′,DX′) [Sh03,
p. 125]. Equivalently, K + D is b-R-Cartier. In particular, if K + D ∼R 0,
b-R-principal, or ∼R,Z 0, relative b-R-principal, then D satisfies BP.

If D′ satisfies BP than there exists a 0-contraction (X ′, D′)→ Z ′ as in 7.1,
with D′ = D′X′ and D′ = D(X ′, D′), which generically over Z ′ is isomorphic
to (X,D) → Z and hence is generically crepant to the latter. The new
contraction (X ′, D′) → Z ′ gives the same adjunction correspondence (see
Proposition 13, (3)). In particular, all facts that are stated for D can be
applied to D′ under BP with (X ′, D′) as in this paragraph.
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Proof. On X this is the affine R-space of b-R-divisors D + C, where C is
vertical b-R-Cartier over Z, that is, C = f ∗CZ for some b-R-Cartier CZ of
Z. So, on Z this is the affine R-space of b-R-divisors Ddiv + CZ , where CZ
is b-R-Cartier. In both cases BP follows from BP for (X,D) and (Z,Ddiv)
respectively.

The last statement about the correspondence means the change of the ori-
gin in both affineR-spaces: D′,D′div instead of D,Ddiv respectively (cf. (7.5.2)):

D′ − D = f ∗(D′div − Ddiv),

where both differences are b-R-Cartier.

(4) Monotonicity.
D′′ ≥ D′ ⇔ D′′div ≥ D′div;

and
D′′X′ = D′′X′ ≥ D′ ⇔ D′′div,Z′ ≥ D′div,Z′

Proof. Immediate by (7.2.2) and the equation (1) in the definition of the
correspondence.

(5) Rationality. If Dh is a Q-divisor then

D′ is a Q-divisor ⇔ D′div is a Q-divisor;

and
D′ is a Q-divisor ⇔ D′div,Z′ is a Q-divisor.

That is the correspondence is Q-linear.

Proof. Immediate by (7.2.1). Indeed, by definition every constant r = rP ∈
Q in this case (cf. Addendum 33, Corollary 12 and [PSh08, Lemma 7.4,
(iv)]).

(6) Klt, lc and nonlc. (Cf. the strict δ-lc property in Definition 10.)

(X,D′) is lc (respectively nonlc) ⇔ (Z,D′div) is lc (respectively nonlc);

(X ′, D′) is lc (respectively nonlc) ⇔ (Z ′, D′div,Z′) is lc (respectively nonlc);

(X,D′) is klt over Z ⇔ (Z,D′div) is klt;
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(X ′, D′) is klt over Z ′ ⇔ (Z ′, D′div,Z′) is klt.

If (X,D′) is klt generically over Z, that is, Dh is klt (horizontally), then

(X,D′) is klt ⇔ (Z,D′div) is klt;

(X ′, D′) is klt ⇔ (Z ′, D′div,Z′) is klt.

The lc (klt) property here is formal: for all prime b-divisors P of X,
multP D′ ≤ 1 (respectively < 1) (cf. [Sh96, Example 1.1.2]).

Proof. Immediate by 6.4-6.5 and (7.2.1-7.2.2). By the equation (1) and 7.1,
(1), it is enough to consider only vertical prime b-divisors P of X. In this
case, by 7.2, b = dP ≤ r = rP (< r = rP ) means that (X ′, D′X′) is lc
(respectively klt over Z ′).

(7) ∼R,S 0. For a proper morphism Z → S to a scheme S,

K + D ∼R,S 0⇔ KZ + Ddiv +Dmod ∼R,S 0;

or equivalently,

K +D ∼R,S 0⇔ KZ +Ddiv +Dmod ∼R,S 0;

where we can replace X → Z by any its model X ′ → Z ′/S and ∼R,S by ≡
over S (∼Q,S,∼I,S if respectively Dh ∈ Q, the 0-contraction (X,D)→ Z has
the adjunction index I).

We can replace ∼R,S 0 by the R-free or -antifree property over S. Respec-
tively, we can replace the R-free or -antifree property over S by the nef or
antinef property over S, by Q(I)-free or -antifree property over S if Dh ∈ Q
(respectively, (X,D)→ Z has the adjunction index I).

Proof. Immediate by the adjunction formula (7.5.3) and a relative over S
R-version of [Sh19, Proposition 3]. Notice also that (X ′, DX′) → Z ′ with
DX′ = DX′ is a 0-contraction as in 7.1, except for (2) in 7.1 but it is crepant to
(X,D)→ Z and satisfies the same adjunction properties by Proposition 13.
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(8) R-complements . For a proper morphism Z → S to a scheme S,

(X/S,D+) is a (b-)R-complement of (X/S,D)

m
(Z/S,D+

div +Dmod) is a (b-)R-complement of (Z/S,Ddiv +Dmod).

So,

(X/S,D) has a (b-)R-complement⇔ (Z/S,Ddiv+Dmod) has a (b-)R-complement.

Equivalently, for R-divisors,

(X/S,D+) is an R-complement of (X/S,D)

m
(Z/S,D+

div +Dmod) is an R-complement of (Z/S,Ddiv +Dmod);

(X/S,D) has an R-complement⇔ (Z/S,Ddiv+Dmod) has an R-complement.

Proof. Immediate by definition (see also Remark 4, (2)), (4) and (6-7). Notice
that (X,D) is a log pair by 7.1, (3) and (Z,Ddiv +Dmod) is a log bd-pair by
construction.

For n-complements, we have only inverse results (10) below for b-n-
complements.

(9) Inverse inequality (1-b) of Definition 3. Suppose additionally that
(X,D)→ Z has an adjunction index I. Let n be a positive integer and I|n.
Then

D+ is lc and satisfies (1-b) of Definition 3 with respect to D
⇑

D+
div satisfies (1-b-2) of Definition 5 with respect to Ddiv.

Equivalently,

(X,D+) satisfies (1-b-2) of Definition 3 with respect to (X,D)

⇑
(Z,D+

div +Dmod) satisfies (1-b-2) of Definition 5 with respect to (Z,Ddiv +Dmod).
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Additionally,

D+ ≥ D
m

D+
div ≥ Ddiv.

Proof. Immediate by 6.14 and 7.2. Indeed, for every vertical prime b-divisor
P , Ir = IrP ∈ Z by (4) in 7.3 and r ≤ 1 by 7.2. For corresponding Q = f(P ),
d+ = d+

Q = multQD+
div ≤ 1 by (2) of Definition 5. This and 7.2 prove (1-b)

of Definition 3 and that D+ is lc for vertical P . For a horizontal prime b-
divisor P , we can use the equation (1): D+h = Dh. Then D+h is lc by (1)
in 7.1 and satisfies (1-b) of Definition 3 with respect to Dh = D+h by the
equation (1), Example 6, (1) and (2) in 7.3. The additional equivalence of
the monotonicity of b-n-complements follows from (4).

Notice also that (X,D) is a log pair by 7.1, (3) and (Z,Ddiv +Dmod) is a
log bd-pair by construction.

(10) Inverse b-n-complements . Under the assumptions of (9), for a proper
morphism Z → S to a scheme S,

(X/S,D+) is a (b-)n-complement of (X/S,D)

⇑
(Z/S,D+

div +Dmod) is a (b-)n-complement of (Z/S,Ddiv +Dmod).

So,

(X/S,D) has a (b-)n-complement⇐ (Z/S,Ddiv+Dmod) has a (b-)n-complement.

Equivalently,

(X/S,D+) is a b-n-complement of (X/S,D)

⇑
(Z/S,D+

div +Dmod) is a b-n-complement of (Z/S,Ddiv +Dmod);

(X/S,D) has a b-n-complement⇐ (Z/S,Ddiv+Dmod) has a b-n-complement.

Moreover, if the b-n-complement (Z/S,D+
div + Dmod) is monotonic, equiva-

lently, (Z/S,D+
div+Dmod) is monotonic, then so does (X/S,D+), equivalently,

(X/S,D+).
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Proof. Immediate by (4),(6) and (9). As a definition in (8-10) for b-R-divisors
we use Definitions 3 and 5 with D,D+,Ddiv + Dmod,D+

div + Dmod instead of
D,D+, Ddiv +Dmod, D

+
div +Dmod.

However, in applications we use a more technical result, Theorem 10
below and its addenda.

(11) Direct effectivity. The vertical effective (b-)support of D′ goes to the
effective (b-)support of D′div, that is, for every vertical prime b-divisor P of
X,

multP D′ ≥ 0⇒ multQD′div ≥ 0,

where Q = f(P ). In particular,

D′X′ ≥ 0⇒ D′div,Z′ ≥ 0.

Proof. Immediate by 6.6 and (7.2.1). Indeed, every r = rP ≤ 1 by 7.2.

(12) Direct boundary property. Suppose additionally that (X,D′) is lc
or has an R-complement over some scheme S. Then the vertical boundary
(b-)support of D′ goes to the boundary (b-)support of D′div, that is, for every
vertical prime b-divisor P of X,

multP D′ ∈ [0, 1]⇒ multQD′div ∈ [0, 1],

where Q = f(P ). In particular,

D′X′ ∈ [0, 1]⇒ D′div,Z′ ∈ [0, 1].

Proof. Immediate by (6) and (11) (cf. 6.7). Note also that the existence of
an R-complement implies that (X,D′) is lc (cf. Remark 1, (1)).

Converses of the directed properties do not hold in general.
(13) bd-Pairs. All the above properties of the adjunction correspondence

hold for a 0-contraction with a bd-pair (X,D+P) as in 7.1. Notice that the
correspondence is only between (b-)-divisorial parts, P and Dmod are fixed
(modulo ∼R or ∼Q,∼I if P is b-Q-Cartier,IP is b-Cartier respectively).

For a bd-pair (X,D+P) in (3), (bd-)BP means that there exists a model
(X ′,DX′ + P) which is a log bd-pair and D = D(X ′,DX′ + PX′) − P , the
divisorial part of the latter bd-pair.

In (5) to add that P is b-Q-Cartier.
In (6-7) D + P , D + P ,D′ + P , D′ + P should be instead of D, D,D′, D′

respectively. Similarly, in other properties: sometimes +P is needed, some-
times not.
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Theorem 10. Let I, n be two positive integers such that I|n and Φ,Φ′ be
two hyperstandard sets as in 6.8 with R′′ = [0, 1]∩ (Z/I). Let (X,B)→ Z/S
be a 0-contraction as in 7.1 and additionally of the adjunction index I, with
a boundary B and a proper morphism Z → S to a scheme S. Suppose also
that (X,B) is lc or has an R-complement over S, and Z/S has a model Z ′/S
and an R-divisor D′div on Z ′ such that

(1) for every vertical over Z prime divisor P on X, the image Q = f(P ) of
P on Z ′ is a divisor and

d′div,Q ≥ bQ,n Φ′

where d′div,Q = multQD
′
div and bQ = multQ Bdiv;

(2) KZ′ +D′div +Bmod,Z′ is antinef over S; and

(3) (Z ′/S,D′div + Bmod) has a b-n-complement (Z ′/S,D+
div + Bmod).

Then (X/S,D+) is respectively a b-n-complement of (X]/S,Bn Φ
]
X]) and an

n-complement of (X/S,B), where D+ = D+
X and D+ adjunction corresponds

to D+
div.

Addendum 37. If additionally

(4)
d+

div,Q ≥ bQ,n Φ′

for every Q as in (1) of the theorem, where d+
div,Q = multQD

+
div.

Then we can take D′div = D+
div and the monotonicity

(5) D+ ≥ Bn Φ
] ≥ Bn Φ

holds. For this addendum, it is enough to be an n-complement in (3).

Addendum 38. The same holds for every contraction (X,B+P)→ Z/S as
in 7.1 and additionally of the adjunction index I with a bd-pair (X/S,B+P)
of index m|I, with a boundary B and proper Z → S.

Proof. Step 1. bQ ∈ [0, 1]. Immediate by (12). Thus the assumption (1) of
the theorem is meaningful.

Step 2. (X/S,D+) is a b-n-complement of (X/S,D′), where D′ adjunction
corresponds to D′div = D(Z ′, D′div + Bmod,Z′) − Bmod. Immediate by (3) and
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the property (10), Inverse b-n-complements. However to apply (10) note
that by definition, the BP property (3) of the adjunction correspondence
and the assumption (2) of the theorem D′,D′div satisfy BP and there exists
generically crepant model (X ′, D′) → Z ′/S of (X,B) → Z/S with D′ =
D′X′ ,D′ = D(X ′, D′) and of the same adjunction index I by Proposition 13,
(5). But D′ and D′div are not necessarily boundaries.

Step 3. Bn Φ
] ≤ D′ by (1-2) and Corollary 8. Indeed, the assumption

(1) of the corollary follows from the assumption (2) of the theorem by the
property (7) of the adjunction correspondence with b-antinef KZ′ + D′div +
Bmod,Z′ over S. The BP b-R-divisor D′ corresponds to D′div.

We take a maximal model (X]/S,Bn Φ
]
X]) of Construction 2 as a log

pair (X/S,D) of Corollary 8. We suppose also that X 99K X] is a birational
1-contraction, that is, does not blow up divisors, and Bn Φ

]
X] = Bn Φ,X] has

the same divisorial multiplicities as Bn Φ. By construction (X]/S,Bn Φ
]
X])

is a log pair and Bn Φ
] = D(X], Bn Φ

]
X]). The inequality (2) of the corollary

Bn Φ
]
X] ≤ D′X] (7.5.4)

follows from the equation (1) in the definition of the adjunction correspon-
dence and the assumption (1) of the theorem by 6.9. Indeed, by construction
and definition D′

X]
h = BX]

h, where BX] = BX] . Thus, for the horizontal part
of (7.5.4) over Z,

Bn Φ
]
X]

h = Bn Φ,X]
h ≤ BX]

h = D′X]
h.

The vertical part of (7.5.4) means that for every vertical over Z prime
divisor P of X],

bP,n Φ = bP,n Φ
] ≤ d′P , (7.5.5)

where bP = multP B = multP BX] , bP,n Φ
] = multP Bn Φ

]
X] and d′P = multP D′.

Note for this that by construction P is also a divisor on X and Bn Φ
]
X] =

Bn Φ,X] . Since B is a boundary and (X,B) is lc or has an R-complement over
S, 0 ≤ bP ≤ rp ≤ 1 by 7.2. Thus (7.5.5) is meaningful. To verify (7.5.5) we
apply 6.9 to b1 = bP , r = rP , l = lP and d′ = multQD

′
div, where Q = f(P ).

The image Q is a prime divisor on Z ′ by (1) of the theorem. In this sit-
uation (6.9.1) of 6.9 means the inequality in (1) of the theorem. Indeed,
by construction d1 corresponds to b1 = bP by (6.0.10) with r = rP , l = lP
and r ∈ R′′ by 7.3, (4) and assumptions of the theorem. Thus by 7.2 and
construction d1 = bQ. The other assumptions and notation of 6.9 hold by
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assumptions and notation of the theorem. By construction b′ corresponds to
d′ = multQD

′
div by (6.0.11) with r = rP , l = lP . Thus d′ = d′P again by 7.2.

Now since b1 = bP and b′ = d′P , (6.9.2) means exactly (7.5.5).
Step 4. Steps 2-3 and Proposition 1 imply that (X/S,D+) is a (b-)n-

complement of (X/S,Bn Φ
]). Or, equivalently, (X/S,D+) is a b-n-complement

of (X]/S,Bn Φ
]
X]), actually, of any maximal model of (X/S,Bn Φ) in Con-

struction 2. (In particular, we can replace X ′/S by X]/S for those b-n-
complements.) Additionally, (X/S,D+) is an n-complement of (X/S,B) by
Example 6, (1) and Proposition 7.

Step 5. (Addenda.) In Addendum 37 we can replaceD′div byD+
div. Indeed,

(1) holds by (4). In (2) KZ′ + D+
div + Bmod,Z′ ∼n 0/S and is antinef over S

by Definition 5, (3). And, finally, (3) holds by (3) and Example 6, (2). In
this situation it is enough to be an n-complement in (3).

The monotonicity (5) follows from Proposition 8 and Step 3. Indeed, in
the addenda D′ = D+ adjunction corresponds to D′div = D+.

The proof of the addendum for bd-pairs, is similar to the above proof for
usual pairs.

7.6 Adjunction on divisor

Under the divisorial adjunction Γ(N ,Φ) goes to Γ(N , Φ̃): for every (finite)

set of positive integers N and hyperstandard sets Φ, Φ̃ as in 6.11,

B ∈ Γ(N ,Φ)⇒ BSν ∈ Γ(N , Φ̃), (7.6.1)

where B is a boundary of a pair (X,B + S), lc in codimension ≤ 2, S is a
reduced prime divisor of B + S, Sν is a normalization of S and (Sν , BSν )
is the adjoint pair of (X,B), that is, BSν = Diff B, (see [Sh92, 3.1]). In
particular, Sν = S when S is normal. The property (7.6.1) is immediate
by [Sh92, Corollary 3.10] and 6.11.

Theorem 11. Let n be a positive integer and (X/Z 3 o,B) be a pair with a
boundary B such that

(1) X/Z 3 o is proper with connected Xo;

(2) (X,B) is plt with a reduced divisor S of B over Z 3 o;

(3) −(K +B) is nef and big over Z 3 o; and
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(4) the adjoint pair (S/Z 3 o,BS) has a b-n-complement (S/Z 3 o,B+
S ).

Then there exists a b-n-complement (X/Z 3 o,B+) of (X/Z 3 o,B) with an
adjunction extension B+ of B+

S , that is, multS B
+ = 1 and

(5)
Diff(B+ − S) = B+

S .

The same holds for a bd-pair (X/Z 3 o,B + P) of index m|n.

Note that by (3) S is actually unique and irreducible over Z 3 o by its
connectedness [Sh92, Connectedness Lemma 5.7] [K, Theorem 17.4] [A14,
Theorem 6.3] etc. Moreover, the central fiber So is also connected.

Remark: 1. B is assumed to be a boundary, in particular, effective.
2. The b-n-complement on X/Z 3 o is not necessarily monotonic even if

the b-n-complement in (4) is monotonic. However, for special boundary mul-
tiplicities we can get the monotonic property a posteriori [PSh08, Lemma 3.3]
[B, Theorem 1.7] [HLSh, Theorem 1.6].

3. The theorem is the first main theorem (from global to local), that is,
similar to [PSh01, Proposition 6.2] [P, Proposition 4.4] where the condition
4),(iv) respectively imply our (4). However the proof is similar to the proof
of [Sh92, Theorem 5.12].

Proof. Step 1. For construction of an n-complement we replace (X,B) by a
crepant pair (Y,D). We can suppose that SuppD has only normal crossings.
For this we can take a log resolution of (X/Z 3 o,D). Then one can verify
all required assumptions (1-4), except for, the boundary property of D. In
particular, (4) holds by definition (cf. Remark 4, (1)). This implies the ex-
istence of a required complement for (Y/Z 3 o,D) and also (X/Z 3 o,B)
with (5) (cf. [Sh92, Lemma 5.4]). For this we can use the adjunction for-
mula [Sh92, 3.1] because birational modifications of pairs and their comple-
ments are crepant and b-n-complements agree with those modifications by
Remark 4, (1).

Note now that every n-complement in the normal crossing case is actu-
ally a b-n-complement by the same arguments with sufficiently high crepant
modifications or by Proposition 2.

Step 2. Construction ofD+. The complete linear system |−nKY − b(n+ 1)Dc+ S| =
|−n(KY + S)− b(n+ 1)(D − S)c| on Y cuts out the complete linear system
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|−nKS − b(n+ 1)DSc| on S over a suitable neighborhood of o in Z. (Tacit
we use the same notation S for its birational transform on Y .) Indeed,

b(n+ 1)DSc =
⌊
(n+ 1)(D − S)|S

⌋
= b(n+ 1)(D − S)c |S

by normal crossings. By [Sh92, Corollary 3.10] DS = (D−S)|S because S is

nonsingular. The required surjectivity follows from the Kawamata-Viehweg
vanishing theorem

R1ϕ∗OY (−nKY − b(n+ 1)Dc) = R1ϕ∗OY (KY + d−(n+ 1)(K +D)e) = 0

by (3), where ϕ : Y → Z 3 o. So, for every effective divisor ES ∈ |−nKS − b(n+ 1)DSc|,
there exists an effective divisor E ∈ |−nKY − b(n+ 1)Dc+ S| with E|S =

ES.
By (2) the pair (S/Z 3 o,DS) is klt and by (4) it has an n-complement

(S/Z 3 o,D+
S ). So, by (1) and (3) of Definition 2 (cf. also [Sh92, Defini-

tion 5.1]

D+
S =

ES
n

+
b(n+ 1)DSc

n
,

where ES ∈ |−nKS − b(n+ 1)DSc|. Put

D+ =
E

n
+
b(n+ 1)Dc

n
− S

n
,

where E ∈ |−nKY − b(n+ 1)Dc+ S| with E|S = ES.

Actually, (Y/Z 3 o,D+) is an n-complement of (Y/Z 3 o,D) and in-
duces the n-complement (X/Z 3 o,B+) of (X/Z 3 o,B) with crepant
B+ = ψ(D+), where ψ : Y → X. The n-complement properties (2-3) of
Definition 2 are equivalent for both pairs (see Step 1) and one of them we
verify on X (see Step 6 below).

Step 3. Adjunction: multS D
+ = 1, and by normal crossings and con-

struction

Diff(D+ − S) =(
E

n
+
b(n+ 1)(D − S)c

n
)|S =

ES
n

+

⌊
(n+ 1)(D − S)|S

⌋
n

=

ES
n

+
b(n+ 1)DSc

n
= D+

S .
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Step 4. Since E ≥ 0,

D+ ≥ b(n+ 1)Dc
n

− S

n
.

This implies (1) of Definition 2.
Step 5. By construction in Step 2,

nKY + nD+ = nKY + E + b(n+ 1)Dc − S ∼ 0.

This implies (3) of Definition 2.
Step 6. It is enough to verify (2) of Definition 2 on X. Notice that

(5) holds by construction and Step 3 (see also Step 1). Thus by inversion
of adjunction [Sh92, 3.3-4] [K, Theorem 17.7] [A14, Theorem 6.3] (X,B+)
is lc near S. The connectedness of the lc locus (if (X,B+) is not lc) and
its lc [A14, Theorem 6.3] imply lc of (X,B+) over Z 3 o, that is, (2) of
Definition 2. Note that in the local case for the lc connectedness we need the
connectedness of ϕ−1o that holds by (1).

Step 7. For a bd-pair (X/Z 3 o,B + P), we can take in Step 1 a log
resolution over which P is stable and has normal crossings together with D.
(Actually, according to the Kawamata-Viehweg vanishing theorem, we do
not need the last normal crossings because nP is integral: nP ∈ Z.) We can
assume also that PY is in general position (modulo ∼n) with respect to S
on Y and PY |S is well-defined. Then PS = P p

pS
= PX |S is stable over S (a

definition p
p

see in [Sh03, Mixed restriction 7.3]) and is nef Cartier on S over

Z 3 o because m|n. Then we can use above arguments with KY , KS replaced
by KY + PY , KS + (PS)S respectively (cf. general ideology in Crepant bd-
models in Section 3). To extend a complement as in Step 2 we need only
the aggregated bd-version of (3): −(KY +B+PY ) is nef and big over Z 3 o
but the b-nef property of P is not needed here. However, to verify the lc
property of Step 6 we need the lc connectedness (if (X,B+ + P) is not lc)
which uses the pseudoeffective modulo ∼R property of PX over Z 3 o that
follows from the b-nef property of P over Z 3 o (cf. [FS, Theorem 1.2]).

Corollary 13. Let n be a positive integer and Φ = Φ(R) be a hyperstandard
set associated with a (finite) set of (rational) numbers R in [0, 1]. Let (X/Z 3
o,B) be a pair such that

(1) X/Z 3 o is proper with connected Xo;
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(2) (X,B) is plt with a boundary B and a reduced divisor S of B over Z 3 o;

(3) −(K +B) is nef and big over Z 3 o; and

(4) (S ′]/Z 3 o,BS′,n Φ̃
]) has a b-n-complement (S ′]/Z 3 o,B+

S′]
), where

(S ′/Z 3 o,BS′) is a highest crepant model with a boundary of the ad-
joint pair (S/Z 3 o,BS) (cf. Construction 5 and [Sh92, (3.2.3)]) and

Φ̃ is defined in 6.11.

Then there exists a b-n-complement (X/Z 3 o,B+) of (X]/Z 3 o,Bn Φ
])

with an adjunction extension B+ of B+
S , that is, multS B

+ = 1 and

(5)
Diff(B+ − S) = B+

S = B+
S′],S

.

The same holds for a bd-pair (X/Z 3 o,B + P) of index m|n.

Proof. Step 1. Construction of (S ′/Z 3 o,BS′), (S
′/Z 3 o,BS′,n Φ̃). By (2)

the adjoint pair (S/Z 3 o,BS) is a klt pair with normal and irreducible
S over Z 3 o. It has finitely many prime b-divisors P over Z 3 o with
multP BS ≥ 0. A highest crepant model (S ′, BS′) of (S,BS) with a boundary
BS′ (equivalently, BS′ ≥ 0) blows up those exceptional P [Sh96, Theorem 3.1]
[B12, Theoem 1.1]. Usually, the blowup is not unique (and is not necessarily
Q-factorial). It is defined up to a small flop over Z 3 o.

After that we change the boundaryBS′ and get the pair (S ′/Z 3 o,BS′,n Φ̃)
with a boundary BS′,n Φ̃. (By construction (S ′, BS′) is a log pair. But
(S ′/Z 3 o,BS′,n Φ̃) is not necessarily a log pair when S ′ is not Q-factorial.)

In our applications we construct a maximal model (S ′]/Z 3 o,BS′,n Φ̃
])

using Construction 2 (see Step 5 in the proof Theorem 14). Actually in our
situation we can construct such a model too even S/Z 3 o has not necessarily
wFt. (ButB,BS′ , BS′,n Φ̃ are boundaries and (S/Z 3 o,BS), (S ′, BS′), (S

′, BS′,n Φ̃)
have klt R-complements by (1-3); cf. Step 2.) However, in (4) we suppose
that such a model (S ′]/Z 3 o,BS′,n Φ̃

]) exists and it has a b-n-complement

(S ′]/Z 3 o,B+
S′]

).
By construction S, S ′, S ′] are birationally isomorphic. So, (5) is meaning-

ful.
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Step 2. Reduction to a plt wlF model (X]/Z 3, Bn Φ
]). By Construction 2

a required maximal model exists:

(X,Bn Φ)
ψ
99K (X], Bn Φ

])
↘ ↙

Z 3 o

where ψ is a birational 1-contraction and X]/Z 3 o has wFt with con-
nected X]

o. (For simplicity of notation we use Bn Φ
] instead of Bn Φ

]
X] .)

Indeed, by (1) and (3), X/Z 3 o has wFt with connected Xo. Since Bn Φ ≤
B,multS Bn Φ = multS B = 1 and by (3), (X,Bn Φ) has a plt R-complement
with the same reduced divisor S of Bn Φ. In particular, S is not the base
locus of −(K + Bn Φ). Hence we can suppose that (X], Bn Φ

]) is also plt
with birationally the same prime reduced divisor S] = ψ(S) ⊂ X] of Bn Φ

].
By Construction 2 and the assumption (3) respectively, −(KX] + Bn Φ

]) is
R-free and big over Z 3 o. Thus (X]/Z 3, Bn Φ

]) is wlF (a weak log Fano
variety or space).

Notice that we suppose that ψ does nor blow up divisors. Hence Bn Φ
] ∈

Γ(n,Φ).
Step 3. Construction of a b-n-complement (X/Z 3 o,B+). By birational

nature of b-n-complements (see Definition 3 and Remark 4, (1)), a required
b-n-complement (X/Z 3 o,B+) of (X]/Z 3 o,Bn Φ

]) can be induced from a
b-n-complement (X]/Z 3 o,B+

X]) of (X]/Z 3 o,Bn Φ
]), that is, B+ = B+

X] ,X .
To construct the latter complement we apply Theorem 11 to (X]/Z 3, Bn Φ

]).
In Step 2 we verified assumptions (1-3) of the theorem. The conclusion (5)
of the theorem follows from (5) of the corollary. So, we need only to verify
(4) of the theorem.

Step 4. Construction of a b-n-complement of (S]/Z 3 o,Bn Φ
]
S]). Actu-

ally the b-n-complement (S ′]/Z 3 o,B+
S′]

) induces a b-n-complement (S], B+
S]

)
of (S]/Z 3 o,Bn Φ

]
S]), that is, B+

S]
= B+

S′] ,S
] . By construction varieties S ′]

and S] are birational isomorphic over Z 3 o. The (2-3) of Definition 2
for (S], B+

S]
) follows from that of for (S ′]/Z 3 o,B+

S′]
). Thus it is enough

to very (1-b) of Definition 3. This follows from Proposition 1, applied to
crepant models of (S]/Z 3 o,Bn Φ

]
S]), (S

′]/Z 3 o,BS′,n Φ̃
]) on a common

model S ′′/Z 3 o of S/Z 3 o. The required inequality for the statement is

Bn Φ
]
S],S′′ ≤ BS′,n Φ̃

]
S′′ .

Its b-version
Bn Φ

]
S] ≤ BS′,n Φ̃

].
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By Corollary 8, the b-version follows from its divisorial version on S]:

Bn Φ
]
S] ≤ BS′,n Φ̃

]
S] . (7.6.2)

Indeed, by construction −(KS]+BS′,n Φ̃
]) = −(KS′]+BS′,n Φ̃

]) is nef. (For any
rational differential form ω 6= 0 on S/Z 3 o, KS] = KS′] = (ω), where the last
canonical divisor is treated as a b-divisor.) This implies (1) of Corollary 8.
The inequality (7.6.2) is (2) of Corollary 8. By Step 2 (S]/Z 3 o,Bn Φ

]
S]) is

a log pair with D(S], Bn Φ
]
S]) = Bn Φ

]
S] .

Again Corollary 8, but now applied to (X]/Z 3, Bn Φ
]) of Step 2, implies

Bn Φ
] ≤ B. (7.6.3)

Indeed,−(K+B) is nef by (3). This gives (1) of Corollary 8. Construction
in Step 2 gives (2) of Corollary 8: BX] = BX] ≥ Bn Φ

].
The semiadditivity [Sh92, 3.2.1] and (7.6.3) implies

Bn Φ
]
S] ≤ BS. (7.6.4)

Finally, we verify (7.6.2) in every prime divisor P on S]. Note P is also a
divisor on S ′ by the maximal property of the crepant model (S ′/Z 3 o,BS′).
Indeed, if P is a divisor of S] then by (7.6.4)

0 ≤ bn Φ
]
S],P = multP Bn Φ

]
S] ≤ multP BS = bS,P .

Hence P is a divisor on S ′. On the other hand, bn Φ
]
S],P ∈ Γ(n, Φ̃) by (7.6.1).

Hence by definition and Proposition 8

bn Φ
]
S],P ≤ bS,P,n Φ̃ = multP BS′,n Φ̃ ≤ multP BS′,n Φ̃

],

that is, (7.6.2) in P .
bd-Pairs can be treated similarly. In this case, a maximal crepant model

with boundary means that of only for the divisorial part BS. So, we take
(S ′/Z 3 o,BS′ + P p

pS
′). After that we take (S ′/Z 3 o,BS′,n Φ̃ + P p

pS
′) and,

finally, (S ′/Z 3 o,BS′,n Φ̃
] + P p

pS
′]). By definition P p

pS
= P p

pS
′ = P p

pS
′] .
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8 Semiexceptional complements: lifting ex-

ceptional

Semiexceptional pairs. They can be defined in terms of R-complements.
A pair (X,D) is called semiexceptional if it has an R-complement and (X,D+)
is an R-complement of (X,D) for every D+ on X such that D+ ≥ D and
K+D+ ∼R 0. (In this situation D+ is always a subboundary and a boundary
if so does D.)

The same definition works for pairs (X,D+P) with an arbitrary b-divisor
P , in particular, for bd-pairs (X,D + P) (of index m).

Construction 3 (b-Contraction associated to lc singularities). Let (X,B)
be a pair with a nonklt R-complement (X,B+). Then there exists a prime
b-divisor P such that a(X,B+;P ) = 0, equivalently, multP B+ = 1, where
B+ = D(X,B) denotes the codiscrepancy b-divisor of (X,B). Suppose also
that X has wFt and B is a boundary. Then there exists a b-contraction
associated to (X,B+). Such a b-contraction is a diagram

(X,B+)
ϕ
L99 (Y,B+

Y )
ψ→ Z,

where ϕ is a crepant birational modification and ψ is a contraction such that

(1) (Y,B+
Y ) is lc but nonklt;

(2) ϕ blows up only prime b-divisors P with a(X,B+;P ) = 0, equivalently,
for every exceptional prime divisor P of ϕ, multP B

+
Y = 1; and

(3)
B+ = B + ψ∗H and B+

Y = B+,log = Blog + ψ∗H,

where B,Blog, B+, B+,log are respectively birational and log birational
transforms of B,B+ from X to Y and H is an effective ample R-divisor
on Z.

For ϕ we can take a dlt crepant blowup of (X,B+) [KK, Theorem 3.1]. This
gives (1-2) by construction. We can suppose that Y is Q-factorial and has
Ft, in particular, projective. (Z is also Ft by [PSh08, Lemma 2.8,(i)].) To
satisfy (3) consider the effective R-divisor E = B+ − B = B+,log − Blog on
Y . By construction E is supported outside LCS(Y,B+

Y ), in particular, does
not contain prime divisors P on Y with multP B

+
Y = 1. Moreover, the dlt
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property implies that (Y,B+
Y + εE) is dlt for a sufficiently small positive real

number ε. If E is nef then E is semiample [ShCh, Corollary 4.5] and gives
the required contraction ψ because KY +B+

Y ∼R 0 and εE ∼R KY +B+
Y +εE.

If E is not nef we apply the LMMP to (Y,B+
Y + εE) or E-MMP to Y . A

resulting model is not a Mori fibration or a fibration negative with respect to
E, and E is nef on this model. The model gives a required pair (Y,B+

Y ) and
ϕ is a birational modification of (Y,B+

Y ) to (X,B+). Note that the LMMP
contracts only divisors supported on SuppE and is crepant with respect to
B+
Y . Thus (1-2) hold for constructed ϕ. By construction

(4) (Y/Z,Blog) is a 0-pair, in particular, (Y,Blog) is a log pair.

Indeed, ψ∗H is vertical and ∼R 0 over Z.
We can use also Construction 2 to construct (Y,Blog) from (Y,Blog) of

the dlt blowup. Thus the model (Y/Z,Blog) up to a crepant modification is
defined by the dlt blowup and even by its exceptional divisors.

Since KY + B+
Y ∼R 0, we can associate to Z an adjoint boundary B+

Z =
B+

div +B+
mod on Z [PSh08, Constructions 7.2 and 7.5, Remark 7.7]. If we treat

B+
Z as a usual boundary then we suppose that B+

mod is the trace on Z of a
sufficiently general effective b-divisor B+

mod of Z as in Conjecture 3. In this
case the pair (Z,B+

Z ) is a usual lc pair with a boundary (cf. Corollary 34
below). However, to avoid Conjecture 3 we usually treat B+

mod = B+
mod,Z

as the trace of a nef b-divisor B+
mod on Z. In this case the pair (Z,B+

div +
B+

mod) is an adjoint bd-pair with b-nef P = B+
mod (see bd-Pairs in Section 3

and cf. Warning below). The pair is a log bd-pair and actually a 0-bd-
pair. Note also that by (4) we can also associate to the pair (Y,Blog) an
adjoint boundary Blog

Z = Blog
div + Blog

mod. The corresponding adjoint bd-pair

is (Z,Blog
div + Blog

mod) with the same moduli b-part Blog
mod = B+

mod. Indeed,
by [PSh08, Lemma 7.4(ii), Construction 7.5] or by Proposition 13 and 7.5

B+
div = Blog

div +H,B+
mod = Blog

mod and B+
Z = Blog

Z +H.

So, (Z,B+
Z ) is an R-complement of (Z,Blog

Z ). Respectively, for bd-pairs,
(Z,B+

div + B+
mod) is an R-complement of (Z,Blog

div + Blog
mod). By construction

(Z,Blog
Z ) is a log Fano pair with a log Fano bd-pair (Z,Blog

div + Blog
mod).

Warning: bd-Pairs (Z,B+
div +B+

mod), (Z,Blog
div +Blog

mod) have lc singularities

by definition. However, corresponding pairs (Z,B+
Z ), (B,Blog

Z ) have lc singu-
larities only for an appropriate choice of the moduli part B+

mod = Blog
mod (cf.

[PSh08, Corollary 7.18(ii)]).
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The bd-pair (Z,Blog
div +Blog

mod) actually depend on the complement (X,B+)
and on its dlt blowup (Y,B+

Y ); actually on the exceptional divisors of the
blowup. If we replace in our construction (Y,B+

Y ) by any crepant model
(V,B+

V ) of (X,B), possibly with a subboundary B+
V , with a contraction to

Y and to Z. Then the difference B+ − B = B+,log − Blog (of birational
and log birational transforms) usually is not semiample and even with fixed
components. Moreover, the horizontal difference over Z has only those fixed
components and is exceptional on Y , in particular, on the generic fiber of ψ.

The same construction works for a bd-pair (X,B + P) with a nonklt
R-complement (X,B+ + P) and such that

X has wFt;

P is pseudoeffective modulo ∼R;

B is a boundary and

(X,B + P) has a nonklt R-complement (X,B+ + P).

In this case and in the case for usual pairs it is better to apply E-MMP. To
construct a dlt Ft blowup we need P to be pseudoeffective modulo ∼R. For
adjoint boundaries see 7.1 and (12-13) in 7.5.

By construction and Proposition 3, the b-contraction is invariant of small
birational modifications of pairs (X,B) or bd-pairs (X,B + P).

Proposition 14. Let (X,B) be a semiexceptional but not exceptional pair,
with wFt X and a boundary B. Then Construction 3 is applicable to (X,B).

Every b-contraction of (X,B) is not birational, that is, dimZ < dimY =
dimX. Every lc centers and prime b-divisors P with a(P ;X,B+) = 0 are
horizontal with respect to the b-contraction, that is, for every b-divisor P
such that multP B+ = 1, ψ centerP = Z.

Pairs (Z,B+
div + B+

mod), (Z,Blog
div + Blog

mod) are a klt 0-bd-pair and a klt log
Fano bd-pair respectively. The bd-pair (Z,B+

div + B+
mod) is exceptional and

(Z,Blog
div + Blog

mod) is semiexceptional.

Addendum 39. The same holds for semiexceptional but not exceptional bd-
pairs (X,B + P) with wFt X, a boundary B and a pseudoeffective modulo
∼R b-divisor P.
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Proof. The construction is applicable because (X,B) has an R-complement.
According to Construction 3, if ψ is birational then B+ − B is big on

any dlt blowup ϕ : (Y,B+
Y ) → (X,B+). So, there exists an effective divisor

E ∼R B
+−B on Y such that (Y,B′Y ) is nonlc, where B′Y = B+

Y −B+ +B+E.
Since B+

Y ∼R B
+
Y −B+ +B +E and ϕ(B′Y ) = B′ = B +ϕ(E) on X, (X,B′)

is a noncl R-complement of (X,B). This contradicts to the semiexceptional
property of (X,B).

Similarly, if P is an lc prime b-divisor of (X,B+) such that ψ centerP
is proper in Z, then there exists an effective divisor E ∼R B

+ − B passing
through P . Moreover, by construction and our assumptions Z is complete
and proper over S = pt. This leads again to a contradiction by (6) and (8)
of 7.5. Hence by [PSh08, Lemma 7.4(iii)] and construction (Z,B+

div +B+
mod))

is a klt 0-bd-pair. Since H is effective and ample, (Z,Blog
div + Blog

mod) is a klt
log Fano bd-pair. Since (Z,B+

div +B+
mod)) is a klt 0-bd-pair, it is exceptional.

The bd-pair (Z,Blog
div + Blog

mod) is semiexceptional again by (6) and (8) of 7.5
(cf. the proof of Corollary 15).

Similarly we treat bd-pairs. In this case (Blog+P)+
div,Z is a usual R-divisor

on Z and (Blog + P)+
mod is a nef b-divisor of Z (see 7.1).

Since dimZ < dimX and (Z,Bdiv +Blog
mod) is semiexceptional we can use

the dimensional induction to construct n-complements of semiexceptional
pairs (X,B) and bd-pairs (X,B + P). Finally, this reduces construction of
semiexceptional n-complements to exceptional ones. Any 0-dimensional pair
is exceptional. We prefer a direct reduction to the exceptional case.

Semiexceptional type. Let (X,B) be a semiexceptional pair under the
assumptions of Construction 3 and (X,B+) 99K Z be a b-contraction asso-
ciated a nonklt complement (X,B+). The b-contraction has a pair (r, f)
of invariants, where r = reg(X,B+) = dim R(X,B) [Sh95, Proposition-
Definition 7.9] is the regularity of (X,B+), characterising topological depth
[difficulty] of lc singularities of (X,B+), and f is the dimension of Z, of the
base of b-contraction. We order these pairs lexicographically:

(r1, f1) ≥ (r2, f2) if

{
r1 > r2; or

r1 = r2 and f1 ≥ f2.

A maximal b-contraction is a largest one with respect to (r, f), that is,
of the largest regularity and the largest dimension of the base for such a
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regularity. The semiexceptional type of (X,B) is such a largest pair (r, f). [
If (X,B) is exceptional then r is not defined [or = −∞] and f = dimX is
possible (see Semiexceptional filtration below). ]

For pairs of dimension d not all invariants 0 ≤ r ≤ d − 1, 0 ≤ f ≤ d
are possible. E.g., the top type in this situation is (d − 1, 0) according to
Addendum 40 below.

Similar notion can be applied to a semiexceptional bd-pair (X,B + P)
under the assumptions of Construction 3.

Corollary 14. Under the assumptions and notation of Construction 3, reg(X,B+)
is the same topological invariant as of a sufficiently general or generic fiber
of (Y,B+

Y ) over Z: for the generic point η of Z,

reg(X,B) ≥ reg(X,B+) = reg(Yη, B
+
η ).

Addendum 40. reg(X,B+) ≤ dimYη−1 = dimX−dimZ−1, or dimZ ≤
dimX − reg(X,B+)− 1.

Addendum 41. The same holds for bd-pairs.

Proof. Immediate by Proposition 14 and definition because all lc centers are
horizontal.

Addendum 40 follows from the general fact that, for every lc pair (X,B),
reg(X,B) ≤ dimX − 1.

For bd-pairs notice only that reg(X,B+ +P) can be defined as for usual
pairs.

Corollary 15. Let (X,B) be a semiexceptional pair under the assumptions
of Construction 3 and (X,B+) 99K Z be a maximal b-contraction with respect
to r associated to a nonklt complement (X,B+). Then (Z,Blog

Z + Blog
mod) is

exceptional.
The same hold for semiexceptional bd-pairs.

Proof. Otherwise there exists an effective R-divisor E ∼R H on Z such that
(Z,Blog

div +E+Blog
mod) is nonklt. Hence (Y,Blog

Y +ψ∗E) has a vertical lc center
[PSh08, Lemma 7.4(iii)] (cf. the proof of Proposition 14). Since ψ∗E ∼R ψ

∗H
and is effective this contradicts to the maximal property of ψ with respect
to r.
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Construction 4. Let d be a nonnegative integer and Φ = Φ(R) be a hy-
perstandard set associated with a finite set of rational numbers R in [0, 1].
By Theorem 9 there exists a positive integer J such that every contraction
ψ : (Y,Blog)→ Z of Construction 3, (4) has the adjunction index J if

(1) dimX = d and

(2) Bh ∈ Φ.

Note that if 1 6∈ Φ then we can add 0 to R and so 1 to Φ. Moreover,
there exists a finite set of rational numbers R′ in [0, 1] such that Φ′ = Φ(R′)
satisfies Addendum 35. More precisely, R′ is defined by (6.8.1), where

R′′ = [0, 1] ∩ Z
J
.

By Addendum 36, the same adjunction index J has every contraction
ψ : (Y,Blog + P) → Z of Construction 3 if we apply the construction to a
bd-pair (X,B + P) and suppose additionally to (1-2) that (X,B + P) is a
bd-pair of index m, or equivalently, (Y,Blog +P) is a log bd-pair of index m.

Let I, ε, v, e be the data as in Restrictions on complementary indices in
Section 1 and f be a nonnegative integer such that f ≤ d−1. By Theorem 7
or by dimensional induction there exists a finite set of positive integers N =
N (f, I, ε, v, e,Φ′, J) such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data, in particular, J |n (see Remark 5);

Existence of n-complement: if (Z,BZ +Q) a bd-pair of dimension f and of
index J with wFt Z, with a boundary BZ , with an R-complement and
with exceptional (Z,BZ,Φ′+Q), then (Z,BZ+Q) has an n-complement
(Z,B+

Z + Q) for some n ∈ N . We can apply dimensional induction
by Addendum 30 [or by the assumption (1) Theorem 4, bd-version
of Theorem 3] because (Z,BZ + Q) is also exceptional and has a klt
R-complement. Moreover,

(3) B+
Z ≥ BZ,n Φ′ .

The following result applies to the construction but not only.

Corollary 16. For any given finite set N ′ of positive integers, we can sup-
pose that N (I) = N (. . . , I, . . . ) under Restrictions on complementary indices
with the given data is disjoint from N ′.
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Proof. Use N (I) = N (I ′) with the same data except for I replaced by suffi-
ciently divisible I ′.

Theorem 12. Let d,R,Φ, J, I,R′,Φ′, ε, v, e, f,N be the data of Construc-
tion 4 and r be a nonnegative integer. Let (X,B) be a pair with a boundary
B such that

(1) X has wFt;

(2) dimX = d; and

(3) both pairs
(X,BΦ), (X,BN Φ)

are semiexceptional of the same type (r, f).

Then there exists n ∈ N such that (X,B) has an n-complement (X,B+) with

(4) B+ ≥ Bn Φ.

Notice that we do not assume that (X,B) has an R-complement.

Addendum 42. B+ ≥ Bn Φ
] ≥ Bn Φ.

Addendum 43. (X,B+) is a monotonic n-complement of itself and of
(X,Bn Φ), (X,Bn Φ

]), and is a monotonic b-n-complement of itself and of
(X,Bn Φ), (X,Bn Φ

]), (X], Bn Φ
]
X]), if (X,Bn Φ), (X,Bn Φ

]) are log pairs re-
spectively.

Addendum 44. The same holds for the bd-pairs (X,B+P) of index m and
with N as in Construction 4. That is,

Existence of n-complement: if (X,B + P) is a bd-pair of index m with a
boundary B, under (1-2) and such that

both bd-pairs
(X,BΦ + P), (X,BN Φ + P)

are semiexceptional of type (r, f),

then (X,B + P) has an n-complement (X,B+ + P) for some n ∈ N .

Addenda 42 holds literally. In Addenda 43 (X,B+ + P) is a monotonic n-
complement of itself and of (X,Bn Φ +P), (X,Bn Φ

]+P), and is a monotonic
b-n-complement of itself and of (X,Bn Φ +P), (X,Bn Φ

]+P), (X], Bn Φ
]
X] +

P), if (X,Bn Φ + PX), (X,Bn Φ
] + PX) are log bd-pairs respectively.
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Lemma 10. Let (X,B) be a semiexceptional pair with a boundary B of
type (r, f), with wFt X and D ≥ B be an effective R-divisor of X such
that −(K + D) is (pseudo)effective modulo ∼R. Then the pair (X,D) is
also semiexceptional of type ≤ (r, f) with a boundary D. If (X,D) has also
type (r, f) then every maximal b-contraction (X,D+) 99K Z ′ is birationally
isomorphic to such a b-contraction for (X,B+) 99K Z. Moreover, the iso-
morphism is crepant generically over Z ′, equivalently, over Z.

The same holds for bd-pairs (X,B+P), (X,D+P) with −(K+D+PX),P,
pseudoeffective modulo ∼R.

Proof. By our assumptions there exists D+ ≥ D such that K + D+ ∼R 0.
Since D+ ≥ D ≥ B ≥ 0 and (X,B) is semiexceptional, (X,D) is semiexcep-
tional and D is a boundary too. In other words, (X,D+) is lc and (X,D+)
is an R-complement of (X,D). Hence by Addendum 4 (X,D+) is also an
R-complement of (X,B).

Let (r′, f ′) be the semiexceptional type of (X,D) and

(X,D+) L99 (Y ′, D+
Y ′)

ψ′→ Z ′,

be a maximal b-contraction associated to a nonklt R-complement (X,D+),
that is, dimZ ′ = f ′ and r′ = reg(X,D+).

The complement (X,D+) is also an R-complement of (X,B). Hence
r ≥ r′. If r > r′ then (r, f) > (r′, f ′). Otherwise r = r′. However to verify
that f ′ ≤ f we need to return back to a dlt crepant blowup of (X,D+) of
Construction 3. The same blowup can be used for (X,B) with B+ = D+.
But a maximal b-contraction for (X,B) should be constructed by E-MMP
with

E = B+ −B = D+ −B = D+ −D +D −B = E ′ + E ′′,

where E ′ = D+ −D,E ′′ = D −B ≥ 0. Hence f ≥ f ′ and (r, f) ≥ (r′, f ′).
If (r′, f) = (r, f) then in the last construction f = f ′. In this case rational

contractions (X,D+) 99K Z ′, (X,B+) 99K Z are birationally isomorphic, or
equivalently, ψ′, ψ are birationally isomorphic. Generically over Z, E ′′ is
exceptional or 0. Otherwise we can construct a b-contraction for (X,B)
with the same r and f > f ′.

By construction of the proof, Construction 3 and in its notation D+ =
B+ = Blog over the generic point of Z, where Blog = B(Y,Blog). Similarly,
D+ = Dlog over the generic point of Z ′ with Dlog = D(Y ′, Dlog). By the above
birational isomorphism, Dlog = Blog over the generic point of Z ′ which is the
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same as over the generic point of Z. Thus the birational isomorphism of
(Y ′, D+

Y ′) = (Y ′, Dlog), (Y,B+
Y ) = (Y,Blog) is crepant over the generic point

of Z ′ which is the same as over the generic point of Z.
Similarly we can treat bd-pairs.

Proof of Theorem 12. Let (X,B) be a pair satisfying (1-3) of the theorem.
For simplicity of notation suppose thatB = BN Φ, in particular, B ∈ Γ(N ,Φ)
(see Construction 1; but this is not important for the following). So, instead
of (3) we have

(3′) both pairs
(X,BΦ), (X,B)

are semiexceptional of the same type (r, f).

Indeed, by definition and Proposition 6

BN Φ = BN Φ,N Φ, BΦ = BN Φ,Φ and BN Φ,n Φ = Bn Φ

for every n ∈ N . By Corollary 6 an n-complement of (X,BN Φ) is also an
n-complement of (X,B).

Step 1. Choice of a b-contraction. Let (X,BR +) be an R-complement of
(X,B) such that its associated b-contraction

(X,BR +)
ϕ
L99 (Y,BR +

Y )
ψ→ Z (8.0.5)

has (maximal) type (r, f). Such an R-complement and a b-contraction ex-
ist by (3′). By construction (X,BR +) is lc, BR + is a boundary, dimY =
dimX = d, dimZ = f and r = reg(X,BR +).

Notice that ψ is actually a fibration, that is, f < d, because (X,B) is
semiexceptional, r ≥ 0 by our assumptions and the complement (X,BR +)
is nonklt. By Construction 3 we get an adjoint bd-pair (Z,Blog

div + Blog
mod) of

(Y,Blog)→ Z. The bd-pair (Z,Blog
div + Blog

mod) is exceptional by Corollary 15.
We need a stronger fact.

Step 2. bd-Pair (Z,Blog
div,Φ′ + Blog

mod) is also exceptional. To verify this
consider a crepant model (Y ], Blog,]

Y ]) of (Y,Blog) which blows up exactly
prime b-divisors of Y which are divisors on X or, equivalently, on the dlt
blowup of (X,B+) of Construction 3. Thus if we use the same complement
(X,B+) and the same dlt blowup of (X,B+) to construct a b-contraction for
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(X,BΦ) then we can apply E-MMP to (Y ], Blog
Y ] ,Φ

) with E = B+
Y ]
− Blog

Y ] ,Φ

or, equivalently, we construct a maximal model using antiflips of (Y ], Blog
Y ] ,Φ

).
This time we apply E-MMP only relatively over Z, that is, Construction 2
to (Y ]/Z,Blog

Y ] ,Φ
). Denote by (Y ]/Z,Blog

Y ] ,Φ
]) the result. We can use the same

notation Y ] even some divisors can be contracted because by construction
(Y ]/Z,Blog,]

Y ]) is a 0-pair and all birational transformations over Z are flops
of this pair. By 7.1, the adjoint bd-pair of (Y ]/Z,Blog,]

Y ]) is (Z,Blog
div +Blog

mod),
the same as of (Y,Blog)→ Z. Equivalently,

Blog,]
Y ],div = (Blog,]

Y ])div,Z = Blog
div and (Blog,]

Y ])mod = Blog
mod.

On the other hand, by our assumption (3) and Lemma 10, the mobile part
of E is vertical. Thus, generically over Z, the resulting model (Y ]/Z,Blog

Y ] ,Φ
])

is a 0-pair. It is 0-pair over Z everywhere because it is maximal. During the
construction of this model we contract all prime divisor P of Y ] for which

multP B
log
Y ] ,Φ

] > multP B
log
Y ] ,Φ

.

Thus on the resulting model (Y ]/Z,Blog
Y ] ,Φ

]), for every prime divisor P on Y ],

multP B
log
Y ] ,Φ

] = multP B
log
Y ] ,Φ

and (Y ]/Z,Blog
Y ] ,Φ

]) = (Y ]/Z,Blog
Y ] ,Φ

).

We can take adjunction for the last pair too. Denote its adjoint bd-pair by
(Z,Blog

Y ] ,Φ,div + Blog
Y ] ,Φ,mod), where Blog

Y ] ,Φ,div = (Blog
Y ] ,Φ

)div,Z and Blog
Y ] ,Φ,mod =

(Blog
Y ] ,Φ

)mod = Blog
mod. The last equality follows again from Lemma 10 and

Proposition 13, (1). Indeed, by the lemma b-contractions (X,BR +) 99K
Z, (X,BR +) 99K ZΦ for (X,B) and (X,BΦ) are crepant generically over Z.
Generically over Z these b-contractions are crepant respectively to (Y,Blog)→
Z and (Y ], Blog

Y ] ,Φ
)→ Z. But by construction (Y,Blog)→ Z and (Y ], Blog,]

Y ])→
Z are also crepant over Z. Thus (Y ], Blog,]

Y ])→ Z and (Y ], Blog
Y ] ,Φ

)→ Z are
crepant generically over Z, moreover, they are equal generically over Z (i.e.,
horizontally):

Blog,]
Y ]

h = Blog
Y ] ,Φ

h = BR +,
Y ]

h.

Since crepant modifications preserve the semiexceptional property and
by Proposition 8, the pair (Y ], Blog

Y ] ,Φ
) is semiexceptional. Otherwise, by

the statement and Construction 2, (Y ],], Blog
Y ] ,Φ

]
Y ],]) and (X,BΦ) are not

semiexceptional, a contradiction.
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The adjoint pair (Z,Blog
Y ] ,Φ,div +Blog

Y ] ,Φ,mod) is exceptional according to the

proof of Corollary 15. Otherwise there exists an R-complement (Y ], (Blog
Y ] ,Φ

)+)

of (Y ]/Z,Blog
Y ] ,Φ

) with the induced complement (X, (Blog
Y ] ,Φ

)+
X) of (X,BΦ) (see

Remark 4, (1-2)) and with

reg(Y ], (Blog
Y ] ,Φ

)+) = reg(X, (Blog
Y ] ,Φ

)+
X) > r = reg(Y ], Blog

Y ] ,Φ
) = reg(X,BR +).

So, (Z,Blog
div,Φ′ + B

log
mod) is exceptional because

Blog
Y ] ,Φ,div ≤ Blog

div,Φ′ and Blog
Y ] ,Φ,mod = Blog

mod.

The last equality we already know. By definition the inequality follows from
two facts (cf. 6.9):

Blog
Y ] ,Φ,div ∈ Φ′ and Blog

Y ] ,Φ,div ≤ Blog
div.

The inclusion follows from Construction 4 and Addendum 35. Indeed, by
construction Blog

Y ] ,Φ
∈ Φ ∪ {1}, in particular, Blog

Y ] ,Φ
h ∈ Φ ∪ {1}. (Or we

can suppose that 1 ∈ Φ already.) The required inequality follows from (4)
of 7.5 because Blog

Y ] ,Φ
≤ Blog,]

Y ] and Blog,]
Y ],div = Blog

div by construction (cf.

again 6.9). By Addendum 4 the last inequality also shows that (Z,Blog
Y ] ,Φ,div+

Blog
Y ] ,Φ,mod) actually has an R-complement.

Notice that the exceptional property of this step can be established by
more sophisticated but quite formal methods of Section 6.

Step 3. Choice of n ∈ N and construction on an n-complement (Z,Blog,+
div +

Blog
mod) of the bd-pair (Z,Blog

div + Blog
mod). The bd-pair is a bd-pair of index J

in notation of Construction 4. Indeed, according to Step 2, the adjunctions
(Y ], Blog,]

Y ]) → Z, (Y ], Blog
Y ] ,Φ

) → Z are crepant generically over Z one to
another. So, by Proposition 13, (1) and (5) they have the same moduli part
and the same adjunction index if such one exists for either of them. The
second adjunction (Y ], Blog

Y ] ,Φ
)→ Z satisfies (1-2) of Construction 4 and has

the adjunction index J . (We can suppose that 1 ∈ Φ or to consider Φ ∪ {1}
in (2) instead of Φ.) Hence (Y ], Blog,]

Y ])→ Z has also the adjunction index
J . The adjoint bd-pair (Z,Blog,]

Y ],div + (Blog,]
Y ])mod) = (Z,Blog

div +Blog
mod) has

also the index J by (3) of 7.3 and Theorem 8 (cf. Addendum 32).
By construction dimZ = f and by Step 2 the bd-pair (Z,Blog

div,Φ′ +B
log
mod)

is exceptional. Notice that Z has Ft by [PSh08, Lemma 2.8,(i)] because Y
has Ft by construction. Thus by Existence of n-complement in Construc-
tion 4, there exists n ∈ N and a required n-complement (Z,Blog,+

div +Blog
mod) of
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(Z,Blog
div + Blog

mod). About this complement we suppose (3) of Construction 4.
However, we need slightly more:

(3′′) b+
Q ≥ bQ,n Φ′ for every prime b-divisor Q of Z which is the image of a

prime divisor P on X, where b+
Q = multQD(Z,Blog,+

div + Blog
mod)div and

bQ = multQD(Z,Blog
div + Blog

mod)div = multQ Blog
div.

To satisfy this inequality we need to take an n-complement on an appro-
priate crepant model (Z ′, Blog

div,Z′ + Blog
mod) of (Z,Blog

div + Blog
mod), in particular,

both are log bd-pairs. The model should blow up those Q which are excep-
tional on Z. There are only finitely many of those b-divisors Q and bQ ≥ 0,
actually, bQ ∈ [0, 1) by (12) of 7.5 and bQ,n Φ′ is well-defined. Indeed, ev-
ery bP = multP B

log ∈ [0, 1] by Construction 3. Thus a required crepant
model exists and its divisorial part is the boundary Blog

div,Z′ . The model is an

exceptional bd-pair (Z ′, Blog
div,Z′ + Blog

mod) of dimension f and of index J . In

particular, it has an R-complement. The log bd-pair (Z ′, Blog
div,Z′,Φ′ + Blog

mod)
also has an R-complement and is exceptional. The R-complement exists by
Addendum 4. The exceptional property follows from the fact the image of a
nonlc R-complement of (Z ′, Blog

div,Z′,Φ′ +B
log
mod) gives a nonlc R-complement of

(Z,Blog
div,Φ + Blog

mod) that contradicts to Step 2.
Step 4. Construction on an n-complement (Y,Blog,+) of (Y,Blog). Take

the induced n-complement (Y,Blog,+) of (Z,Blog,+
div + Blog

mod), that is, Blog,+

adjunction corresponds to Blog,+
div as in 7.5. Actually we need to verify that

it is an n-complement with the log version of (4):

(4′) b+
P ≥ blog

P,n Φ for every prime divisor onX or on Y , where b+
P = multP Blog,+, blog

P,n Φ =

(blog
P )n Φ and

blog
P =

{
bP = multP B, if P is nonexceptional on X;

1 otherwise.

For this we use Addendum 37.
We apply the addendum to the 0-contraction (Y,Blog)→ Z over S = pt.

The contraction has the adjunction index J . Indeed, by construction in
Step 2, (Y ], Blog,]

Y ])→ Z and (Y/Z,Blog)→ Z are crepant generically over
Z and (Y ], Blog,]

Y ]) → Z has the adjunction index J . Thus by Proposi-
tion 13, (5) the (adjunction for) 0-contraction (Y,Blog) → Z has also the
adjunction index J .
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By Constructions 4 and 3, (Y/Z,Blog) is lc with a boundary Blog and Z
is projective over S = pt.

We can suppose also that the hyperstandard sets Φ,Φ′ and the set of
rational numbers R′′ of Construction 4 are the same as in 6.8 and in Theo-
rem 10.

Again by Construction 4 and Step 3, J |n.
Finally, by Step 3 there exists a required model Z ′/pt. of Z/pt. with a

boundary Blog,+
div Z′ , that is we consider the n-complement of Step 3 on Z ′/pt.

By (3′′), (4) of Addendum 37 holds. Thus (1-3) of Theorem 10 also hold
by the addendum. Hence (Y,Blog,+) is an n-complement (Y,Blog) which
satisfies (4′) by (5) of the addendum.

Step 5. Construction on an n-complement (X,B+) of (X,B). The
complement is induced by the n-complement (Y,Blog,+), that is, (X,B+)
is crepant to (Y,Blog,+). The properties (2-3) of Definition 2 holds automat-
ically. The property (4′) implies (4) of the theorem. In its turn, (4) implies
(1) of the definition as (4′) in Step 4 (cf. [Sh92, Lemma 5.4]).

Step 6. The proof of the addenda and, in particular, for bd-pairs, is
similar to the above proof for usual pairs and/or to the proof of Theorem 7.

Semiexceptional filtration. Let d be a nonnegative integer, Φ = Φ(R)
be a hyperstandard set associated with a finite set of rational numbers R in
[0, 1] and N ⊇ N ′ be sets of positive integers. Let

N ⊇ N (0,0) ⊇ · · · ⊇ N (r,f) ⊇ · · · ⊇ N (d−1,0) ⊇ N ′, 0 ≤ r ≤ d−f−1, 0 ≤ f ≤ d−1,
(8.0.6)

be its (decreasing) filtration with respect to semiexceptional types in the di-
mension d. Its associated (decreasing) filtration of hyperstandard sets is

Γ(N ,Φ) ⊇ Γ(N (0,0),Φ) ⊇ · · · ⊇ Γ(N (r,f),Φ) ⊇ · · · ⊇ Γ(N (d−1,0),Φ) ⊇ Γ(N ′,Φ).

Notation: For the filtration (8.0.6) and type (r, f), put

N(r,f) = N (r,f) \ N (r′,f ′),

where (r′, f ′) is the next type if such a type exists. Otherwise (r, f) =
(d − 1, 0) and N(d−1,0) = N (d−1,0) \ N ′. That is, the next set in the last
case is N ′ but without any type (cf. Generic type filtration with respect to
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dimension in Section 9). Respectively, it is useful to suppose that Γ(N ′,Φ)
is the next set for Γ(N (d−1,0),Φ).

The whole set N is not necessarily coincide with N (0,0). The discrepancy

N(−1,−) = N \N (0,0)

corresponds to exceptional types (−1, f) with f = d possible. So, the low
script is relevant. Respectively, we use N (−1,−) = N .

We do not filter exceptional types here.

Example 10. (1) If R = {1} is minimal then Γ(N ′,Φ({1})) = Γ(N ′). The
filtration (8.0.6) gives the associated filtration

Γ(N ) ⊇ Γ(N (0,0)) ⊇ · · · ⊇ Γ(N (r,f)) ⊇ · · · ⊇ Γ(N (d−1,0)) ⊇ Γ(N ′).

(2) If N ′ = ∅ then G(∅,R) = Φ(R) = Φ.

Definition 6. Let (8.0.6) be a filtration in Semiexceptional filtration. Con-
sider a certain class of pairs (X,B) of dimension d with boundaries B which
have an n-complement with n ∈ N . Such a pair (X,B) and its n-complement
have semiexceptional type (r, f) with respect to the filtration (8.0.6) if both
pairs

(X,BN (r′,f ′) Φ), (X,BN (r,f) Φ)

are semiexceptional of the same type (r, f), where (r′, f ′) is its next type.
If the next type (r′, f ′) does not exists, we take BN ′ Φ instead of BN (r′,f ′) Φ.
Note also that a pair (X,B) and its n-complement have exceptional type
(−1,−) with respect to the filtration (8.0.6) if the pair

(X,BN (0,0) Φ)

is exceptional.
We say that the existence n-complements agrees with the filtration if every

pair (X,B) in the class has an n-complement of filtration semiexceptional type
(r, f) with n ∈ N(r,f) and

B+ ≥ Bn N (r′,f ′) Φ.

If the next type (r′, f ′), does not exists, we take Bn N ′ Φ instead of Bn N(r′,f ′) Φ.
Notice again that N ′ does not have any semiexceptional or exceptional type.
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Respectively, exceptional n-complements have type (−1,−), n ∈ N(−1,−),
and

B+ ≥ Bn N (0,0) Φ.

The same applies to certain classes of bd-pairs (X,B+P) of dimension d
and index m|n with boundaries B, which have an n-complement with n ∈ N .

Warning 2. It is possible other n-complements which are not agree with the
filtration. E.g., we can have a triple or a longer chain of subsequent pairs of
the same type (r, f)

(X,BN (r′,f ′) Φ), . . . , (X,BN (r,f) Φ).

So, they have many types and many complementary indices which are agree
to some type but not agree to other. Additionally, we can have n-complements
without any type but with n ∈ N .

Theorem 13 (Semiexceptional n-complements). Let d be a nonnegative in-
teger, I, ε, v, e be the data as in Restrictions on complementary indices, and
Φ = Φ(R) be a hyperstandard set associated with a finite set of rational
numbers R in [0, 1]. Then there exists a finite set N = N (d, I, ε, v, e,Φ) of
positive integers such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data.

Existence of n-complement: if (X,B) is a pair with wFt X, dimX = d, with
a boundary B, with an R-complement and with semiexceptional (X,BΦ)
then (X,B) has an n-complement (X,B+) for some n ∈ N .

Addendum 45. B+ ≥ Bn Φ
] ≥ Bn Φ.

Addendum 46. (X,B+) is a monotonic n-complement of itself and of
(X,Bn Φ), (X,Bn Φ

]), and is a monotonic b-n-complement of itself and of
(X,Bn Φ), (X,Bn Φ

]), (X], Bn Φ
]
X]), if (X,Bn Φ), (X,Bn Φ

]) are log pairs re-
spectively.

Addendum 47. N has a semiexceptional filtration (8.0.6) with N ′ = ∅
which agrees with the existence of n-complements for the class of pairs in
Existence of n-complements.
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Addendum 48. The same holds for bd-pairs (X,B + P) of index m with
N = N (d, I, ε, v, e,Φ,m). That is,

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data and m|n.

Existence of n-complement: if (X,B + P) is a bd-pair of index m with wFt
X, dimX = d, with a boundary B, with an R-complement and with
semiexceptional (X,BΦ + P) then (X,B + P) has an n-complement
(X,B+ + P) for some n ∈ N .

Addenda 45 and 47 hold literally. In Addenda 46 (X,B+ + P) is a mono-
tonic n-complement of itself and of (X,Bn Φ + P), (X,Bn Φ

] + P), and is
a monotonic b-n-complement of itself and of (X,Bn Φ + P), (X,Bn Φ

] +
P), (X], Bn Φ

]
X] + P), if (X,Bn Φ + PX), (X,Bn Φ

] + PX) are log bd-pairs
respectively.

Warning 3. Sets N (d, I, ε, v, e,Φ),N (d, I, ε, v, e,Φ,m) are not unique and
may be not suitable in other situations of the paper (cf. Remark 2, (1)).
Notation shows the parameters on which the sets depend. We can take such
minimal sets under inclusion but they can be not unique.

It would be interesting to find a more canonical way to construct such set
N (d, I, ε, v, e,Φ),N (d, I, ε, v, e,Φ,m) and/or to find an estimation on their
largest element.

Proof. Construction of semiexceptional complements starts from the top type
(d − 1, 0) and goes to the bottom (−1,−), the exceptional one. We use
induction on types (r, f) for the class of pairs in Existence of n-complements
of the theorem.

Step 1. Type (d − 1, 0). Consider a set of positive integers N(d−1,0) =
N (0, I, ε, v, e,Φ′, J) as in Construction 4 with f = 0. PutN (d−1,0) = N(d−1,0).
By Theorem 12 this gives the lowest set in the filtration (8.0.6) above N ′ = ∅.

Step 2. Type (r, f). We can suppose that it has the next type (r′, f ′)
and the filtration (8.0.6) is already constructed for types ≥ (r′, f ′). Consider
a set of positive integers N(r,f) = N (f, I, ε, v, e,Φ′, J) as in Construction 4
with a hyperstandard set Φ = G(N (r′,f ′),R) and with given f . Note that
Φ,Φ′,m in the step can be different from that of in Step 1 or in the statement
of theorem. By Corollary 16 we can suppose that N(r,f) is disjoint from
N (r′,f ′). Put N (r,f) = N(r,f) ∪ N (r′,f ′). Again by Theorem 12 this gives the
filtration (8.0.6) for types ≥ (r, f).
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This concludes construction of complements in the semiexceptional case.
Step 3. Exceptional type (−1,−). In this case we need to construct

n-complements for (X,B) with exceptional (X,BN (0,0) Φ). Consider a set
of positive integers N(−1,−) = N (d, I, ε, v, e,Φ) as in Theorem 7 with the
hyperstandard set Φ = G(N (0,0),R). By Corollary 16 we can suppose that
N(−1,−) is disjoint from N (0,0). Put N = N (−1,−) = N(−1,−) ∪N (0,0). Now by
Theorem 7 this completes the filtration (8.0.6).

Step 4. Addenda follows from the above arguments and from Theo-
rems 12, 7, in particular, for bd-pairs. However, we takeN(−1,−) = N (d, I, ε, v, e,Φ,m)
in Step 3 with m as the index of bd-pair (X,B).

Notice also that by Addendum 47, Propositions 6 and 8, in Addenda 45,
46 and 48, we have stronger results with n N (r′,f ′) Φ instead of n Φ for n-
complements of type (r, f) (see Definition 6).

Corollary 17. In Theorem 13 we can add addition data N ′, a finite set
of positive integers such that every n ∈ N ′ satisfies Restrictions on comple-
mentary indices with the given data. Then in Addendum 47 we can find an
extended filtration (8.0.6) starting from N ′.

Proof. Take Φ := G(N ′,R). It is also hyperstandard by Proposition 4.

[Remark:] E.g., in the induction of the next section we use a set N ′ =
N d−1 of [non[semi]exceptional] complementary indices coming from low di-
mensions ≤ d− 1 (see Construction 6 below).

9 Generic nonsemiexceptional complements:

extension of lower dimensional complements

Definition-Proposition 1. Let (X/Z,B) be a pair with proper X/Z and
with a boundary B such that (X/Z,B) has a klt R-complement. We say that
(X/Z,B) is generic with respect to R-complements if the pair additionally
satisfies one of the following equivalent properties.

(1) There exists a klt R-complement (X/Z,B+) of (X/Z,B) such that B+−
B is big over Z.
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(2) There exists an R-complement (X/Z,B+) of (X/Z,B) and an effective
big R-mobile over Z divisor A on X such that SuppA ⊆ Supp(B+−B).
Moreover, we can suppose that A is R-ample over Z when X/Z is
projective.

(3) For every finite set of divisors D1, . . . , Dn on X, there exists an R-
complement (X/Z,B+) of (X/Z,B) such that SuppD1, . . . , SuppDn ⊆
Supp(B+ −B).

The same works for a bd-pair (X/Z,B + P) with a boundary B.

In this section we use the word generic only in this sense.

Remark 6. For generic (X/Z,B), every klt R-complement satisfies (1) and
(2) with an effective R-mobile divisor, but (2) with R-ample and (3) not
always.

Lemma 11. Let (X/Z,D) be a pair with proper X/Z, (X/Z,D+) be its klt
R-complement and (X/Z,D′) be a pair such that K+D′ ∼R,Z 0 and D′ ≥ D.
Then for every sufficiently small real positive number ε,

(X/Z, (1− ε)D+ + εD′)

is a klt R-complement of (X/Z,D) with

Supp((1− ε)D+ + εD′) = SuppD+ ∪ SuppD′.

If D is a boundary, then D+, (1− ε)D+ + εD′ are boundaries too.
The same works for bd-pairs.

Proof. Immediate by definition and [Sh92, (1,3.2)]. Recall (see Remark 1,
(5)) that (3) in Definition 1 for nonlocal X/Z means that

K +D+ ∼R,Z 0.

Similarly we can treat bd-pairs.

Corollary 18. Every generic (X/Z,B) has wFt X/Z. Moreover, X/Z has
Ft when X/Z is projective.

The same holds for a generic bd-pair (X/Z,B + P) with pseudoeffective
P over Z.
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Proof. Immediate by definition and Definition-Proposition 1, (1). Respec-
tively, the projective case by [PSh08, Lemma-Definition 2.6, (iii)]. By Lemma 11
we can suppose that the complement in Definition-Proposition 1, (3) is klt.

Similarly we can treat bd-pairs.

Proof of Definition-Proposition 1. (2)⇒(1) Immediate by definition. For pro-
jective X/Z, the ample property implies the big one. Note also that by
Lemma 11 we can suppose that the complement in (2) is klt.

(3)⇒(2) Apply (3) for n = 1 and D1 = A.
(1)⇒(3) We can suppose that Di are effective and even prime. Let

(X/Z,B+) be a complement of (1). We construct another klt R-complement
(X/Z,B′) of (X/Z,B) such that

SuppB+, SuppD1, . . . , SuppDn ⊆ SuppB′.

Since B+ − B is big, there exists an effective divisor E ∼R,Z B+ − B such
that

SuppD1, . . . , SuppDn ⊆ SuppE.

Consider B′ = E +B. By construction B′ ≥ B and

K +B′ = K +B + E ∼R,Z K +B +B+ −B = K +B+ ∼R,Z 0.

Now Lemma 11 implies the existence of a required R-complement (X/Z,B′).
Similarly we can treat bd-pairs.

Basic properties of generic pairs. (1) Decreasing of boundary preserves
the generic property : if (X/Z,B) is generic and B′ is boundary on X such
that B′ ≤ B then (X/Z,B′) is also generic.

Proof. Immediate by definition.

(2) Small modifications preserves the generic property : if (X/Z,B) is
generic and (X ′/Z,B) is its small modification over Z then (X ′/Z,B) is also
generic.

Proof. Immediate by definition. The big property over Z is preserved under
small modifications.
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(3) Crepant models with a boundary preserve the generic property : (X/Z,B)
is generic log pair and (Y/Z,BY ) its crepant model with a boundary BY then
(Y/Z,BY ) is also generic.

Proof. Immediate by definition. Indeed, B+−B = B+
Y −BY is b-big with a big

trace on Y and BY = BY is a boundary by definition and our assumptions.

(4) The same properties holds for generic bd-pairs.

Proof. Immediate by definition.

Lemma 12. Let (X/Z 3 o,B) be a local generic pair which is not semiex-
ceptional. Then there exists an R-complement (X/Z 3 o′, B+) with a crepant
plt model

(Y,B+
Y )

ϕ
99K (X,B+)
↘ ↓

Z 3 o′
, (9.0.7)

where ϕ is a crepant birational 1-contraction ϕ over Z 3 o′ and o′ is a
specialization of o, such that

Y is projective (Q-factorial);

(Y,B+
Y ) is plt with a single lc center S;

the only possible exceptional divisor of ϕ is S; and

there exists an effective ample over Z 3 o′ divisor A on Y with

S 6∈ SuppA ⊆ Supp(B+
Y −B

log
Y ).

If (X/Z 3 o,B) is not global, then the nonsemiexceptional assumption is
redundant and S is over o′, a sufficiently general closed point of the closure
of o.

The same holds for a generic bd-pair (X/Z,B + P) with pseudoeffective
P over Z.

Warning: Every global plt model (Y/Z 3 o′, Blog
Y ) is not generic because

it is not klt. However, the klt property holds in the nonglobal case for the
generalization (Y/Z 3 o,Blog

Y ) when o′ 6= o.

135



Proof. After a small birational modification of X as in Lemma 1 and Q-
factorialization over Z 3 o, we can suppose that X is projective over Z 3 o
and Q-factorial. Every small modification of X/Z 3 o over Z 3 o is again
generic and nonsemiexceptional. Thus by Corollary 18 we can suppose that
X/Z 3 o has Ft. We can suppose also that dimX ≥ 2.

Suppose that (X/Z 3 o,B+) is a klt R-compliment as in (3) with distinct
very ample prime divisors A1, . . . , Ar generating numerically Pic(X/Z 3 o).
(Actually, the generation is modulo ∼R /Z 3 o by [ShCh, Corollary 4.5].)
We suppose also that ∩ SuppAi = ∅. So, every component aiAi in B+ =
E ′ +

∑
aiAi, ai = multAi B

+ > 0, E ′ ≥ 0, can be replace by any general
R-linearly equivalent over Z divisor aiA

′
i, where Ai ∼ A′i/Z 3 o. (It is better

to think about Ai as a divisor in the Alexeev sense.)
Since (X/Z 3 o,B) is nonsemiexceptional, there exists an effective divisor

D′ ≥ B such that (X/Z 3 o,D′) is a log pair with K + D′ ∼R 0/Z 3 o (a
nonlc R-complement). Taking a weighted combinations D′ := aB+ + (1 −
a)D′, a ∈ (0, 1), and similarly for B+, we can suppose additionally that
SuppB+ = SuppD′. Note that if (X/Z 3 o) is not global, that is, o is not a
closed point or is not the image of X on Z, then such a complement always
exists with only vertical nonklt centers of (X,D′) over a sufficiently general
closed point o′ of the closure of o. In this case we replace (X/Z 3 o,D′) by
the specialization (X/Z 3 o′, D′). Recall that by definition o, o′ belong to
the image of X → Z 3 o and in the lemma we can replace o by such o′. In
particular, we can suppose below that o′ = o is closed.

Now consider a crepant projective over Z 3 o log resolution (V,D′V )
of (X,D′). The same works for B+ because SuppB+ = SuppD′. Let
M1, . . . ,Mn be a finite set of (very) ample effective generators of Pic(V/Z 3 o)
which are in general position to the log birational transform D′V

log, in partic-
ular, they do not pass through the lc centers of (V,D′V ) on V , and, moreover,

Supp(D′V
log +

∑
Mi) = Supp(B+log +

∑
Mi)

is also with simple normal crossings. (The finite generation modulo ∼ /Z 3 o
holds because X/Z 3 0 has Ft.) Divisors Mi are possibly not in SuppD′V

log

but we can add them preserving our assumptions. Indeed, we can add ψ(Mi)
to B+ with certain positive multiplicities, where ψ : V → X is the log res-
olution. By construction every ψ(Mj) is R-linear equivalent over Z 3 o to∑
ajiAi, a

j
i ∈ R, over Z 3 o. Thus for sufficiently small positive real number
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ε,

(X/Z 3 o,B+ − ε(
∑

ajiAi) + εψ(Mj))

is a klt R-complement of (X/Z 3 o,B) with ψ(Mj) in the support of B+ :=
B+−ε(

∑
aiAi)+εψ(Mj). Adding each ψ(Mj) we got a complement with re-

quired properties. Again as above we can suppose that SuppB+ = SuppD′.
By construction ψ is also a log resolution for new perturbed B+, D′. If
X/Z 3 o is not global, the nonklt centers of (X,D′) are vertical over o. But
in the global case we do not have such a control.

Taking a weighted combination B′ = aB+ + (1− a)D′, a ∈ (0, 1), we can
suppose that (X/Z 3 o,B′) is an lc but nonklt R-complement of (X/Z 3
o,B). Again ψ : (V,B′V ) → (X,B′) is a log resolution of (X,B′). In partic-
ular, (V,B′V ) is dlt. If X/Z 3 o is not global, the nonklt centers of (X,B′)
are vertical over o.

We would like to find another lc R-complement (X/Z 3 o,B′′) with a
single lc center. Let

E =
∑

Ei

be the sum of prime components of B′V with multiplicity 1 except for one
E0. (The latter component exists because (X,B′V ) is dlt but not klt.) By
construction

E ∼
∑

miMi/Z 3 o,mi ∈ Z.

So, for every sufficiently small positive real number ε,

(V,B′′V ) with B′′V = B′V − εE + ε(
∑

miMi)

is plt with the single nonklt center E0 and ∼R 0/Z 3 o. If X/Z 3 o is not
global E0 is vertical over o.

Since X is Q-factorial, the pair

(X/Z 3 o,B′′) with B′′ = ψ(B′V−εE+ε(
∑

mi,Mi)) = B′−εψ(E)+ε(
∑

miψ(Mi))

with a single lc prime b-divisor S = E0, that is, with multS B′′ = 1. Actually,
B′′ is effective and a boundary for sufficiently small ε because ψ(E), ψ(Mi)
are supported in SuppB′. By construction

E −
∑

miMi ∼ 0/X
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too. Hence

ψ∗(ψ(E −
∑

miMi)) = E −
∑

miMi ∼ 0/X

because ψ is a birational contraction (e.g., by [Sh19, Proposition 3]). For
every curve C on X over Z, there exists a curve C ′ on V and by the last
relation

(C.ψ(E−
∑

miMi)) = (ψ(C ′).ψ(E−
∑

miMi)) = (C ′.ψ∗(ψ(E−
∑

miMi))) = (C ′.0) = 0

by the projection formula. The pair (X/Z 3 o,B′′) is a 0-pair too: by the
last vanishing

(C.K +B′′) = (C.K +B′ − εψ(E) + ε(
∑

miψ(Mi)))

= (C.K +B′)− ε(C.ψ(E −
∑

miMi)) = 0.

So, at least the complement is numerical. But since X/Z 3 o has Ft it is
actually an R-complement with a single lc prime b-divisor S.

The divisor B+ = B′′ gives a required plt complement. Take a dlt resolu-
tion ϕ : (Y,B+

Y )→ (X,B+). It has an exceptional divisor if S is exceptional.
Moreover, in this case we can suppose that ϕ is extremal: the last contrac-
tion in the LMMP for (Y,BY ) over X. Otherwise it is identical (or, more
precisely, the above Q-factorialization). In the last case the property with an
ample divisor A holds by construction. Otherwise S is exceptional on X and
we need to construct an ample divisor A on Y . By construction, for every
divisor Mj, its birational image Mj,Y on Y is big on S over Z and does not
contain S. So, Mj,Y is ample on Y over X. Recall for this that ϕ is extremal.
A required A we can construct as linear combination ϕ∗(A′)+εMj,Y for some
0 < ε � 1, where A′ is an ample over Z divisor on X supported in B+ and
not passing through ϕ(S). Take A′ = Ai for such Ai that ϕ(S) 6⊂ SuppAi.
Such Ai exists because ∩ SuppAi = ∅.

If X/Z 3 o is not global, S is vertical over o.
Similarly we can treat bd-pairs.

Remark: it looks that similarly we can construct two disjoint lc center
S1, S2 if we have at least two summands in E. However, this is impossible
because in our construction every two components of E intersects each other.
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Construction 5 (Adjoint pair). Consider a plt model (9.0.7) of Lemma 12
and assume that Y is Q-factorial. The model gives an adjoint projective log
pair (S,BS) for (Y,Blog

Y ) or (Y,BY + (1−multS B)S), if S is not exceptional
on X, with respectively

BS = Diff(Blog
Y − S) or BS = Diff(B − (multS B)S).

The adjoint pair is always global by Lemma 12. By divisorial adjunction and
its monotonicity, (S,B+

S ) with

B+
S = Diff(B+

Y − S)

is an induced adjoint R-complement of (S,BS).
The same applies to (9.0.7) with a bd-pair (X/Z 3 o,B + P) having

pseudoeffective P . The adjoint bd-pair (S,BS + PS) is a log one with PS =
P p

pS
(see the birational restriction p

p
in [Sh03, Mixed restriction 7.3]. So, PS

is b-nef (and pseudoeffective) if P is b-nef over Z 3 o. Hence (S,BS + PS)
is a bd-pair of index m if (X/Z 3 o,B + P) is a bd-pair of index m.

Corollary 19. The adjoint pair (S,BS) is (global) generic with the induced
klt R-complement. In particular, S is irreducible of wFt.

Addendum 49. The same works for the adjoint bd-pair (S,BS + PS) of
index m.

Proof. By construction (Y/Z 3 o,B+
Y ), (S,B+

S ) are log pairs, where S is
normal irreducible [Sh92, Lemma 3.6]. Moreover, S is projective. It is true
if Y/Z 3 o is global because Y is projective. Otherwise by Lemma 12 S is
projective over a closed point.

If C ⊆ S is a curve then C is over the closed point o′ ∈ Z and

(C.KS +B+
S ) = (C.KY +B+

Y ) = (ϕ(C).K +B+) = 0.

Note that even in the local case C is over a closed point in Z and so is over
Z. By construction and monotonicity of divisorial adjunction,

B+
Y ≥ BY and B+

S ≥ BS.

So, (S,B+
S ) is an R-complement of (S,BS).

The complement is generic because there exists an effective ample divisor
A supported in Supp(B+

Y − BY
log). It is in general position with S. So, the
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restriction A|S is well-defined and is an effective ample divisor on S supported

in Supp(B+
S −BS).

For the bd-pair (S,BS +P) note that PS is b-nef if P is b-nef over Z 3 o.

Construction 6. Let d be a nonnegative integer, I, ε, v, e be the data as in
Restrictions on complementary indices, and Φ = Φ(R) be a hyperstandard
set associated with a finite set of rational numbers R in [0, 1]. Denote by

Φ̃ = Φ(R ∪ {0}) the hyperstandard set constructed in 6.11.
By dimensional induction there exists a finite set of positive integers N =

N (d− 1, I, ε, v, e, Φ̃) such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data;

Existence of b-n-complement: if (S,BS) is a generic pair of dimension d− 1
with Ft S and a boundaryBS then (S], BS,n Φ̃

]
S]) has a b-n-complement

(S,B+
S ) for some n ∈ N .

For bd-pairs we add a positive integer m. So, N = N (d−1, I, ε, v, e, Φ̃,m)
and replace (S,BS) by a bd-pair (S,BS +PS) of dimension d−1 and of index
m|n.

Dimensional induction gives a more precise choice of n that has important
geometrical implications (see Corollary 20 below). For this introduce the
following (decreasing) filtration of N .

Generic type filtration with respect to dimension i

N = N d ⊇ · · · ⊇ N i ⊇ · · · ⊇ N 0 ⊇ N ′, 0 ≤ i ≤ d, (9.0.8)

where N ′ is a subset of N . Its associated filtration of hyperstandard sets is

Γ(N d,Φ) ⊇ · · · ⊇ Γ(N i,Φ) ⊇ · · · ⊇ Γ(N 0,Φ) ⊇ Γ(N ,Φ).

For dimension i > 0, put
Ni = N i \ N i−1;

for i = 0, N0 = N 0 \ N ′. That is, the next set in the last case is N−1 = N ′
but without dimension. According to Theorem 14 below, b-n-complements
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of generic type are coming (extended) from dimension i and n ∈ Ni in this
case.

For every i, between N i ⊇ N i−1, there exists an additional filtration
with respect to semiexceptional types in the dimension i (see Semiexceptional
filtration in Section 8).

Definition 7. Let (9.0.8) be a filtration of Construction 6. Consider a cer-
tain class of pairs (X/Z 3 o,B) of dimension d with boundaries which have
an (b-)n-complement with n ∈ N d. Such a pair (X/Z 3 o,B) and its (b-
)n-complement have generic type of dimension 0 ≤ i ≤ d if the complement
is extended from a semiexceptional b-n-complement in dimension i. So, ad-
ditionally, we can associate to the pair its (filtration) semiexceptional type
(r, f), 0 ≤ r ≤ i− f − 1, 0 ≤ f ≤ i− 1 or the exceptional type (−1,−).

We say that the existence n-complements agrees with the generic type fil-
tration if every pair (X/Z 3 o,B) in the class has an n-complement (X/Z 3
o,B+) of filtration generic type i with n ∈ Ni. Additionally, (X/Z 3 o,B+)
of the type i is an n-complement of itself, of (X/Z 3 o,Bn N i−1 Φ), (X/Z 3
o,Bn N i−1 Φ

]) and a b-n-complement of itself, of (X/Z 3 o,Bn N i−1 Φ), (X/Z 3
o,Bn N i−1 Φ

]), (X]/Z 3 o,Bn N i−1 Φ
]
X]), if (X,Bn N i−1 Φ), (X,Bn N i−1 Φ

]) are
log pairs respectively.

The boundary Bn N i−1 Φ
]
X] can be slightly increased if we take into con-

sideration the (filtration) semiexceptional type (r, f) of (X/Z 3 o,B).
Possibly, the generic type is not unique. For the uniqueness we can take

minimal (better than maximal) type. The same concerns the semiexceptional
type.

The same applies to bd-pairs of dimension d.

Remark 7. (1) In particular, (X/Z 3 o,B) has generic type d if the pair is
generic and semiexceptional itself. If the pair is generic and not semiexcep-
tional then by Lemma 12 and Construction 5 there exists an adjoint generic
pair (S,BS). By definition (S,BS) has generic type i ≤ d − 1 and by di-
mensional induction this is a generic type of (X/Z 3 o,B) by Step 6 in the
proof of Theorem 14. By the induction it has also [some] semiexceptional
type (r, f).

(2) Generic type d only possible for global pairs.
(3) In the proof of Theorem 14 we apply Construction 5 to (X/Z 3

o,BN Φ), where N = N d−1. However, we can apply the same construction
directly to (X/Z 3 o,B) if the latter pair is generic (cf. Addendum 52).
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(4) [Warning:] Possibly, there are other n-complements which are not
agree with the filtration (cf. Example 13). Additionally, we can have n-
complements without any type but with n ∈ N .

Theorem 14 (Generic n-complements). Let d be a nonnegative integer,
I, ε, v, e be the data as in Restrictions on complementary indices, and Φ =
Φ(R) be a hyperstandard set associated with a finite set of rational numbers
R in [0, 1]. Then there exists a finite set N = N (d, I, ε, v, e,Φ) of positive
integers such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data.

Existence of n-complement: if (X/Z 3 o,B) is a pair with dimX = d, a
boundary B, connected Xo and with generic (X/Z 3 o,BN Φ) then
(X/Z 3 o,B) has an n-complement (X/Z 3 o,B+) for some n ∈ N .

Addendum 50. (X/Z 3 o,B+) is an n-complement of itself and of (X/Z 3
o,Bn Φ), (X/Z 3 o,Bn Φ

]), and is a b-n-complement of itself and of (X/Z 3
o,Bn Φ), (X/Z 3 o,Bn Φ

]), (X]/Z 3 o,Bn Φ
]
X]), if (X,Bn Φ), (X,Bn Φ

]) are
log pairs respectively.

Addendum 51. N has a generic type filtration (9.0.8) with N d = N , with
any finite set of positive integers N ′, satisfying Restrictions on complemen-
tary indices with the given data, and the existence n-complements agrees
the filtration for the class of pairs under assumptions of Existence of n-
complements in the theorem.

Addendum 52. In particular, the theorem and addenda applies to generic
pairs (X/Z 3 o,B) instead of with generic (X/Z 3 o,BN Φ).

Addendum 53. The same holds for bd-pairs (X/Z 3 o,B + P) of index m
with N = N (d, I, ε, v, e,Φ,m). That is,

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data and m|n.

Existence of n-complement: if (X/Z 3 o,B + P) is a bd-pair of index m
with dimX = d, a boundary B, connected Xo and with generic (X/Z 3
o,BN Φ + P) then (X/Z 3 o,B + P) has an n-complement (X/Z 3
o,B+ + P) for some n ∈ N .
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Addendum 51 holds literally. In Addendum 50 (X/Z 3 o,B+ + P) is an n-
complement of itself and of (X/Z 3 o,Bn Φ +P), (X/Z 3 o,Bn Φ

] +P), and
is a b-n-complement of itself and of (X/Z 3 o,Bn Φ +P), (X/Z 3 o,Bn Φ

] +
P), (X]/Z 3 o,Bn Φ

]
X] + P), if (X,Bn Φ + PX), (X,Bn Φ

] + PX) are log bd-
pairs respectively. In Addendum 52 (X/Z 3 o,B +P), (X/Z 3 o,BN Φ +P)
should be instead of (X/Z 3 o,B), (X/Z 3 o,BN Φ) respectively.

Warning 4. Sets N (d, I, ε, v, e,Φ),N (d, I, ε, v, e,Φ,m) are not unique and
may be not suitable in other situations of the paper (cf. Remark 2, (1)). We
can take such minimal sets under inclusion but they can be not unique.

It would be interesting to find a more canonical way to construct such set
N (d, I, ε, v, e,Φ),N (d, I, ε, v, e,Φ,m) and/or to find an estimation on their
largest element.

Proof. Take N = Nd ∪ N d−1, where Nd = N (d, I, ε, v, e,Γ(N d−1,Φ)) is the

finite set from Theorem 13 and N d−1 = N (d − 1, I, ε, v, e, Φ̃) is from Con-
struction 6. By Corollary 17 we can suppose that Nd ∩ N d−1 = ∅. By
construction N is a finite set of positive integers and satisfies Restrictions.

Let (X/Z 3 o,B) be a pair satisfying the assumptions in Existence of
n-complements. Since B is a boundary, BN Φ is well-defined.

Step 1. It is enough to construct a b-n-complement (X/Z 3 o,B+) of
(X]/Z 3 o,Bn Φ

]
X]) for some n ∈ N . Indeed, then we have all required

complements in the theorem and in Addendum 50 by Propositions 1, 8 and
Corollary 6. In particular, the corollary and fact that (X/Z 3 o,B+) is
a b-n-complement of (X]/Z 3 o,Bn Φ

]
X]) imply that (X/Z 3 o,B+) is an

n-complement of (X/Z 3 o,B) (cf. the proof of Addendum 29).
Step 2. We can suppose that (X/Z 3 o,BN d−1 Φ) is generic and not

semiexceptional . Indeed by Basic properties of generic pairs (1) and Propo-
sition 6, BN d−1 Φ ≤ BN Φ and the pair (X/Z 3 o,BN d−1 Φ) is also generic.
If (X/Z 3 o,BN d−1 Φ) is semiexceptional then by Addendum 46 (X]/Z 3
o,Bn N d−1 Φ

]
X]) has a b-n-complement (X/Z 3 o,B+) for some n ∈ Nd.

We apply Theorem 13 and its Addendum 46 to the pair (X,BN Φ) with
dimX = d, the boundary BN Φ and to the hyperstandard set Γ(N d−1,Φ)
(see Proposition 4); the other data is the same. Notice that X/Z is global
in this case (cf. Remark 7, (2)), that is , we can suppose that Z = pt.
and X/Z is just X. Since (X,BN d−1 Φ), (X,BN Φ) are generic, X has wFt
and (X,BN Φ) has an R-complement by Corollary 18 and definition respec-
tively. By definition and construction N d−1 ⊆ N , BN Φ,N d−1 Φ = BN d−1 Φ
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and (X,BN Φ,N d−1 Φ) is semiexceptional. By our assumptions (X,BN Φ) is
also semiexceptional and has generic type d. Indeed, BN d−1 Φ ≤ BN Φ and
(X,BN Φ) has an R-complement. If (X,BN Φ) is not semiexceptional then
there exists B′ ≥ BN Φ ≥ BN d−1 Φ such that K +B′ ∼R 0 and (X,B′) is not
lc. Hence (X,BN d−1 Φ) is also not semiexceptional, a contradiction. Thus
by Addendum 46 (X], Bn N d−1 Φ

]
X]) has a b-n-complements (X,B+) with

n ∈ Nd. The constructed complement exactly agrees with the filtration.
Hence Addendum 51 holds in this case too.

But we need a slightly weaker complement. Again by Proposition 6
Bn Φ ≤ Bn N d−1 Φ. Hence by Corollary 7 or arguments as in Step 4 below
Bn Φ

] ≤ Bn N d−1 Φ
]. Thus by Proposition 1 (X,B+) is also a b-n-complement

of (X], Bn Φ
]
X]) (X] here is not necessary the same as above and below).

This concludes the semiexceptional case. Below we suppose that (X/Z 3
o,BN d−1 Φ) is generic and not semiexceptional. In this case we construct a
b-n-complement (X/Z 3 o,B+) of (X]/Z 3 o,Bn Φ

]
X]) with n ∈ N d−1. We

extend also the filtration of N starting from N d−1.
For simplicity of notation suppose now that B = BN d−1 Φ, in particu-

lar, B ∈ Γ(N d−1,Φ) (but this is not important for the following). Indeed,
by definition and Proposition 6 BN d−1 Φ,n Φ = Bn Φ and BN d−1 Φ,n N i−1 Φ =
Bn N i−1 Φ for every n ∈ N d−1, 0 ≤ i ≤ d. By Step 2 (X/Z 3 o,B) is
generic and not semiexceptional itself. (Actually, if (X/Z 3 o,B) is generic
and not semiexceptional then the same holds for (X/Z 3 o,BN Φ), (X/Z 3
o,BN d−1 Φ).)

Step 3. Construction of (Y/Z 3 o′, B+
Y ) as in Lemma 12 and (Y/Z 3

o′, D) as in Corollary 13. Indeed, we can apply the lemma to (X/Z 3 o,B).
So, there exists an R-complement with a crepant model (Y/Z 3 o′, B+

Y ) as
in(9.0.7) and such that

(1) Y 99K X is a birational 1-contraction, in particular, every prime divisor
of X is a divisor on Y ;

(2) o′ is a sufficiently general point of the closure of o;

(3) the central fiber Yo′ is connected;

(4) (Y,B+
Y ) is plt with a complete single lc center S; and

(5) there exists an effective ample over Z 3 o′ divisor A on Y with

S 6∈ SuppA ⊆ Supp(B+
Y −B

log
Y ).
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(1-2) and (4-5) hold by Lemma 12. The connectedness in (3) and (4) holds
by the connectedness of Xo and (5) with lc connectedness respectively.

Now we take a boundary D = B+
Y − aA on Y , where a is a sufficiently

small real number. The pair (Y/Z 3 o′, D) satisfies the assumptions of
Corollary 13. (1) of the corollary holds by construction and (2-3). (2) of the
corollary follows from (4-5). (3) of the corollary follows from (5):

−(KY +D) = −(KY +B+
Y ) + aA ≡ aA/Z 3 o′.

By (1), construction and since B is a boundary, D is actually a boundary if
a is sufficiently small. Additionally, we can suppose that

(6) for every prime divisor P of X,

multP D = multP D ≥ multP B.

Indeed, by (1) P is a prime divisor on Y and

multP D = multP D = (multP B
+
Y )− amultP A.

Thus by (5) multP D = multP B
+
Y ≥ multP B if P 6∈ SuppA ⊆ Supp(B+

Y −
Blog
Y ). Otherwise P belongs to a finite set for which multP B

+
Y > multP B.

Notice also that S 6∈ SuppA by (5) and multS D = multS B
+
Y = 1.

Step 4. It is enough to construct a b-n-complement of (Y ]/Z 3 o′, Dn Φ
]
Y ])

for some n ∈ N d−1. Indeed, this complement will be also a b-n-complement
of (X]/Z 3 o′, Bn Φ

]
X]) and of (X]/Z 3 o,Bn Φ

]
X]) by Proposition 1 because

o′ is a specialization of o and Dn Φ
] ≥ Bn Φ

]
X] . The last inequality follows

from (6) by Corollary 8, actually, for any n and Φ. We apply the corollary to
(X]/Z 3 o,Bn Φ

]
X]) with a birational 1-contraction X 99K X]/Z 3 o. Such a

contraction exists by Construction 2 because Bn Φ ≤ B and (X/Z 3 o′, Bn Φ)
has an R-complement again by Proposition 1. The same arguments imply
that Construction 2 is applicable to (Y/Z 3 o′, Dn Φ). The assumption (1) of
Corollary 8 holds by the construction. On the other hand, by construction
Y 99K X]/Z 3 o′ is a birational 1-contraction and every prime divisor of X]

is a divisor on X and Y . Hence the assumption (2) of Corollary 8 follows
from (6), the definition of (−)n Φ and Proposition 8: for every prime divisor
P of X],

multP Bn Φ
]
X] = multP Bn Φ ≤ multP Dn Φ ≤ multP Dn Φ

].
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Step 5. Construction of a b-n-complement of (Y ]/Z 3 o′, Dn Φ
]
Y ]) for

some n ∈ N d−1. We apply Corollary 13 to (Y/Z 3 o′, D). The assump-
tions (1-3) of the corollary we verified in Step 3. So, we need to verify (4) of
Corollary 13. As in Corollary 19 but now by (5), the adjoint pair (S,DS) in
(4) of Corollary 13 is generic global of dimension dimX − 1 = d− 1. Notice
that S is irreducible by (3) and [Sh92, Lemma 3.6]. By (4) and construction,
(S,DS) is klt with a boundary DS. It has a highest crepant model (S ′, DS′)
with a boundary DS′ . By Basic properties of generic pairs (3) (S ′, DS′) is
also generic. By Corollary 18 S ′ has also wFt. Thus by Construction 6
(S ′], DS,n Φ̃

]
S′]) has a b-n-complement (S ′, D+

S′) for some n ∈ N d−1. This is
exactly (4) of Corollary 13. More accurately, we need to use the induced
b-n-complement (S ′], D+

S′]
).

So, the theorem and Addendum 50 are established.
Step 6. Addendum 51. We use dimensional induction to construct N d−1

with a required filtration. By 6.11 Φ̃ is already closed:
˜̃
Φ = Φ̃. In the

induction we work with Φ̃ instead of Φ. By Steps 1-5 above and especially
by Lemma 12, we can suppose that X is global and every pair (X,B) in
the induction has dimX ≤ d − 1. By (4-5) of Step 3 (X,B) is generic.
Essentially, we verify the induction in Construction 6.

Induction step d = 0. Take N0 = N (0, I, ε, v, e, Φ̃), a finite set from
Theorem 13 in dimension 0. By construction N0 is a finite set of positive
integers and satisfies Restrictions on complementary indices with the given
data. The existence of complements in dimension 0 is trivial. Moreover, we
can add any finite set of positive integers N ′ = N−1 satisfying Restrictions:
N 0 = N0 ∪N ′ and N0 ∩N ′ = ∅. Actually [BSh, Corollary 1.3] is enough for
this step.

General step of induction: construction of N i+1. Suppose that a filtration
is constructed up to N i, 0 ≤ i ≤ d − 2, and the filtration satisfies Adden-
dum 51 in dimension i with Φ̃ instead of Φ. The class of pairs consists of
global generic pairs (X,B) with a boundary B and dimX = i. Addition-
ally we can assume that (X,B) is klt and highest with a boundary. Take

Ni+1 = N (i + 1, I, ε, v, e,Γ(N i, Φ̃)) of Theorem 13. By Corollary 17 we can
suppose that Ni+1 is disjoint from N i. This gives a required filtration up to
N i+1 = Ni+1 ∪ N i and by induction up to N d−1 = Nd−1 ∪ N d−2. By con-
struction N i+1 is a finite set of positive integers and satisfies Restrictions.
We need to verify Addendum 51 in dimension i+1 with Φ̃ instead of Φ. The
class of pairs consists of global generic pairs (X,B) with a boundary B and
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dimX = i+ 1. Additionally we assume that (X,B) is klt and highest with a
boundary. In particular, we assign generic type 0 ≤ t ≤ i+ 1 for every such
pair. For this we apply Steps 1-5 above with d = i+ 1 and Φ = Φ̃.

By Step 1 it is enough to construct a b-n-complement (X,B+) of (X], Bn N t−1 Φ̃
]
X])

with n ∈ Nt for (X,B) of type t.
By our assumptions (X,B) is generic. Thus (X,BN i Φ̃) is also generic by

Basic properties of generic pairs (1). If (X,BN i Φ̃) is additionally semiexcep-
tional then its type is i + 1 and the required b-n-complement of type i + 1
with n ∈ Ni+1 exists by Addendum 46.

So, we assume that (X,BN i Φ̃) is not semiexceptional as in Step 2. In
this case t ≤ i. By Steps 3-5 a required b-n-complement is extended from a
b-n-complement of a generic pair (S,DS) of dimension i. By induction the
pair has some type 0 ≤ t ≤ i. This is a type of (X,B) and of (X,BN i Φ̃).
Indeed, by induction (S], DS,n N t−1 Φ̃

]
X]) has a b-n-complement of type t

with n ∈ Nt. By Steps 4-5, the complement can be extended to a b-n-
complement (X,B+) of (X], Bn N t−1 Φ̃

]
X]) with the same n ∈ Nt for (X,B)

and same type t. Notice only that BN i Φ̃,n N t−1 Φ̃ = Bn N t−1 Φ̃ because t ≤ i

and n ∈ N i,N t−1 ⊆ N i.
This completes the induction in Construction 6.
Finally, to complete the proof of Addendum 51 we assign type t ≤ d−1 to

every pair (Y/Z 3 o′, D) of Step 3. This is the type of (S ′, DS′) in Step 5. The
same type we assign to (X/Z 3 o,B). This is immediate for (Y/Z 3 o′, D)
by Corollary 13 as in Step 5. By arguments of Step 4 this applies also to
(X/Z 3 o,B).

Warning: In the proof of the theorem we can’t replace (X/Z 3 o,B)
by its crepant model (X ′/Z 3 o,BX′) because ′ and N Φ do not commute.
Moreover, assumptions in Existence of n-complements do not imply that
(X ′/Z 3 o,BX′,N Φ) is generic. (This is true but in opposite direction.)
However, we do not need this in the induction because we take ′ on an
induced model with the generic property (cf. Corollary 13 and Step 5).

Step 7. Other addenda. Addendum 52 follows from Basic properties of
generic pairs (1).

Similarly we can treat bd-pairs.

Corollary 20. Under assumptions and in notation of Theorem 14 if (X/Z 3
o,BN Φ) has generic type i then

reg(X) ≥ reg(X/Z 3 o,B+) ≥ d− i− 1.
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More precisely, with the additional (filtration) semiexceptional type (r, f)
with:

reg(X/Z 3 o) ≥ reg(X/Z 3 o,B+) ≥ d+ r − i.

In general, we can’t replace reg(X/Z 3 o) = reg(X/Z 3 o, 0) by reg(X/Z 3
o,B). However, this works if B+ ≥ B.

Proof. Indeed, the first right inequality hold for type d because reg(X/Z 3
o,B+) ≥ −1 (−1 for the empty R(X/Z 3 o,B+)). Otherwise by induction,
Theorem 11 and Corollary 13 the extension increase reg by 1:

reg(X/Z 3 o,B+) = reg(S ′, B+
S′)+1 = reg(S,B+

S )+1 ≥ d−1−i−1+1 = d−i−1.

The second right inequality follows by the same arguments. However the
induction use definition: if (filtration) semiexceptional generic (X,B) of di-
mension d has the (filtration) semiexceptional type (r, f) then reg(X,B+) = r
(cf. Corollary 14).

Both left inequalities with reg(X/Z 3 o) hold by [Sh95, Proposition-
Definition 7.11].

10 Klt nongeneric complements: lifting of generic

In this section we establish Theorem 3 under the assumption (1) of the the-
orem.

Klt type. A pair (X/Z 3, B) with a boundary B has klt type if there exists
a klt R-complement (X/Z 3 o,B+) of (X/Z 3 o,B). In this situation a log
pair (X/Z 3 o,B) is klt itself.

The same definition works for bd-pairs (X/Z 3 o,B+P) with a boundaryB.

Construction 7. Let (X/Z 3 o,B) be a pair of klt type with wFt X/Z 3
o. Then by Construction 2 there exists an associated b-0-contraction: a
birational 1-contraction ϕ to a 0-contraction ψ over Z 3 o

(X,B)
ϕ
99K (X], BX])

↓ ψ ↓
Z 3 o ← (Y,B]

div +B]
mod)

,

where
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(X]/Z 3 o,BX]) is a maximal model of (X/Z 3 o,B) with contracted fixed
over Z 3 o components of −(K +B), in particular, B]

X] = BX] ;

ψ is a 0-contraction given over Z 3 o by the nef over Z 3 o divisor −(KX] +
BX]); ψ satisfies the assumptions of 7.1;

B]
div, B

]
mod are respectively the divisorial and moduli part of adjunction

for ψ;

(Y/Z 3 o,B]
div + B]mod) is the adjoint generic klt bd-pair.

Indeed, since (X/Z 3 o,B) has a klt R-complement, (X], BX]) also has a klt
R-complement. Hence by 7.5, (6) (Y/Z 3 o,B]

div + B]mod) is klt too. The
bd-pair is generic by construction and 7.5, (8) and (12).

Note that if Xo is connected then X]
o and Yo are connected too.

The same construction works for bd-pairs (X/Z 3 o,B + P) of klt type
with wFt X/Z 3 o.

A pair (X/Z 3 o,B) of klt type is generic itself if and only if ψ is bira-
tional. Otherwise (X/Z 3 o,B) is fibered and we can apply Theorem 14, the
existence of generic n-complements.

Definition 8. A klt type pair (X/Z 3 o,B) with wFt X/Z 3 o has klt type
f if in Construction 7 dimY = f . So, f ∈ Z and 0 ≤ f ≤ dimX.

The same definition works for bd-pairs (X/Z 3 o,B+P) of klt type with
wFt X/Z 3 o.

In particular, the generic type is exactly a klt one with f = dimX.

Construction 8 (Cf. Construction 4). Let d be a nonnegative integer and
Φ = Φ(R) be a hyperstandard set associated with a finite set of rational
numbers R in [0, 1]. By Theorem 9 there exists a positive integer J such
that every contraction ψ : (X], BX]) → Y/Z 3 o of Construction 7 has the
adjunction index J if

(1) dimX = d, and

(2) Bh ∈ Φ.
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Moreover, there exists a finite set of rational numbers R′ in [0, 1] such that
Φ′ = Φ(R′) satisfies Addendum 35. More precisely, R′ is defined by (6.8.1),
where

R′′ = [0, 1] ∩ Z
J
.

By Addendum 36, the same adjunction index J has every contraction
ψ : (X], BX] +P)→ Y/Z 3 o of Construction 7 if we apply the construction
to a bd-pair (X/Z 3 o,B+P) and suppose additionally to (1-2) that (X/Z 3
o,B + P) is a bd-pair of index m, or equivalently, (X]/Z 3 o,BX] + P) is a
log bd-pair of index m.

Let I, ε, v, e be the data as in Restrictions on complementary indices in
Section 1 and f be a nonnegative integer such that f ≤ d−1. By Addenda 52-
53 of Theorem 14 or by dimensional induction there exists a finite set of
positive integers N = N (f, I, ε, v, e,Φ′, J) such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data[, in particular, J |n];

Existence of n-complement: if (Y/Z 3 o,BY + Q) is a generic bd-pair of
dimension f and of index J with wFt Y/Z 3 o, with a boundary BY

and connected Yo then (Y ]/Z 3 o,BY,n Φ′
]
Y ]+Q) has a b-n-complement

(Y/Z 3 o,B+
Y +Q) for some n ∈ N .

Theorem 15. Let d,R,Φ, J, I,R′,Φ′, ε, v, e, f,N be the data of Construc-
tion 8. Let (X/Z 3 o,B) be a pair with a boundary B, connected Xo such
that

(1) X/Z 3 o has wFt;

(2) dimX = d; and

(3) both pairs
(X/Z 3 o,BΦ), (X/Z 3 o,BN Φ)

have the same klt type f .

Then there exists n ∈ N such that (X/Z 3 o,B) has an n-complement
(X/Z 3 o,B+).

Notice that we do not assume that (X/Z 3 o,B) has an R-complement.
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Addendum 54. (X/Z 3 o,B+) is an n-complement of itself and of (X/Z 3
o,Bn Φ), (X/Z 3 o,Bn Φ

]), and is a b-n-complement of itself and of (X/Z 3
o,Bn Φ), (X/Z 3 o,Bn Φ

]), (X]/Z 3 o,Bn Φ
]
X]), if (X/Z 3 o,Bn Φ), (X/Z 3

o,Bn Φ
]) are log pairs respectively.

Addendum 55. N disjoint from any finite set of positive integers N ′.

Addendum 56. The same holds for the bd-pairs (X/Z 3 o,B+P) of index
m and with N as in Construction 8. That is,

Existence of n-complement: if (X/Z 3 o,B+P) is a bd-pair of index m with
a boundary B, Xo connected, under (1-2) and such that

both bd-pairs
(X/Z 3 o,BΦ + P), (X/Z 3 o,BN Φ + P)

have the same klt type f ,

then (X/Z 3 o,B + P) has an n-complement (X/Z 3 o,B+ + P) for
some n ∈ N .

In Addenda 54 (X/Z 3 o,B+ + P) is an n-complement of itself and of
(X/Z 3 o,Bn Φ +P), (X/Z 3 o,Bn Φ

]+P), and is a b-n-complement of itself
and of (X/Z 3 o,Bn Φ +P), (X/Z 3 o,Bn Φ

] +P), (X]/Z 3 o,Bn Φ
]
X] +P),

if (X/Z 3 o,Bn Φ +PX), (X/Z 3 o,Bn Φ
] +PX) are log bd-pairs respectively.

The proof of the theorem is very similar to proofs of Theorems 12 and 14.
So, we will be sketchy of it.

Proof. By Construction 8 N is a finite set of positive integers and satisfies
Restrictions. So, it is enough to construct required n-complements.

Let (X/Z 3 o,B) be a pair satisfying the assumptions in Existence of
n-complements. Since B is a boundary, BN Φ is well-defined. It is enough to
construct a b-n-complement (X/Z 3 o,B+) of (X]/Z 3 o,Bn Φ

]
X]) for some

n ∈ N (cf. Step 1 in the proof of Theorem 14).
As in the proof of Theorem 12 we can suppose that B = BN Φ, that is,

(X/Z 3 o,B) has also klt type f .
According to Construction 7 there exists 0-contraction ψ : (X], BX]) →

(Y,B]
div +B]

mod) over Z 3 o with dimY = f .
Step 1. We can suppose that ψ is defined on (X/Z 3 o,B). Equivalently,

ϕ is identical. For this we use a small modification ϕ. Thus we use (X]/Z 3
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o,B]
X] ,X]) crepant to (X]/Z 3 o,BX]) of Construction 7. By Proposition 8

B]
X] ,X] ≥ B. Hence by definition and Corollary 7, B]

X] ,X],n Φ
] ≥ Bn Φ

]. By

Proposition 1 a b-n-complement of (X],]/Z 3 o,B]
X] ,X],n Φ

]
X],]) is a b-n-

complement of (X]/Z 3 o,Bn Φ
]
X]). On the other hand, (X]/Z 3 o,B]

X] ,X])
also has klt type f because Construction 2 preserves the property by Propo-
sition 8 and the invariance of klt singularities for crepant 0-pairs.

Additionally, (X]/Z 3 o,B]
X] ,X],Φ) has the same klt type f . Indeed, by

Proposition 8, construction and definition BX],Φ ≤ B]
X] ,X],Φ ≤ B]

X] ,X] , where
BX] is the birational transform of B on X]. Since X] is a small modification
of X over Z 3 o, (X]/Z 3 o,BX],Φ) has the same klt type f as (X/Z 3 o,BΦ)

(cf. Basic properties of generic pairs (2)). Hence (X]/Z 3 o,B]
X] ,X],Φ) also

has klt type f because so does (X]/Z 3 o,B]
X] ,X]) (cf. Lemma 10).

By Lemma 1 X]/Z 3 o has wFt, dimX] = dimX = d. (Actually we
need the wFt property only for Construction 7 and do not use it further.)

So, we can denote (X]/Z 3 o,B]
X] ,X]) by (X/Z 3 o,B). We have a

0-contraction ψ on X:

(X,B)
ψ→ (Y,Bdiv +Bmod)/Z 3 o.

To construct a required complement we use Theorem 10 with the same sets
Φ,Φ′, the index J and some n ∈ N . The sets Φ,Φ′ of Construction 8 agree
with 6.8 for R′′ = [0, 1] ∩ (Z/J) and J |n for every n ∈ N . We apply the
theorem to the 0-contraction ψ : (X,B) → Y/Z 3 o with lc (X,B). By
construction the contraction ψ satisfies 7.1, B is a boundary and Y → Z 3 o
is proper (projective). So, we need only to verify that ψ has the adjunction
index J , to choose n ∈ N and to construct an appropriate model Y ′/Z 3 o
of Y/Z 3 o with an R-divisor D′div satisfying required properties.

Step 2. (X,B) → Y has the adjunction index J . By (3) (X/Z 3 o,BΦ)
has klt type f . By Construction 7, applied to (X/Z 3 o,BΦ), there ex-
ists another 0-contraction ψ′′ : (X ′′], BΦ,X′′]) → Y ′′ over Z 3 o which is
generically crepant to (X,B) → Y over Y . Indeed, BΦ ≤ B and pairs
(X/Z 3 o,BΦ), (X/Z 3 o,B) have the same klt type f . Thus BΦ

] = B]
generically over Y . Thus by Proposition 13, (5) ψ, ψ′′ have the same adjunc-
tion index.

On the hand, by definition and Construction 7 BΦ and BΦ,X′′] ∈ Φ. Thus
by Construction 8 and Theorem 9, (X ′′], BΦ,X′′]) → Y ′′ has the adjunction
index J . Hence (X 3 o,B)→ Y also has the adjunction index J .
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Step 3. Choice of n ∈ N and construction of (Y ′/Z 3 o,D′div + Bmod).
By Construction 7 the adjoint bd-pair (Y/Z 3 o,Bdiv + Bmod) is generic
klt. By construction dimY = f , Bdiv is a boundary and Yo is connected.
Additionally, (Y/Z 3 o,Bdiv + Bmod) is a bd-pair of index J by 7.3, (3)
(cf. Addendum 32). Thus by Existence of complement in Construction 8
(Y ]/Z 3 o,Bdiv,n Φ′

]
Y ] + Bmod) has a b-n-complements for some n ∈ N .

However we need a slightly stronger complement to apply Theorem 10.
For this take a crepant blowup (Ỹ , Bdiv,Ỹ + Bmod) → (Y,Bdiv + Bmod)

such that, for every vertical over Y prime divisor P on X, its image Q =
ψ(P ) on Ỹ is a divisor. By construction (Ỹ /Z 3 o,Bdiv,Ỹ + Bmod) is a bd-

pair of index J with dim Ỹ = f and connected Ỹo. By (12) in 7.5 Bdiv,Ỹ

is a boundary because (X,B) is lc. Hence by Basic properties of generic

pairs (3-4) and Corollary 18, (Ỹ /Z 3 o,Bdiv,Ỹ + Bmod) is generic with wFt

Ỹ /Z 3 o. By definition of bd-pairs of index J , Bmod is b-nef and Bmod,Ỹ is
pseudoeffective. Thus again by Existence of complement in Construction 8
(Ỹ ]/Z 3 o,Bdiv,Ỹ ,n Φ′

]
Ỹ ] + Bmod) has a b-n-complement for some n ∈ N .

This is our choice of n and a required model is

(Y ′/Z 3 o,D′div + Bmod) = (Ỹ ]/Z 3 o,Bdiv,Ỹ ,n Φ′
]
Ỹ ] + Bmod)

with a small modification Ỹ 99K Ỹ ] = Y ′. Such a model with a small modi-
fication exists by Construction 2. Notice that notation D′div means that D′div

adjunction corresponds to some b-divisor D′ on X 7.5, (3). By construction
and definition (Y ′/Z 3 o,D′div +Bmod) satisfies (2-3) of Theorem 10. By con-
struction, for every vertical over Y prime divisor P on X, its image Q = ψ(P )

on Ỹ ] is a divisor and inequality (1) of Theorem 10 holds by Proposition 8.
Thus by Theorem 10 (X]/Z 3 o,Bn Φ

]
X]) has a b-n-complement.

Step 4. Addenda. Addendum 55 can be proved by the same arguments
as Corollary 17.

Similarly we can treat bd-pairs.

Klt type filtration. Let d,Φ,Φ′ be the same data as in Construction 8
and N ⊇ N ′ be two sets of positive integers. A klt type filtration with respect
to dimension i is a (decreasing) filtration

N = N 0 ⊇ · · · ⊇ N i ⊇ · · · ⊇ N d ⊇ N ′, 0 ≤ i ≤ d. (10.0.9)
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Its associated (decreasing) filtration of hyperstandard sets is

Γ(N 0,Φ′) ⊇ · · · ⊇ Γ(N i,Φ′) ⊇ · · · ⊇ Γ(N d,Φ′) ⊇ Γ(N ′,Φ′).

For dimension 0 ≤ i < d, put

Ni = N i \ N i+1;

for i = d, Nd = N d \N ′. That is, the next set in the last case is N d+1 = N ′
but without dimension.

For every i, between N i ⊇ N i+1, there exists an additional filtration with
respect to generic types in dimension i.

Definition 9. Let (10.0.9) be a klt type filtration. Consider a certain class
of pairs (X/Z 3 o,B) of dimension d with boundaries B which have an
(b-)n-complement with n ∈ N 0. Such a pair (X/Z 3 o,B) and its (b-
)n-complement have klt type of dimension 0 ≤ i ≤ d with respect to filtra-
tion (10.0.9) if both pairs

(X/Z 3 o,BN i+1 Φ), (X/Z 3 o,BN i Φ)

are of klt type i. (We suppose that N d+1 = N ′.)
We say that the existence n-complements agrees with the klt type filtration

if every pair (X/Z 3, B) of klt type has an n-complement (X/Z 3, B+) of fil-
tration klt type i with n ∈ Ni. Additionally, (X/Z 3 o,B+) of the type i is an
n-complement of itself, of (X/Z 3 o,Bn N i+1 Φ), (X/Z 3 o,Bn N i+1 Φ

]) and a
b-n-complement of itself, of (X/Z 3 o,Bn N i+1 Φ), (X/Z 3 o,Bn N i+1 Φ

]), (X]/Z 3
o,Bn N i+1 Φ

]
X]), if (X,Bn N i+1 Φ), (X,Bn N i+1 Φ

]) are log pairs respectively.
The same applies to bd-pairs of dimension d.

Remark: (1) In particular, (X/Z 3 o,B) has (filtration) klt type d if the
pair is of generic type. The converse holds for the plain klt type d. But this
is not true for filtration klt type (cf. (3) below). If the pair has nongeneric
filtration klt type i, that is, i < d then by Theorems 15 above and 16 below
a required (b-)n-complement can be lifted from a generic one in dimension i.

Note also that in the proof of Theorem 15 we apply Construction 7 to
(X/Z 3 o,BN Φ), where N = N i (f = i in the theorem). However, we can
use the same construction directly for (X/Z 3 o,B) if the latter pair has the
same klt type i. Otherwise we use the construction for the former pair.
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(2) By the proof of Theorem 15, for a klt type pair (X/Z 3 o,B), a
complement can be lifted from a generic complement in dimension i (f = i
in the theorem). So, additionally, we can associate to the pair its generic
type j ≤ i and (filtration) semiexceptional type (r, f) (see Definition 7).

Boundary Bn N i+1 Φ
]
X] in Definition 9 can be slightly increased if we take

into consideration the generic type j or better a (filtration) semiexceptional
type of (X/Z 3 o,B).

(3) By definition filtration klt type is bigger of equal than klt type. Fil-
tration klt type gives better understanding of geometry than plain klt type
(cf. Corollary 20). The same concerns filtration semiexceptional type vs
semiexceptional type.

(4) Warning: It is possible other n-complements which are not agree with
the filtration. Additionally, we can have n-complements without any type
but with n ∈ N .

Theorem 16 (Klt type n-complements). Let d be a nonnegative integer,
I, ε, v, e be the data as in Restrictions on complementary indices, and Φ =
Φ(R) be a hyperstandard set associated with a finite set of rational numbers
R in [0, 1]. Then there exists a finite set N = N (d, I, ε, v, e,Φ) of positive
integers such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data.

Existence of n-complement: if (X/Z 3 o,B) is a pair with dimX = d, a
boundary B, wFt X/Z 3 o, connected Xo and with klt type (X/Z 3
o,BN Φ) then (X/Z 3 o,B) has an n-complement (X/Z 3 o,B+) for
some n ∈ N .

Addendum 57. (X/Z 3 o,B+) is an n-complement of itself and of (X/Z 3
o,Bn Φ), (X/Z 3 o,Bn Φ

]), and is a b-n-complement of itself and of (X/Z 3
o,Bn Φ), (X/Z 3 o,Bn Φ

]), (X]/Z 3 o,Bn Φ
]
X]), if (X,Bn Φ), (X,Bn Φ

]) are
log pairs respectively.

Addendum 58. N has a klt type filtration (10.0.9) with N 0 = N , with any
finite set of positive integers N ′, satisfying Restrictions on complementary
indices with the given data, and the existence n-complements agrees the filtra-
tion for the class of pairs under assumptions of Existence of n-complements
in the theorem.
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Addendum 59. In particular, the theorem and addenda applies to klt type
pairs (X/Z 3 o,B) instead of with klt type (X/Z 3 o,BN Φ).

Addendum 60. The same holds for bd-pairs (X/Z 3 o,B + P) of index m
with N = N (d, I, ε, v, e,Φ,m). That is,

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data and m|n.

Existence of n-complement: if (X/Z 3 o,B+P) is a bd-pair of index m with
dimX = d, a boundary B, wFt X/Z 3 o, connected Xo and with klt
type (X/Z 3 o,BN Φ +P) then (X/Z 3 o,B+P) has an n-complement
(X/Z 3 o,B+ + P) for some n ∈ N .

Addendum 58 holds literally. In Addendum 57 (X/Z 3 o,B+ + P) is an n-
complement of itself and of (X/Z 3 o,Bn Φ +P), (X/Z 3 o,Bn Φ

] +P), and
is a b-n-complement of itself and of (X/Z 3 o,Bn Φ +P), (X/Z 3 o,Bn Φ

] +
P), (X]/Z 3 o,Bn Φ

]
X] + P), if (X,Bn Φ + PX), (X,Bn Φ

] + PX) are log bd-
pairs respectively. In Addendum 59 (X/Z 3 o,B +P), (X/Z 3 o,BN Φ +P)
should be instead of (X/Z 3 o,B), (X/Z 3 o,BN Φ) respectively.

Proof. Construction of klt type complements starts from the top type d and
descends to the bottom 0, where we use Corollary 31, the boundedness of
lc index. We use [decreasing] induction on klt type i in dimension d. In
other words, we prove the theorem and Addendum 58 simultaneously. In
the induction we suppose that N = N i and, in Existence of n-complements,
(X/Z 3 o,BN Φ) has klt type ≥ i instead of just klt type, that is, ≥ 0. We
take the same class of pairs in Addendum 58.

By Proposition 1 and Corollary 7, more subtle complements of Adden-
dum 58 with Bn N i+1 Φ give the same complements of Addendum 57 with
Bn Φ instead because Bn Φ ≤ Bn N i+1 Φ.

Step 1. Klt type filtration for i = d. Consider a set of positive integers
Nd = N (d, I, ε, v, e,Φ) of Theorem 14. Then we are done if N ′ = ∅: N =
N d = Nd. In general we put N = N d = Nd∪N ′ assuming that Nd∩N ′ = ∅.
The last condition holds for Nd = N \N ′ of Addendum 51 (cf. Corollary 17).
Note that in this case generic or filtration klt type d pairs (X/Z 3 o,BN Φ)
are only possible under inductive version of Existence of n-complements.
Indeed, BΦ ≤ BN Φ and (X/Z 3 o,BΦ) is also generic and of klt type d by
Basic properties of generic pairs, (1).
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Step 2. Klt type filtration for i < d. We can suppose that the theorem is
established for klt types≥ i+1 andN i+1, i+1 ≤ d, the next filtration klt type
set is already constructed with a filtration (10.0.9) for the class of pairs in
Existence of n-complements with klt types ≥ i+ 1 (X/Z 3 o,BN i+1 Φ). Con-
sider a set of positive integers Ni = N (i, I, ε, v, e,Φ′, J) as in Construction 8
with a hyperstandard set Φ = Γ(N i+1,R) and f = i. (Note that Φ,Φ′, J in
the step depends also on i.) By Addendum 55 we can suppose that Ni is
disjoint from N i+1. Put N = N i = Ni ∪ N i+1. Now by Theorem 15 this
proves Theorem 16 and gives a required filtration (10.0.9) for klt types ≥ i.
Note that the complements agree with the filtration still in the class of pairs
(X/Z 3 o,BN Φ) of klt type ≥ i. If (X/Z 3 o,BN i+1 Φ) has klt type i then
(X/Z 3 o,BN Φ) has also klt type i and we use Theorem 15 to construct a
required n-complement with n ∈ Ni. Otherwise, (X/Z 3 o,BN i+1 Φ) has klt
type ≥ i+ 1 and we use induction.

This concludes construction of complements for the klt type case when
i = 0.

Step 3. Other Addenda. Addendum 59 follows from the fact that if
(X/Z 3 o,B) has klt type then so does (X/Z 3 o,BN Φ) because BN Φ ≤ B.

Similarly we can treat bd-pairs.

11 Lc type complements

In this section we establish Theorem 3 under assumption (2-3) of the theorem.
For this we consider complements for the pairs (X/Z 3 o,B) without a klt
R-complement, equivalently, for the pairs (X/Z 3 o,B) with only lc but not
klt R-complements. However, we suppose that an (lc) R-complement exists.
An lc type pair is a local morphism (X/Z 3 o,B) of this kind. Note that, if
this is the case, (X/Z 3 o,B) is lc (possibly klt) itself when it is a log pair.

We start with two examples which show that n-complements of lc type
are not bounded in any dimension d ≥ 3. We construct such examples in two
extremal situations when X/Z 3 o is identical (local) or with Z = o = pt.
(global).

Example 11. (1) Let (Z 3 o,BZ) be a pair such that

Z is a normal variety of the dimension d ≥ 3 and o is its closed point;
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BZ =
∑l+d

i=1Di be a reduced divisor near o with l + d prime Weil divisorial
components; integers d, l ≥ 0; and

(Z,BZ) is maximally lc (of index 1), that is, lc (of index 1) and with an lc
center o.

We suppose also that there exists a Q-factorialization ϕ : X → Z 3 o near
o such that each divisor Di, more precisely, its birational transform, with
i ≥ d+ 1 intersects D1, respectively, its birational transform, on X, and the
intersection D1∩Di is exceptional on D1. Such a factorialization is typical for
toric morphisms associated with a triangulation of a polyhedral cone with
the same l + d edges and one common edge for all simplicial subcones of
dimension d.

Now we perturb BX = B =
∑l+d

i=1Di on X as follows. Every divisor Di is
mobile and moreover its linear system is big. Replace each Di with i ≥ d+ 1
by

i−d∑
j=1

1

i− d
Di,j,

where Di,j are i− d sufficiently general divisors in |Di|. They are also prime
Weil. So, after the perturbation

B =
d∑
i=1

Di +
l∑

i=1

i∑
j=1

1

i
Di+d,j.

By construction (X/Z 3 o,B) is an lc 0-pair. It is an R-complement of itself.
Also by construction the intersection D1 ∩Di+d, l ≥ i ≥ 1, is exceptional on
D1 on X. Thus every Di+d,j passes through the intersection and (X,B) is
maximally lc near the intersection.

We contend that (X/Z 3 o,B) does not have n-complements for all 1 ≤
n ≤ l − 1. Suppose such an n-complement (X/Z 3 o,B+) exists. Then⌊

(n+ 1)
1

n+ 1

⌋
/n = 1/n >

1

n+ 1
.

Hence, by Definition 2 (1), B+ > B near the intersection D1 ∩ Dn+d+1, a
contradiction by Definition 2 (2). Indeed, it was noticed above that (X,B)
is maximally lc near the intersection.
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Finally note that l = 0 in the dimension d ≤ 2. However, for d ≥ 3, l can
be any natural number.

We can construct a required ϕ as a toric morphism. We can push the
example to Z 3 o.

(2) We construct a locally trivial P1-bundle ϕ : X → Y with projective
X, dimX = d and with a reduced divisor D =

∑l
i=1Di on X with only

simple normal crossings and such that

(1) divisors D1 and D2 are disjoint sections of ϕ;

(2) (X,D) is a projective 0-pair;

(3) all other divisors Di, i ≥ 3, are vertical with respect to ϕ;

(4) every irreducible closed curve Cj, j ∈ J , of X with the generic point in
the 1-dimensional strata of D is rational and has a closed point in the
0-dimensional strata;

(5) those curves generate the cone of effective curves of X, that is, every
1-dimensional effective algebraic cycle of X is numerically equivalent
to
∑
rjCj, ri ∈ Q, and ri ≥ 0;

(6) D1 is base point free and big on X, ample on itself; and

(7) the restriction of |D1| on D1 =
∑l

i=2Di is surjective.

We start our construction from a product X = Y ×P1 of projective toric
nonsingular varieties with the natural projection ϕ : X → Y , dimX = d
and with the invariant divisor D on X. We can suppose that D1, D2 are
horizontal. The product satisfies the properties (1-5).

To satisfy (6-7) we transform ϕ as follows. Take a general hyperplane
section H on Y for some projective embedding of Y . So, ϕ−1H + D has
only simple normal crossings too. Let ψ : X ′ → X be the blowup of D2 ∩
ϕ−1H in X. Denote its exceptional divisor by E and by E ′ the proper
inverse transform of the vertical divisor ϕ−1H. Now we can blow down E ′

and construct a required locally trivial P1-bundle X ′/Y with the birational
transform D′ of D. It also satisfies the properties (1-5). To prove (5) it is
better to know that X ′ → Y is toric again (e.g. by the criterion in [BMSZ];
this can be done also directly by a toric construction).
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For sufficiently ample H, D′1 is very ample on D′1. We can suppose that,
for every closed curve Cj generically in the 1-dimensional strata of D in D1,

(Cj, D
′
1) ≥ 2.

By construction and (5), D′1 is nef and big on X. Since X is projective toric
it is Ft and D′1 is semiample. This concludes (6).

Denote the constructed pair (X ′/Y,D′) by (X/Y,D). The restriction of
linear systems

|D1| 99K
∣∣∣D1|D1

∣∣∣
is surjective due to the vanishing

H1(X,D1−D1) = H1(X,D1−(D−D1)) = H1(X, 2D1−D) = H1(X,K+2D1) = 0

by the Grauert-Riemenschneider vanishing. This gives (7).
Actually, we can prove now that D1 is base point free. Moreover, let Pj ∈

Cj be arbitrary closed points on the vertical curves Cj of the 1-dimensional
strata of D. Then the points Pj are the only base points of the linear system
|D1 −

∑
Pj|. In particular, the linear system is nonempty. To construct a

divisor M in the linear system we can use the dimensional induction. If the
dimension of Y = 1, then Y = P1 and we have only two vertical (disjoint)

curves C1 = D3, C2 = D4, D1 = D2 + D3 + D4 and P1 + P2 ∈
∣∣∣D1|D1

∣∣∣.
By the surjectivity in (7) there exists such an effective divisor M on X that
M |D1 = P1 +P2 and M ∈ |D1 − P1 − P2|. Moreover, M ∩D2 = ∅ for general

M . Suppose by induction that on every vertical divisor Di, i ≥ 3, generically
in the (d − 1)-dimensional (divisorial) strata of D there exists an effective
divisor

Mi ∈

∣∣∣∣∣∣D1|Di −
∑
Pj∈Di

Pj

∣∣∣∣∣∣ .
We can also suppose by induction that the divisors Mi are agree on the
vertical varieties V generically in the smaller dimensional strata, that is, if
Dl, l ≥ 3, is another vertical divisor generically in the (d − 1)-dimensional
strata of D with the effective divisor Ml and V ⊆ Di, Dl then

Mi|V = Ml|V .
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So we can glue the divisors Mi into a single Cartier divisor MD1 on D1 such
that

MD1|Di = Mi.

Note also for this that the general divisors Mi as D1 do not interest D2 by

construction: D1 ∩D2 = ∅. By construction MD1 ∈
∣∣∣D1|D1 −

∑
Pj

∣∣∣. By (7)

there exists M ∈ |D1 −
∑
Pj|. For general M , M ∩D2 = ∅.

Actually, general M behaves as D1, that is, if we replace D1 by M we
have the same properties (1-7). So, to verify that Pj are the only base
points of |D1 −

∑
Pj|, it is enough to consider the case when Pj are points

of the 0-dimensional strata on D1. If dimY = 1, then there exists M such
that P1, P2 are the only base points of |D1 − P1 − P2| because D1 is a 1-
dimensional strata and D2

1 ≥ 2. So, the base locus does not contain the
1-dimensional strata. In higher dimensions the base locus should be a closed
torus invariant subset in D1. Since it contains the points Pj but does not
contain the 1-dimensional strata, the base locus have only the points Pj.

According to the above construction for any choice ofMV ∈
∣∣∣D1|V − P1,V − P2,V

∣∣∣
there exists M ∈ |D1 −

∑
Pj| with M |V = MV , where V are the vertical ir-

reducible surfaces generically in the 2-dimensional strata and P1,V , P2,V are
the only points on V from the points Pj on D1. Suppose that V1, . . . , Vm are
the vertical irreducible surfaces generically in the 2-dimensional strata. Then
we can construct m! distinct divisors Mi, i = 1, . . . ,m!, as follows. Take j

divisors (curves) Cj,h, h = 1, . . . , j, on Vj in
∣∣∣D1|Vj − P1,Vj − P2,Vj

∣∣∣. Then

take Mi with
Mi|Vj = Cj,h

for some h = 1, . . . , j. But each curve Cj,h on Vj is repeated m!/j times in
this construction. So, we use m! curves Cj,h with the multiplicity m!/j on
Vj.

Now we perturb D1:

B =
m!∑
i=1

1

m!
Mi +

l∑
i=2

Di.

Finally, we blow up every curve Cj,h:

(X ′, B′)→ (X,B)
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with the crepant boundary B′ and with exceptional divisors Ej,h. (The order
of blowups is unimportant.) Note that (X ′, B′) is again 0-pair, in particular,
lc. Since, every divisor Mi intersects every surface Vj transversally in Cj,h
and m!/j such divisors passing through Cj,h,

multEj,h B
′ =

m!

j

1

m!
=

1

j

and every Ej,h intersects Vj transversally along the generic point of Cj,h, the
proper birational transform of Cj,h on Vj, the proper birational transform of
Vj on X ′.

The pair (X ′, B′) is an R-complement of itself. But it has only n-
complements for n ≥ m. Indeed, if n ≤ m − 1 and (X ′, B+) is an n-
complement of (X ′, B′) then near Vn+1 the pair KX′ + B+ is not ≡ 0, a
contradiction. For this note that⌊

(n+ 1)
1

n+ 1

⌋
/n = 1/n > 1/(n+ 1).

On the other hand, the reduced part of D1 =
∑l

i=2Di already gives the lc
singularity along Vn+1. So,

B+ ≥
l∑

i=2

Di +
n+1∑
i=1

1

n
En+1,i

and B+ does not contain other divisors than Di, i = 2, . . . , l, passing through
Vn+1 (maximally lc). Take C, the birational transform of a generic fiber
(vertical curve) of Vn+1 over Y . Then by construction and adjunction,

0 = (C.KX′ +B+) ≥ (C.KX′ +
l∑

i=2

Di +
n+1∑
i=1

1

n
En+1,i) =

(C.KVn+1 +D2|Vn+1
+

n+1∑
i=1

1

n
En+1,i|Vn+1

) ≥

(C.KVn+1 +D2|Vn+1
+

n+1∑
i=1

1

n
Cn+1,i) ≥ −2 + 1 + (n+ 1)

1

n
=

1

n
> 0.

Note that (C.D2|Vn+1
) = (C.D2) = 1.

162



Finally, if dimX = d ≥ 3 or, equivalently, dimY ≥ 2, we can find such a
pair (X,B) with m� 0. Thus in dimensions d ≥ 3 the global n-complements
of lc type are not bounded.

(3) Let d be a positive integer ≥ 3 and N be a finite set of positive
integers. Then, for every integer r � 0, there exists a pair (X/Z 3 o,B)
with a Q-boundary B =

∑r
i=1 biDi, dimX = d and connected Xo such that

(X/Z 3 o,B) has an R-complement but does not have an n-complement
for every n ∈ N , where D1, . . . , Dr are effective Weil divisors (cf. (2-3) of
Theorem 3). Replace in Example (2) m! by N ! =

∏
n∈N (n + 1) and 1/j by

1/(n+1), n ∈ N . The divisor
∑N !

i=1 Mi can be replaced by a single prime one.
This gives a global example. A local example can redone from Example (1).

Actually, for appropriate examples, the low bound for r depend only on d
and the number of elements in N . For this we should aggregate curves Cj,h
into at most 4 curves Ch,j, h = 1, 2, 3, 4, with 4 multiplicities ahN !/j such that
ah is a positive integer < j with

∑4
h=1 ah/j = 2. However, the multiplicities

bi in those examples with all possible bounded N can’t belong to a dcc set,
in particular, to a finite set by Theorem 3 under the assumption (3) [HLSh,
Theorem 1.6]. Thus the existence of R-complements for every D in (3) of
the theorem is essential.

This section provides a construction of bounded n-complements under
the additional assumption (finiteness).

Maximal lc 0-pairs. Let (X/Z 3 o,D) be a 0-pair, that is, (X,D) is
lc and K + D ∼R 0/Z 3 o. We say that (X/Z 3 o,D) is a maximal lc
0-pair if additionally (X/Z 3 o,D) is the only possible R-complement of
(X/Z 3 o,D). By definition (X/Z 3 o,D) is an R-complement of (X/Z 3
o,D). So, the maximal lc property means that if (X/Z 3 o,D+) is another
R-complement of (X/Z 3 o,D) then D+ = D. By (1) of Definition 1 every
global 0-pair is maximally lc (even it is klt). However, every local maximal
lc 0-pair (X/Z 3 o,D) should have an lc center over o as a point in every
connected component of Xo (cf. Example 1, (3)). Notice that there are no
such nonglobal and nonlocal 0-pairs (X/Z,D).

The same applies to 0-bd-pairs (X/Z 3 o,D + P).
Let d be a nonnegative integer and Γ be a set of boundary multiplic-

ities: Γ ⊆ [0, 1], including 0. The set Γ has bounded rational maximal lc
multiplicities in dimension d if the following set of rational numbers in Γ is
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finite:

Γmax = {b ∈ Γ ∩Q | (X/Z 3 o,B) is a maximal lc 0-pair,

dimX = d,B ∈ Γ ∩Q, and b is a multiplicity of B}.

E.g., 0 ∈ Γmax. Note that this assumption allows any irrational numbers of
[0, 1] in Γ.

The same applies to 0-bd-pairs (X/Z 3 o,B + P) of dimension d with
B ∈ Γ ∩Q and a multiplicity b of B.

Moreover, the finiteness and Boundedness of lc index conjecture (Corollary-
Conjecture 1) imply that there exists a positive integer I = I(d,Γ ∩ Q) de-
pending only on d and Γ such that if (X/Z 3 o,B) is a maximal lc 0-pair in
dimension d with B ∈ Γ ∩ Q then I(K + B) ∼ 0/Z 3 o. For wFt X/Z 3 o
this holds without Boundedness of lc index conjecture by Corollary 31 (or
[B, Theorem 1.7]). We say that I is the rational maximal lc index of 0-pairs
in dimension d with respect to Γ.

The same applies to maximal lc 0-bd-pairs (X/Z 3 o,B + P) of index
m but only for wFt X/Z 3 o (cf. Example 16, Conjectures 1, 3 and Corol-
lary 34).

Example 12. Every dcc subset Γ ⊂ [0, 1] with 0 has bounded rational maximal
lc multiplicities in dimension d under wFt. In general this is expected by
Boundedness of lc index conjecture. In particular, every hyperstandard set
associated to a finite set of rational numbers satisfies the property under wFt.
Indeed, we can suppose that the dcc set Γ is rational. Then Γmax is finite by
[HX] or Corollary 31. Under wFt means that X/Z 3 o in the definition of
Γmax is a wFt morphisms.

The same holds for bd-pairs of index m under wFt.

Construction 9. Let d be a nonnegative integer, I, ε, v, e be the data as in
Restrictions on complementary indices, Φ = Φ(R) be a hyperstandard set
associated with a finite set of rational numbers R in [0, 1] and Γ be a subset
of [0, 1] with finite Γmax. Denote by I(d,Γ ∩ Q) the corresponding rational
maximal lc index. In particular, by Example 12 the finiteness holds and the
index exists under wFt if Γ∩Q is a dcc set as in Theorem 3. We can suppose
also that I = I(d,Γ ∩Q), or equivalently, that I is sufficiently divisible.

By Theorem 16 and Addendum 57 there exists a finite set of positive
integers N = N (d, I, ε, v, e,Φ) such that

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data;
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Existence of n-complement: if (X/Z 3 o,B) is a pair with dimX = d, a
boundary B, wFt X/Z 3 o, connected Xo and with klt type (X/Z 3
o,BN Φ) then (X]/Z 3 o,Bn Φ

]
X]) is a b-n-complement (X/Z 3 o,B+)

for some n ∈ N .

For bd-pairs we add a positive integer m. So, N = N (d, I, ε, v, e,Φ,m)
and replace (X/Z 3 o,B) by a bd-pair (X/Z 3 o,B+P) of dimension d and
of index m|n.

Theorem 17 (Lc type n-complements). Let d,I, ε, v, e,Γ,N = N (d, I, ε, v, e)
be the data as in Construction 9. Then every n ∈ N satisfies Restrictions
on complimentary indices with the given data and

Existence of n-complement: if (X/Z 3 o,B) is a pair with dimX = d, B ∈
Γ, wFt X/Z 3 o, connected Xo and with lc type (X/Z 3 o,B), or
more generally, with an R-complement, then (X/Z 3 o,B) has an n-
complement (X/Z 3 o,B+) for some n ∈ N .

Addendum 61. The same holds for bd-pairs (X/Z 3 o,B + P) of index m
with N = N (d, I, ε, v, e,m). That is,

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data and m|n.

Existence of n-complement: if (X/Z 3 o,B + P) is a bd-pair of index m
with dimX = d, B ∈ Γ, wFt X/Z 3 o, connected Xo and with lc
type (X/Z 3 o,B + P) then (X/Z 3 o,B + P) has an n-complement
(X/Z 3 o,B+ + P) for some n ∈ N .

We do not use Φ in the statement of the theorem (cf. Remark 8 below),
that is, we can take any Φ, e.g., Φ = {1}. However, Φ is hidden in the
proof of Theorem 17. The proof below uses a reduction to the klt type
of Theorem 16 and Addendum 59. An alternative and more right proof is
sketched in Remark 8.

Proof. By construction N is a finite set of positive integers and satisfies
Restrictions.

Let (X/Z 3 o,B) be a pair satisfying the assumptions in Existence of n-
complements. Since B is a boundary, BN Φ is well-defined. By Propositions 1
and 8, (X/Z 3 o,BN Φ) has an R-complement because so does (X/Z 3 o,B).
If the pair (X/Z 3 o,BN Φ) has klt type then the result holds by Theorem 16.
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Otherwise (X/Z 3 o,BN Φ) has lc type. In this case we use approximation
and Theorem 16 again.

Step 1. Reduction to the wlF pair (X]/Z 3 o,BN Φ
]
X]) with a 0-contraction

ψ : (X], BN Φ
]
X])→ Y/Z 3 o

such that

(1]) ψ∗H ∼R −(KX] + BN Φ
]
X]) for some ample over Z 3 o R-divisor H on

Y .

Use Construction 2. We can suppose that the modification ϕ : X 99K X]

is small. So, if n ∈ N gives an n-complement (X]/Z 3 o,B+) of (X]/Z 3
o,BN Φ

]
X]), then the complement induces an n-complement (X/Z 3, B+) of

(X/Z 3 o,BN Φ) by Propositions 3, 1 and 8. On its turn, (X/Z 3, B+) is a
required n-complement of (X/Z 3 o,B) too by Corollary 6.

By construction dimX] = d, X]/Z 3 o has wFt and connected X]
o.

Additionally, (X]/Z 3 o,BN Φ
]
X]) has an R-complement. That is, (X]/Z 3

o,BN Φ
]
X]) satisfies the assumptions of Existence of n-complements except

for BN Φ
]
X] ∈ Γ. To compensate this we verify the following property.

Step 2. (X], BN Φ
]
X] → Y ) has index I over Y 3 P if the 0-contraction

is maximal lc over Y 3 P , in particular, over the generic point of Y . Equiv-
alently, by (6) 7.5 P is an lc center of the adjoint bd-pair (Y,BN Φ

]
div +

BN Φ
]
mod) (see 7.1). So, there exits only finitely many of those points P ∈

Y/Z 3 o. We call them maximal lc. Let P ∈ Y be such a maximal lc
point. By Construction 2 the 0-pair (X]/Y,BN Φ

]
X]) is crepant over Z 3 o

to a 0-pair (X ′/Y,BN Φ,X′) with a boundary BN Φ,X′ being the birational
transform of BN Φ on X ′ by a birational 1-contraction X 99K X ′/Z 3 o.
The maximal lc property is an invariant of crepant models, e.g., since the
adjoint bd-pair does so. Thus (X ′/Y 3 P,BN Φ,X′) is maximal lc. On
the other hand, (X/Z 3 o,B) has an R-complement (X/Z 3 o,B+,R).
Hence (X ′/Z 3 o,B+,R

X′ ) is also an R-complement of (X ′/Z 3 o,BX′), where

B+,R
X′ = B+,R

X′ and BX′ is the birational transform of B on X ′. By construc-

tion and definition B ≥ BN Φ and B+,R
X′ ≥ BX′ ≥ BN Φ,X′ ; (X ′/Z 3 o,B+,R

X′ )
is also an R-complement of (X ′/Z 3 o,BN Φ,X′). Since ∼R over Z 3 o

gives ∼R over Y 3 P for every point P ∈ Y over o, (X ′/Y 3 P,B+,R
X′ )

is an R-complement of (X ′/Y 3 P,BN Φ,X′) too. Notice also that by con-
struction (X ′/Y 3 P,BN Φ,X′) is an R-complement of itself. By the max-

imal lc property over Y 3 P , B+,R
X′ = BX′ = BN Φ,X′ over Y 3 o. Thus
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BX′ = BN Φ,X′ is rational and ∈ Γ over Y 3 o. Therefore by our assump-
tions (X ′/Y 3 P,BN Φ,X′) = (X ′/Y 3 P,B,X′) has index I. Now the require
index property follows from the invariance of index under crepant modifica-
tions.

For simplicity of notation, we denote (X]/Z 3 o,BN Φ
]
X]) by (X/Z 3

o,B). By Step 1 (X/Z 3 o,B) is a wlF pair and has a 0-contraction

ψ : (X,B)→ Y/Z 3 o

such that

(1) ψ∗H ∼R −(K +B) for some ample over Z 3 o R-divisor H on Y .

Additionally, (X/Z 3 o,B) satisfies the assumptions of Existence of n-
complements except for B ∈ Γ. By Step 2 the 0-contraction ψ has index
I locally over the lc centers of (Y,Bdiv +Bmod), including the generic point of
Y . By (6) 7.5 the lc centers of (X,B), including the generic point of X, cor-
respond to that of (Y,Bdiv +Bmod) under ψ. Hence there exists an open non
empty subset U in Y/Z 3 o such that all lc centers of (X,B) are generically
over U and (X,B) is a 0-pair over U of index I. In particular,

(2) (X,B) is klt over Y \ U/Z 3 o; and

(3) all multiplicities b of B over U belong to

[0, 1] ∩ Z
I
.

In Step 4 below we construct an n-complement of (X/Z 3 o,B) for some
n ∈ N .

Step 3. Approximation. There exists a perturbation B′ of the boundary
B such that

(4) (X/Z 3 o,B′) is a klt wlF;

(5) B′ > B over Y \U/Z 3 o (> in every prime divisor ofX over Y \U/Z 3 o);
and

(6) the multiplicities b′ of B′ over U are arbitrary closed to fractions b = l/I
with nonnegative integer l ≤ I.
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Indeed, by (1) we can find and effective R-divisor E ∼R H/Z 3 o on Y over
Z 3 o such that Y \ U ⊆ SuppE locally over Z 3 o. We can suppose also
that E does not pass through the lc centers of (Y,Bdiv + Bmod).

First, we perturb over E: take B1 = B+εψ∗E for sufficiently small ε > 0.
Then we get (5). In (6) b1 = b if b = 1, and in (4) lc instead of klt and even
klt over Y \ U/Z 3 o by (1) and (2).

To make a second approximation we take a boundary B2 on X such that
(X/Z 3 o,B2) is a klt 0-pair. Such a boundary exists because X/Z 3 o has
wFt. By (1-3) and above versions of (4-6), a required perturbation is

B′ = (1− δ)B1 + δB2

for some 0 < δ � 1.
Step 4. Construction of an n-complement of (X/Z 3 o,B). By (4)

and Theorem 16 with Addendum 59, (X/Z 3 o,B′) has an n-complement
(X/Z 3 o,B+) for some n ∈ N . We contend that it is also an n-complement
of (X/Z 3 o,B). For this we need to verify only Definition 2, (1). For the
prime divisors of X over E it follows from (5). For the prime divisors of X
over U it follows from (6) and Lemmas 2, 3. Since N is finite, we can find
δ > 0 such that ‖b′ − l/I‖ < δ ≤ 1/I(n+ 1) for all n ∈ N .

Step 5. The same arguments works for the bd-pairs.

Remark 8. However, more conceptual and precise proof of Theorem 17 should
work as follows. This allows to verify that under the assumptions and nota-
tion of Existence of n-complements of the theorem

(1) (X/Z 3 o,B+) is an n-complement of itself and of (X/Z 3 o,Bn Φ), (X/Z 3
o,Bn Φ

]), and is a b-n-complement of itself and of (X/Z 3 o,Bn Φ), (X/Z 3
o,Bn Φ

]), (X]/Z 3 o,Bn Φ
]
X]), if (X,Bn Φ), (X,Bn Φ

]) are log pairs re-
spectively;

(2) N has a filtration similar to the klt filtration (10.0.9) of Addendum 58
and the existence n-complements agrees the filtration for the class of
pairs under assumptions of Existence of n-complements in the theorem;
and

(3) the bd-pairs can be treated similar to Addendum 60.
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(4) However, in Existence of n-complements of the theorem we can not to
replace (X/Z 3 o,B) by (X/Z 3 o,BN Φ) (because lc type is the top
of types; cf. Addendum 59).

In particular, we use Φ here.
We sketch a construction of an lc type filtration. We consider pairs

(X/Z 3 o,B) under the assumptions of Existence of n-complements of the
theorem. We start from the top, big lc type: (X/Z 3 o,B) has an R-
complement (X/Z 3 o,B+) and B+ − B is big over Z 3 o, equivalently,
−(K +B) is big over Z 3 o (cf. (1) of Proposition-Definition 1). The big lc
type is also lc type of dimension d for d = dimX. Any pair (X/Z 3 o,B)
of big lc type has a maximal model (X]/Z 3 o,BX]) of Construction 2 with
R-ample −(KX] + BX]) over Z 3 o. The model is unique up to an isomor-
phism over Z 3 o and has a unique minimal lc center S by lc connectedness
[Sh03, p. 203] [A14, Theorem 6.3]. So, the lc type d has additional parameter
s = dimS, a nonnegative integer ≤ d. The birational 1-contraction preserves
all multiplicities of B and we denote by BX] the birational transform of B
on X]. In its turn, the finite set of positive integers N d for lc type d of the
lc filtration in (2) has a (deceasing) subfiltration

N d = N (d,0) ⊇ N (d,1) ⊇ · · · ⊇ N (d,d−1) ⊇ N (d,d)

with respect to s. A pair (X/Z 3 o,B) has lc type (d, s) with respect to the
filtration if both pairs

(X/Z 3 o,BN (d,s+1) Φ), (X/Z 3 o,BN (d,s) Φ)

have lc type (d, s). The corresponding (b-)n-complement of type (d, s) for
some n ∈ N(d,s) = N (d,s) \ N (d,s+1) is extended from an (b-)n-complement of
an adjoint bd-pair on (S]/Z 3 o,Bn N (d,s+1)

]
div +Bn N (d,s+1)

]
mod) of dimension

s. The adjoint bd-pair has generic klt type and a finite set of positive numbers
N(d,s) = N (d, I, ε, v, e, Φ̃′, I) exists by Addendum 60. So, it looks that we
do not need the assumption B ∈ Γ. No, we use the assumption for the
log adjunction on S] for s ≤ d − 2 (in codimension ≥ 2). Indeed, such an
adjunction (after a dlt or better log resolution) is a sequence of adjunctions
on divisors as in 7.6 concluding by an adjunction for a 0-contraction as in 7.1.
The last adjunction has index I = I(d,Γ∩Q) that can be verified as in Step 2
in the proof of Theorem 17. For this we use lc type property of (X/Z 3 o,B)

and the assumption that B ∈ Γ. Respectively, in general we change Φ into Φ̃
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by (7.6.1) for adjunctions on divisors and, finally, into Φ̃′ by Addendum 35
for the adjunction of the 0-contraction. In the reverse direction, first we lift
n-complements by Theorem 10. Then we extend them by induction and by
Theorem 11. During the extension we glue these complements on the reduced
divisors of a dlt or log resolution and, finally, extend on X.

Notice that the subfiltration starts from N (d,d) and N (d,d+1) = ∅ or N ′ as
in Addendum 58. Type (d, d) is generic klt type with the minimal lc center

S = X,S] = X] and Φ instead of Φ̃′. However, the previous type (d, d − 1)
is lc type but it is plt with the divisorial minimal lc center S, S], a reduced
divisor of Bn N (d,d) , Bn N (d,d)

] respectively and Φ̃ instead of Φ̃′. The starting
type (d, 0) has S] = pt., a closed point and N d = N (d,0).

After that we continue with lc type of dimension i ≤ d − 1, where the
0-contraction (X], B]

X]) → Y/Z 3 o is fibered and dimY = i. By (8)
of 7.5 the adjoint bd-pair has lc type but in general without index because
B may have real horizontal over Z 3 o multiplicities. Unfortunately, a
straightforward reduction to dimension i does not work because does not
preserve the assumption B ∈ Γ and not preserve Γ. However, the index I is
preserved for 0-contractions

(X], Bn N (i,s+1) Φ
]
X]),→ Y/Z 3 o, n ∈ N(i,s) = N (s,i) \ N (i,s+1),

where type (i, s) is the filtration lc type with i = dimY, s = dimS and S
is a minimal lc center of the adjoint bd-pair on Y . The types are ordered
lexicographically. E.g., lc type (d− 1, d− 1) precede to lc type (d, 0); in this
case dimY = d − 1, the adjoint bd-pair is generic klt and the adjunction
index is I = I(d,Γ ∩ Q). In this case we can construct n-complements by
Addendum 60 and Theorem 10. In general construction of n-complements is
more involved but extend the construction for types (d, s): first we construct
a (b-)n-complement on Y and then lift it to X].

The bottom lc type (0, 0) has only global pairs with S, S] = pt. and
amounts the special global case of Corollary 31.

In particular, Theorem 17 can be applied to any dcc set Γ ⊂ [0, 1] by
Example 12. Moreover, under the dcc assumption on Γ in Theorem 17 and
in the remark we can suppose that

(5) N has a single element, or equivalently, there exists a positive integer
n = n(d, I, ε, v, e) such that Existence of n-complements holds for this
n [HLSh, Theorem 1.6].
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Indeed, all n-complements are coming from the exceptional case. By 6.10
and a similar fact for adjunction on a divisor, we can suppose that the ex-
ceptional pairs also have boundaries with dcc multiplicities. Actually in this
situation (and even in general) increasing multiplicities we can suppose that
the boundary multiplicities form a finite set [HLSh, Theorem 5.20]. Then we
can find a single complementary index n (cf. [B, Theorem 1.7]).

The same works for bd-pairs.
Similar results expected for a-lc complements and not only under wFt (cf.

Conjecture 5 below). One of crucial pieces – Corollary 31, the boundedness
of lc index, - does not hold in general for maximal a-lc 0-pairs but may hold
under slightly stricter assumption (cf. Addendum 90).

Affine maps to divisors. Let Rr be a finite dimensional R-linear space
and X be an algebraic variety or space. An affine map A into R-divisors of
X is a map

A : Rr →WDivRX

which is R-linear for every multiplicity of R-divisors. That is, for every prime
divisor P on X, there exist real numbers aP , aP,1, . . . , aP,r such that, for every
point (x1, . . . , xr) ∈ Rr,

multP A(x1, . . . , xr) = aP +
r∑
i=1

aP,ixi. (11.0.10)

The map A is Q-affine if all aP , aP,i ∈ Q. The hight of such a Q-affine map
A is

h(A) = max{h(aP ), h(aP,i)},
where h(a) is the usual hight of a ∈ Q. The boundedness of h(A) does
not imply the finiteness of maps A but the finiteness of their linear compo-
nents (11.0.10). More generally, the finiteness holds if A ∈ A, where A is
finite set of real numbers and A ∈ A means that every aP , aP,i ∈ A.

Construction 10. Let d be a nonnegative integer, I, ε, v, e be the data as in
Restrictions on complementary indices, A be a finite set of real numbers and
∆ be a compact subset, e.g., a compact polyhedron, in a finite dimensional
R-linear space Rr.

For every x ∈ Rr, the set of real numbers

Γ(x) = Γ(x,∆,A) = {a+
r∑
i=1

aixi | a, a1, . . . , ar ∈ A} ∩ [0, 1]
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is finite. Hence Γ(x) satisfies the assumption of Construction 9: Γ(x)max is
finite too. Let I(x) = Γ(d,Γ ∩Q) be the corresponding rational maximal lc
index. Additionally, we can suppose that I|I(x).

By Theorem 17 there exists a finite set of positive integers N (x) =
N (d, I(x), ε, v, e) such that

Restrictions: every n ∈ N (x) satisfies Restrictions on complementary indices
with the given data;

Existence of n-complement: if (X/Z 3 o,B) is a pair with dimX = d, B ∈
Γ(x), wFt X/Z 3 o, connected Xo and with lc type (X/Z 3 o,B) then
(X/Z 3 o,B) has an n-complement (X/Z 3 o,B+) for some n ∈ N (x).

Additionally, by Lemma 13 below with Γ = Γ(x) and N = N (x) there
exists a positive real number δ(x).

By the finiteness of linear functions L(y1, . . . , yr) = a+
∑r

i=1 aiyi, a, a1, . . . , ar ∈
A, there exists an open neighborhood U(x) of x in Rr such that for every
those function L and (y1, . . . , yr) in U

‖L(x1, . . . , xr)− L(y1, . . . , yr)‖ < δ(x).

Finally, since ∆ is compact there exists a finite covering

∆ ⊂
⋃
j

U(xj), xj = (xj1, . . . , x
j
r) ∈ ∆.

Respectively, consider

N = N (d, I, ε, v, e) =
⋃
j

N (xj) =
⋃
j

N (d, I(xj), ε, v, e).

Thus

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data.

For bd-pairs we add a positive integerm. So,N = N (d, I, ε, v, e,m),N (x) =
N (d, I(x), ε, v, e,m) and m|n ∈ N ,N (x).

Theorem 18 (Lc type n-complements with A). Let d,I, ε, v, e,∆,A,N be
the data as in Construction 10. Then every n ∈ N satisfies Restrictions on
complimentary indices with the given data and
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Existence of n-complement: if (X/Z 3 o,B) is a pair with dimX = d,
wFt X/Z 3 o, connected Xo and such that there exists an affine map
A : Rr →WDivRX, where A ∈ A,

A(∆) ⊆ CR ∩D+
R = {D ∈WDivRX | (X/Z 3 o,D) has an R−complement and D ≥ 0}

and B ∈ A(∆), then (X/Z 3 o,B) has an n-complement (X/Z 3
o,B+) for some n ∈ N .

Addendum 62. The same holds for bd-pairs (X/Z 3 o,B + P) of index m
with N = N (d, I, ε, v, e,m). That is,

Restrictions: every n ∈ N satisfies Restrictions on complementary indices
with the given data and m|n.

Existence of n-complement: if (X/Z 3 o,B+P) is a bd-pair of index m with
dimX = d, wFt X/Z 3 o, connected Xo and such that there exists an
affine map A : Rr →WDivRX, where A ∈ A,

A(∆) ⊆ CRP∩D+
R = {D ∈WDivRX | (X/Z 3 o,D+P) has an R−complement and D ≥ 0}

and B ∈ A(∆), then (X/Z 3 o,B + P) has an n-complement (X/Z 3
o,B+ + P) for some n ∈ N .

The proof uses the following.

Lemma 13 (Approximation of n-complements). Let Γ be a finite subset in
[0, 1] and N be a finite set of sufficiently divisible positive integers: nb ∈ Z for
every n ∈ N and rational b ∈ Γ. Then there exists a positive real number δ
with the following approximation property. If (X/Z,B+) is an n-complement
of (X/Z,B) with B ∈ Γ with n ∈ N , B ∈ Γ and D is a subboundary on X
such that ‖B −D‖ < δ then (X/Z,B+) is also an n-complement of (X/Z,D).

Addendum 63. Let Φ = Φ(R) be a hyperstandard set associated with a
finite set of rational numbers R in [0, 1]. Suppose additionally that D is a
boundary. Then every b-n-complement (X/Z,B+) of (X/Z,Bn Φ) is also a
b-n-complement of (X/Z,Dn Φ) if (X,Bn Φ), (X,Dn Φ) are log pairs.

Addendum 64. The same holds for bd-pairs (X/Z,B + P), (X/Z,D + P)
of index m|n with the same b-divisor P.
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Proof. Immediate by definition and Lemmas 2, 3. Actually, we need to verify
only that (1) of Definition 2 for B+ with respect to B implies that of with
respect to D (cf. Proposition 7). For rational b, we use Lemmas 2, 3. (The
case with d ≤ b = 0 is easy to add to Lemma 2.) For irrational b, we can use
the continuity of b(n+ 1)dc /n in a neighborhood of b.

To prove Addendum 63 it is sufficient to verify that Dn Φ ≤ Bn Φ under
our assumptions. This follows from definition and Corollary 4.

Similarly we can treat bd-pairs.

Proof of Theorem 18. Restrictions on complementary indices hold by Con-
struction 10.

Let (X/Z 3 o,B) be a pair under the assumptions of Existence of n-
complements in the theorem and A : Rr → WDivRX be a corresponding
affine map. By our assumptions B = A(x) for some x ∈ ∆. On the other
hand, by Construction 10, x ∈ U(xj), where xj ∈ ∆ and∥∥A(xj)−B

∥∥ < δ(xj).

Again by Construction 10 (X/Z 3 o, A(xj)) has an n-complement (X/Z 3
o,B+) for some n ∈ N (xj). Indeed, (X/Z 3 o, A(xj)) satisfies the as-
sumptions of Existence of n-complements in Construction 10. In particular,
(X/Z 3 o, A(xj)) has an R-complement or lc type because A(xj) ∈ CR by
our assumptions. This with A(xj) ≥ 0 implies that A(xj) is a boundary and
∈ Γ(xj) (cf. Remark 1,(1)).

Finally, (X/Z 3 o,B+) is also an n-complement of (X/Z 3 o,B) by
Construction 10 and Lemma 13.

Similarly we can treat bd-pairs.

Remark 9. (1) Actually Existence of n-complements in Theorem 18 holds for
a slightly large set of B because the covering of ∆ is larger than ∆ itself.

(2) For an analog of Remark 8 and Theorem 18 we can use the remark
and Addendum 63. In this situation under the assumptions of Existence
of n-complements of Theorem 18, (X/Z 3 o,B+) is a b-n-complement of
(X/Z 3 o,Bn Φ)) too, if (X,Bn Φ) is a log pair. Actually, in the proof it is
better to take a Q-factorialization at the begging.

The same works for bd-pairs.
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Proof of Theorems 3 and 4. The theorem under the assumption (1) is imme-
diate by Theorem 16 and Addendum 59.

For the assumption (2) we can use Theorem 18 with an appropriate set
of real numbers A. The P -component (11.0.10) of a map A in this case has
aP = 0, aP,i = multP Di, i = 1, . . . , r, nonnegative integers. By definition, for
(d1, . . . , dr) ∈ Rr,

A(d1, . . . , dr) =
r∑
i=1

diDi and multP A(d1, . . . , dr) =
r∑
i=1

aP,idi.

On the other hand, for (d1, . . . , dr) ∈ ∆, all di ≥ 0 and
∑r

i=1 aP,idi ≤ 1 hold
by our assumptions. Hence we can suppose that all numbers aP,i belong to
a finite set A, including 0. Indeed, if aP,i � 0 then every di = 0 and we can
take aP,i = 0.

Theorem 3 under the assumption (3) is immediate by Theorem 17 and
Example 12.

To prove Addendum 1 we can consider in our dimensional induction si-
multaneously a bounded number of lc centers, e.g., in Lemma 12 with non-
connected Xo a required plt model for every connected component of Xo.
Equivalently, we can prove Theorem 3 relaxing the assumption that X is
irreducible but assuming that X has a bounded number of irreducible (con-
nected) components Xi and dimX = max dimXi. All (b-)n-complements are
coming from the exceptional one of bounded dimension. So, we add also the
boundedness of components of the exceptional pairs or consider exceptional
pairs with bounded number of irreducible (connected) components. Notice
that in the proof of Theorem 7 we use only boundedness of exceptional pairs
but not their irreducibility. Since we are working with algebraic spaces X
too, it is possible to use an appropriate étale neighborhood (a branch) for
every connected component of Xo. We can take the same n-complements for
isomorphic neighborhoods. Thus it is to count only nonisomorphic neighbor-
hoods.

Similarly we can treat bd-pairs.
To prove Addendum 2, for a global pair (X,B), we use the invariance of

H0 with respect to the algebraic closure. The connectedness of X0 depends
on the algebraic closure but independent modulo conjugation of the closure.
Thus after taking the algebraic closure we can use Addendum 1. Note also
that existence of an n-complement means existence of an element B in a
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linear system
|−nK − nS − b(n+ 1)(B − S)c|

such that (X,B+) is lc, where S = bBc, the reduced part of B, and

B+ = B +
1

n
(b(n+ 1)(B − S)c+B)

[Sh92, after Definition 5.1]. Thus B should be sufficiently general in the
Zariski topology. If such element exists over the algebraic closure k, it exists
also over k because k is infinite (cf. Example 1, (5)).

The same arguments work for global G-pairs assuming that n is suffi-
ciently divisible. Indeed, we can suppose that a canonical divisor K of X is
G-semicanonical: |G|K is G-invariant.

Similarly we can treat nonglobal pairs and G-pairs.

In dimension 1 such subtleties are not need.

Example 13 (n-complements in dimension 1). Theorem 3 for dimX = 1 holds
for every pair (X/Z,B), without the local (with unbounded number of leaves
for X/Z), wFt and connectedness of Xo assumptions. Any such a local pair
with a boundary B has an R-complement and n-complement for any positive
integer n satisfying Restrictions on complementary indices.

In the global case we suppose existence of an R-complement instead of (1)
in Theorem 3 (cf. Example 3).

The global case with X = E, a curve of genus 1, is also trivial: B+ =
B = 0 and n is any positive integer satisfying Restrictions as above.

So, the main interesting case as in Example 3 concerns global pairs (P1, B)
with B =

∑
i≥1 biPi, 1 ≥ b1 ≥ b2 ≥ · · · ≥ bi ≥ · · · ≥ 0 and

∑
i≥1 bi ≤ 2.

However this time to exclude points Pi with small bi we use our general
approach with low approximations but, for simplicity, without Restrictions
on complementary indices.

Lc type: b1 = 1 and B has at most two points Pi with bi = 1. In this
case, (P1, B) has 1-complement, except for,

(P1, P1 +
1

2
b2 +

1

2
b3).

The pair is a 2-complement of itself.
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Generic pairs : every bi < 1 and
∑

i≥2 bi < 1. In this case we have again
a 1-complement by an elementary computation (cf. Theorem 11). Moreover,
we can suppose that (P1, B1) has generic type where B1 is the approximation
of B with Γ(1, ∅) = {0, 1/2, 1}. (For Φ = ∅, we take an abridged set of
multiplicities, in Hyperstandard sets of Section 3, with only l = 1.) So,
(P1, B1) is generic only for

B1 =


0, if 1/2 > b1

1
2
P1, if b1 ≥ 1/2 > b2

1
2
P1 + 1

2
P2, if b2 ≥ 1/2 > b3.

In all these cases (P1, B) has a 1-complement.
Semiexceptional pairs : (P1, B1) with

B1 =

{
1
2
P1 + 1

2
P2 + 1

2
P3, if b3 ≥ 1/2 > b4

1
2
P1 + 1

2
P2 + 1

2
P3 + 1

2
P4, if b1 = b2 = b3 = b4 = 1/2 and b5 = 0.

In the last case

(P1,
1

2
P1 +

1

2
P2 +

1

2
P3 +

1

2
P4)

is a 2-complement of itself.
Thus we need to construct n-complements only in the case

B1 =
1

2
P1 +

1

2
P2 +

1

2
P3.

The pair (P1, B1) has the semiexceptional type (0, 0) and this is the top
type with the next generic type. The previous type (−1,−) is exceptional.
According to our general approach we need to extend the set N ′ = {1}
to another set of positive integers N (0,0) (see Semiexceptional filtration in
Section 8). For simplicity consider N(0,0) = {2},N (0,0) = {1, 2} and Φ = ∅.
Then Γ({1, 2}, ∅) = {0, 1/3, 1/2, 2/3, 5/6, 1}. For the last set of boundary
multiplicities (P1, B{1,2}) is again semiexceptional but not exceptional only
for

B{1,2} =


1
2
P1 + 1

2
P2 + 1

2
P3, if 2/3 > b1 ≥ b3 ≥ 1/2 and 1/3 > b4

2
3
P1 + 1

2
P2 + 1

2
P3, if 5/6 > b1 ≥ 2/3 > b2 ≥ b3 ≥ 1/2 and 1/3 > b4

5
6
P1 + 1

2
P2 + 1

2
P3, if b1 ≥ 5/6, 2/3 > b2 ≥ b3 ≥ 1/2 and 1/3 > b4.
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In all three cases (P1, B) has a 2-complement by a direct computation (cf.
Theorem 12).

Exceptional pairs : (P1, B{1,2}) with B{1,2} ∈ {0, 1/3, 1/2, 2/3, 5/6, 1} form
a bounded family. As in Example 3 we can join all small multiplicities bi <
1/3 to b1 (or to any other bi ≥ 1/3; cf. Step 7 of the proof of Theorem 7).
The new (X,B) will have also exceptional (P1, B{1,2}) (possibly with different
B{1,2}). Moreover, B = b1P1 + b2P3 + b3P4, except for, B with

B{1,2} =
2

3
P1 +

1

2
P2 +

1

2
P3 +

1

3
P4.

In this case (P1, B) is a 6-complement of itself (and has also a 4-complement).
In all other cases B = b1P1 + b2B2 + b3P3 and (P1, B{1,2}) is exceptional.

In these cases we can find a finite set of small complementary indices, e.g.,
{3, 4, 6} as in [Sh92, Example 5.2]. Or we can find a finite set of complemen-
tary indices satisfying Restrictions using Theorem 7 or [Sh95, Example 1.11].

12 Applications

Inverse stability for R-complements. Let (X/Z,D) be a pair and ε be
a positive integer. We say that the inverse stability for R-complements holds
for (X/Z,D) if, for every boundary B on X such that ‖B −D‖ < ε and
under certain additional assumptions, the existence of an R-complement for
(X/Z,B) implies that of for (X/Z,D).

The same definition works for bd-pairs (X/Z,B+P), (X/Z,D+P), that
is, we compare only the divisorial parts B,D.

Theorem 19. Let d, h, l be nonnegative integers and v ∈ Rl be a vector.
Then there exists a positive real number ε such that, for every

Q-affine map A : Rl →WDivRX of the height not exceeding h; and

pair (X/Z 3 o,B) with wFt X/Z 3 o, dimX = d, a boundary B with
‖B − A(v)‖ < ε and under either of the (additional) assumptions (1-
3) of Theorem 3,

the inverse stability for R-complements holds for (X/Z 3 o, A(v)).

Notice that we do not suppose that Xo is connected.
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Addendum 65. We can assume that B is given locally over Z 3 o (even in
the étale topology) near every connected component of Xo.

Addendum 66. A(v) is a boundary.

Addendum 67. There exists a neighborhood U of v in 〈v〉 such that, for
every vector u ∈ U , A(u) is a boundary and (X/Z 3 o, A(u)) has an R-
complement.

Addendum 68. The same holds for bd-pairs (X/Z 3 o, A(v) + P), (X/Z 3
o,B + P) of index m with ε depending also on m.

Corollary 21 (Direct stability for R-complements; cf. [N, Theorem 1.6]
[HLSh, Theorems 5.6 and 5.16]). Under the assumptions and notation of
Theorem 19 there exists a neighborhood U of v in 〈v〉 such that if A(v) is a
boundary and (X/Z 3 o, A(v)) has an R-complement and additionally either
of the assumptions (1-3) of Theorem 3 holds for (X/Z 3 o, A(v)) then, for
every vector u ∈ U , A(u) is a boundary and (X/Z 3 o, A(u)) has an R-
complement.

The same holds for bd-pairs of index m (X/Z 3 o, A(v) + P).

Proof. Take U as in Addendum 67 and apply Theorem 19 with the addendum
to B = A(v).

Similarly we can treat bd-pairs.

Corollary 22 (n-complements vs R-complements). Let (X/Z 3 o,B) be a
pair with wFt X/Z 3 o and a boundary B. Then (X/Z 3 o,B) has an
R-complement under either of the following assumptions:

Weak version: (X/Z 3 o,B) has n-complements for infinitely many positive
integers n; or

Strong version: (X/Z 3 o,B) has an n-complements for one but sufficiently
large positive integer n.

The same holds for bd-pairs (X/Z 3 o,B + P) of index m.

Proof. Weak version. Immediate by Theorem 1.
Strong version. Immediate by the closed rational polyhedral property of

Theorem 6 and by the proof of Theorem 1.
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Alternatively, we can use Theorem 19 instead of Theorem 6. Indeed,
according to the proof of Theorem 1 there exists a sequence of positive in-
tegers ni and of rational boundaries Bi = B[ni], i = 1, 2, . . . , on X such
that B = limi→∞Bi, limi→∞ ni = +∞ and every pair (X/Z 3 o,Bi) has
an R- and monotonic ni-complement. For ε of Theorem 19 and i such
that ‖Bi −B‖ < ε, n = ni works. We apply the inverse stability for R-
complements to A(v) = B =

∑
bjDj, v = (bj), and B = Bi.

Similarly we can treat bd-pairs.

Theorem 20 (Inverse stability for n-complements). Let n be a positive in-
teger and µ be a positive real number. There exists a positive real number δ
such that if

(X/Z,B) is a pair with a boundary B, having an n-complement, and

D is a Q-divisor on X such that nD is an integral Weil divisor, ‖D −B‖ <
δ/n and every positive multiplicity d of D is ≥ µ

then (X/Z,D) has an n-complement.

Addendum 69. D is a boundary.

Addendum 70. If (X/Z,B+) is an n-complement of (X/Z,B) then (X/Z,B+)
is also an n-complement of (X,D).

Addendum 71. Any n-complement of (X/Z,D) is monotonic.

Addendum 72. We can take any positive real number δ ≤ µn/(n+ 1)] and
1.

Addendum 73. For µ > 1, D = 0 and the theorem is trivial. For µ ≤ 1, we
can take any positive real number δ ≤ µn/(n+1). in particular, 0 < δ ≤ µ/2
independent of n.

Addendum 74. The same holds for bd-pairs (X/Z 3 o,B + P), (X/Z 3
o,D + P), (X/Z,B+ + P) of index m|n.

Proof. It is enough to verify Addendum 70. By Definition 2, it is enough to
verify (1) of the definition.
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Let P be a prime divisor on X. Put d = multP D and b+ = multP B
+.

We need to verify that

b+ ≥

{
1, if d = 1;

b(n+ 1)dc /n otherwise.

Take δ of Addendum 72.
Step 1. Addendum 69. D is a boundary, that is, d ∈ [0, 1]. Moreover,

d = 0 or ≥ µ. By our assumptions d = m/n, where m ∈ Z, and

d < b+
δ

n
≤ 1 +

1

n
,

where b = multP B. Hence m < n + 1 and, moreover, ≤ n, that is, d ≤ 1.
Similarly, m ≥ 0 and d ≥ 0 because b ≥ 0.

Thus if d 6= 0 then d is positive and ≥ µ by our assumptions. This implies
Addendum 73. Indeed, for µ > 1, D = 0 ≤ B and the theorem follows from
Proposition 1.

Step 2. Addendum 71 follows from Example 5, (2).
Step 3. Case d ≤ b. For b < 1, follows from (1) of Definition 2 for B and

the monotonicity of b c: d < 1 and

b(n+ 1)dc /n ≤ b(n+ 1)bc /n ≤ b+.

Otherwise, b = b+ = 1, d ≤ 1 = b+ and the required inequality holds by
definition.

Step 4. Case d > b. In this case d > 0 and ≥ µ because b ≥ 0. Since
‖d− b‖ < δ/n holds,

b > d− δ

n
≥ d− µn

(n+ 1)n
= d− µ

n+ 1
.

By Step 1, d ≤ 1 and µ ≤ 1 (cf. Addendum 73). Moreover, if µ = 1 then
d = 1, 1− 1/(n+ 1) = n/(n+ 1) < b < 1 and

b+ ≥ b(n+ 1)bc /n = 1 = d.

Otherwise, µ < 1 and by our assumptions d = m/n ≥ µ, where m is
integer and 1 ≤ m ≤ n.
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If d < 1 then again Example 5, (2) gives the required inequality

b+ ≥ b(n+ 1)bc /n ≥
⌊
(n+ 1)(

m

n
− µ/(n+ 1))

⌋
/n =⌊

m+
m

n
− µ

⌋
/n =m/n+ bd− µc /n = m/n = d = b(n+ 1)dc /n.

If d = 1 then
b+ ≥ b(n+ 1)bc /n = 1 = d

because n/(n+ 1) < b < 1 as above.
Similarly we can treat bd-pairs.

Proof of Theorem 19. We will chose ε below.
Step 1. Renormalization of v and I. We can suppose that every A

has integral (Z-matrix) linear part. For this we change the standard basis
(1, 0, . . . , 0), . . . , (0, 0, . . . , 1) of Rl by (N, 0, . . . , 0), . . . , (0, 0, . . . , N) for suffi-
ciently divisible positive integer N . Then we need to increase the height h
and replace the vector v by v/N .

In this step we can chose a positive integer I such that IA is integral,
equivalently, for every constant c of A, Ic is an integer. Hence nA(w) is
integral if w ∈ Ql, nw ∈ Zl and I|n.

Step 2. Choice of µ. Since the height of A is bounded by h, every
multiplicity a = multP A(v) in prime P has the form

a = c+
l∑

i=1

aivi,

where ai ∈ Z, ‖ai‖ ≤ h, c ∈ Q, Ic ∈ Z, [remark: we need bounded hight of
c only to bound the denominators of c] and v = (v1, . . . , vl). Hence the set
of those multiplicities a is finite and there exists µ > 0 such that a ≥ µ if
a > 0. Indeed, the constant terms c belong to a finite set, e.g., because by
our assumptions

‖b− a‖ =

∥∥∥∥∥b− c−
l∑

i=1

aivi

∥∥∥∥∥ < ε

and b ∈ [0, 1]. This implies also Addendum 66, if ε is sufficiently small. We
suppose that µ is also sufficiently small, e.g., µ ≤ 1.
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Note also that for any two vectors w1, w2 ∈ Rl,

‖A(w1)− A(w2)‖ ≤ hl ‖w1 − w2‖ .

Step 3. Rational case. For rational v, 〈v〉 = v. In this case we can
suppose that A is constant, e.g., all ai = 0. Then Theorem 20 implies the
required stability for n sufficiently divisible and sufficiently small ε. The
n-complement is monotonic for (X/Z 3 o, A(v)) by Addenda 71.

So, we suppose below that v is irrational. Thus r = dim 〈v〉 ≥ 1 and
l ≥ r ≥ 1. Notice that by definition h ≥ 1 because otherwise there are no A.

Step 4. Choice of directions e0, . . . , er in 〈v〉. Take r+ 1, r = dim 〈v〉, di-
rections ei, i = 0, . . . , r, in 〈v〉 such that 0 is inside of the simplex [e0, e1, . . . , er].
For rather small µ, if every ‖e′i − ei‖ ≤ µ, for any other directions e′0, e

′
1, . . . , e

′
r

in 〈v〉, then [e′0, e
′
1, . . . , e

′
r] is also a simplex with 0 inside of it.

Step 5. Choice of complementary indices. For i = 0, 1, . . . , r, there exists
a finite set of positive integers

Ni = N (d, I, µ/8hl, v, ei).

By Theorem 3 under either of assumptions (1-3) of the theorem, there exists
such a finite set.

Step 6. Choice of ε. We can take ε ≤ µ/8n for every i = 0, 1, . . . , r and
n ∈ Ni.

Indeed, let B be a boundary on X such that

(4) ‖B − A(v)‖ < ε.

Then under other assumptions of Theorem 19 and either of assump-
tions (1-3) of Theorem 3, for every i = 0, 1, . . . , r, by Theorem 3 (X/Z 3 o,B)
has an ni-complement (X/Z 3 o,B+

i ) with ni ∈ Ni. By Restrictions of The-
orem 3 we have also approximations wi ∈ 〈v〉 such that

(5) niwi ∈ Zl;

(6) ‖wi − v‖ < µ/8hlni; and

(7) ∥∥∥∥ wi − v
‖wi − v‖

− ei
∥∥∥∥ < µ/8hl ≤ µ.
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By Theorem 20 there exist R-complements (X/Z 3 o,B+
i ) of (X/Z 3

o,Di), where Di = A(wi).
Indeed, by (5) and Step 1 niDi is integral because I|ni.
By (6) and Step 2,

(8) ‖A(v)−Di‖ < hlµ/8hlni = µ/8ni ≤ µ/8.

In particular, this implies that if multP A(v) = 0 for a prime divisor P on X,
then multP Di = 0 too because ni multP Di is integral but µ/8ni ≤ 1/8ni < 1
for µ ≤ 1. Otherwise, multP A(v) ≥ µ and by (8) multP Di ≥ µ − µ/8 =
7µ/8 ≥ µ/2. Again by (8) and (4),

‖Di −B‖ ≤ ‖B − A(v)‖+ ‖A(v)−Di‖ < µ/8ni + µ/8ni = µ/4ni.

Thus the inversion of Theorem 20 holds for (X/Z 3 o,Di) with µ/2 instead of
µ and δ = µ/4 by Addendum 73. So, (X/Z 3 o,Di) has an ni-complement.
It is monotonic by Addendum 71. Hence every (X/Z 3 o,Di) has an R-
complement too.

Step 7. Conclusion. By the convexity of Theorem 6 we need to verify that
A(v) belongs to [D0, D1, . . . , Dr]. In its turn, this follows from the inclusion
v ∈ [w0, w1, . . . , wr].

By Step 4 and (7)

0 ∈ [
w0 − v
‖w0 − v‖

,
w1 − v
‖w1 − v‖

, . . . ,
wr − v
‖wr − v‖

].

Since the denominators ‖wi − v‖ are positive, there exist positive real num-
bers ν0, ν1, . . . , νr such that

ν0(w0 − v) + ν1(w1 − v) + · · ·+ νr(wr − v) = 0 and
r∑
i=0

νi = 1.

Hence v = ν0wo + ν1w1 + · · ·+ νrwr which gives the required inclusion.
We were cheating a little bit. The previous proof works only if Xo is

connected. Now we make
Step 8. General case and Addendum 65. (Cf. Proposition 9) Suppose

that (X/Z 3 o, A(v)) does not have R-complement. We can assume that
X is Q-factorial. Otherwise we replace X by its Q-factorialization. Again
(X/Z 3 o, A(v)) does not have R-complement. We can suppose that X/Z 3 o
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has Ft, in particular, is projective. Otherwise we use a small modification of
Lemma 1. Still (X/Z 3 o, A(v)) does not have R-complement.

The pair (X/Z 3 o, A(v)) is lc. Otherwise (X/Z 3 o, A(v)) is not lc near
some connected component of X0 and does not have an R-complement near
this component. This is impossible by the connected case.

The divisor −(K + A(v)) is not nef. Otherwise (X/Z 3 o, A(v)) has
R-complement. So, we can apply −(K + A(v))-MMP as in Construction 2.
This preserves the R-complements by Proposition 8. Thus after finitely may
steps [ShCh, Corollary 5.5] we have an extremal contraction X/Y/Z 3 o
which is positive with respect to K + A(v). The transformations preserve
connected components of Xo. So, the initial model (X/Z 3 o, A(v)) does not
have an R-complement near the connected component of Xo corresponding
to the connected component with the nearby fibration. This is impossible by
the connected case.

Step 9. Addendum 67. Immediate by Step 7 and the convexity of Theo-
rem 6: U is a neighborhood of v in [w0, w1, . . . , wr] ⊂ 〈v〉.

Similarly we can treat bd-pairs with the assumptions (1-3-bd) of Theo-
rem 4.

R-complement thresholds. Let (X/Z,D) be a pair such that it has an
R-complement and F > 0 be an effective R-divisor on X. Then the following
threshold

R-clct(X/Z,D;F ) = sup{t ∈ R | (X/Z,D + tF ) has an R− complement}

is a nonnegative real number and well-defined. If X/Z has wFt then we
can use the maximum instead of the supremum by the closed property in
Theorem 6. The threshold will be called the R-complement thereshold of F
for (X/Z,D).

The same definition works for a bd-pair (X/Z,D + P) and gives the
threshold R-clct(X/Z,D + P ;F ).

Theorem 21. Let d be a nonnegative integer and Γb,Γf be two dcc sets of
nonnegative real numbers. Then the set of thresholds

{R-clct(X/Z,B;F ) | dimX = d,X/Z has wFt, B ∈ Γb and F ∈ Γf}

satisfies the acc.
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Addendum 75. Instead of B ∈ Γb, F ∈ Γf , we can suppose that B =∑
biEi, Fi =

∑
fiEi, where Ei are effective Weil Z-divisors and bi ∈ Γb and

fi ∈ Γf .

Addendum 76. The same holds for bd-pairs (X/Z,B +P) of index m and
the set of corresponding thresholds depends also on m.

Actually, the set of R-complement thresholds is a union of two well-known
sets of thresholds.

Lemma 14. Let (X/Z,D) be a pair with wFt X/Z and F be an effective and
6= 0 divisor on X. Then

R-clct(X/Z,D;F ) =

{
lct(X ′ 3 o′, D′;F ′) = R-clct(X ′ 3 o′, D′;F ′) or

act(X ′′/o′′, D′′;F ′′) = R-clct(X ′′/o′′, D′′;F ′′)
,

where lct, act are respectively log canonical and anticanonical thresholds;
X ′, X ′′ are Q-factorial of dimension ≤ dimX, ρ(X ′′) = 1, X ′ 3 o′, X ′′ are
Ft and o′, o′′ are closed points; the multiplicities of D′, D′′ and of F ′, F ′′ are
respectively multiplicities of D and of F . In particular, if D ∈ Γd, F ∈ Γf
then D′, D′′ ∈ Γd, F

′, F ′′ ∈ Γf respectively.
Conversely, lct(X ′ 3 o′, D′;F ′) = R-clct(X ′ 3 o′, D′;F ′) and act(X ′′/o′′, D′′;F ′′) =

R-clct(X ′′/o′′, D′′;F ′′) = a if (X ′′, D′′ + aF ′′) is lc.
The same holds for bd-pairs:

R-clct(X/Z,D;F+P) =

{
lct(X ′ 3 o′, D′;F ′ + P ′) = R-clct(X ′ 3 o′, D′;F ′ + P ′) or

act(X ′′/o′′, D′′;F ′′ + P ′′) = R-clct(X ′′/o′′, D′′;F ′′ + P ′′).

Additionally, the bd-pairs (X ′ 3 o′, D′;F ′ + P ′), (X ′′/o′′, D′′;F ′′ + P ′′) have
index m if (X/Z,D + P) has index m.

Proof. Put t = R-clct(X/Z,D;F ). We assume that t ≥ 0 and is well-defined.
Step 1. We can suppose that X is Q-factorial and Ft. Taking a Q-

factorialization Y → X, we reduce the proof to the Q-factorial case by
Proposition 3.

Below we assume that X is Q-factorial. By Lemma 1 we can suppose
also that X/Z is Ft, in particular, projective over Z.

Step 2. We can suppose that (X,D + tF ) is klt over SuppF , that is,
the lc centers of (X,B + tF ) are not in SuppF . If p ∈ X is a point such
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that (X,D+ tF ) is lc but not klt in p, and F passes through the point (i.e.,
F > 0 near p), then we have the lc threshold in p: lct(X 3 p,D;F ) = t =
R-clct(X/Z,D;F ). Taking hyperplane sections we can suppose also that p
is closed (cf. Step 6).

Warning: p is not necessarily over o but contains a point over o.
So, we can assume that F only passes klt points of (X,D+tF ) or (X,D+

tF ) is klt near SuppF .
Step 3. We can suppose that −(K + D + tF ) is nef over Z. Otherwise,

there exists an extremal contraction X → Y/Z which is positive with re-
spect to K + D + tF . The contraction is birational because otherwise by
Definition 1, (1) and (3)

K +B+ − (K +D + tF ) = B+ −D − tF ≥ 0

is numerically negative over Y , a contradiction, where (X/Z,B+) is an R-
complement of (X/Z,D + tF ).

If the contraction is small then we make an antiflip. The antiflip preserves
the threshold t by Proposition 3. If after that F passes a nonklt point then
we go to Step 2.

If the contraction is divisorial then we contract a prime divisor P . The
contraction preserves the R-complements and t = R-clct(X/Z,D;F ) = R-clct(Y/Z,DY ;FY ),
where DY , FY are images of respectively D,F on Y . Indeed, by definition
(Y/Z,DY + tFY ) has the R-complement (Y/Z,B+

Y ) with the image B+
Y of

B+ on Y . Thus R-clct(Y/Z,DY ;FY ) ≥ t. Actually, = t holds by Proposi-
tion 8 applied to (X/Y,D + tF ). Indeed, for sufficiently small real number
ε > 0, K +D+ (t+ ε)F is negative over Y and (X]/Y, (D+ (t+ ε)F )]

X]) =
(Y/Y,DY + (t + ε)FY ). Moreover, if (Y/Z,DY + (t + ε)FY ) has an R-
complement (Y/Z,B′). Then it induces an R-complement (X/Z,B′X), with
crepant B′X , of (X/Z,D + (t + ε)F ), a contradiction. By definition it is
enough to verify that

multP B
′
X ≥ multP (D + (t+ ε)F ).

This is equivalent to (1) of Definition 1 over Y locally near the center (image)
of P . This holds by Proposition 8 or Addendum 8. In particular we prove
that SuppF 6= P and FY 6= 0. If after the divisorial contraction F passes a
nonklt point then we go again to Step 2.

So, by the termination [ShCh, Corollary 5.5], after finitely many steps we
get nef −(K+D+tF )/Z. The last divisor −(K+D+tF ) gives a contraction
X → Y/Z.
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Step 4. −F is not nef with respect to the contraction X/Y . Since X/Z
has Ft, the cone of curves NE(X/Z) in N(X/Z) is closed convex rational
polyhedral with finitely many extremal rays [ShCh, Corollary 4.5]. Denote
by V its face generated by the extremal rays R which are contracted on Y ,
that is, they have a curve C/o with (C.K + D + tF ) = 0. Actually this
is a face by Step 3. Moreover, the cone V is also closed convex rational
polyhedral. If −F is nef on the face V then, for every sufficiently small real
number ε > 0, −(K +D + (t+ ε)F ) is nef by Step 3 and semiample over Z
[ShCh, Corollary 4.5]. By Step 2 we can suppose also that (X,D+ (t+ ε)F )
has lc singularities. Thus t is not R-clct(X/Z,D;F ) by Addendum 8, a
contradiction.

Step 5. Moreover, we can suppose that X/Y = Z itself is a fibered (ex-
tremal) contraction with o, the generic point of Z, and F is positive over Z.
To establish this we apply (−F )-MMP to X/Z. However, we consider only
extremal rays R of the cone of curves NE(X/Z) which are numerically trivial
with respect to K +D + tF , that is, R ⊆ V . By Step 4 there exists such an
extremal ray R negative for −F , equivalently, F is positive for F .

If R gives a small birational contraction X → X ′/Z, actually, over Y then
we make a flip in R and this preserves the threshold t. If R gives a divisorial
contraction X → X ′/Z, again also over Y , then after the contraction we
have the same threshold

R-clct(X/Z,D;F ) = R-clct(X ′/Z,D′;F ′),

where D′, F ′ are birational transforms of D,F respectively on X ′. In par-
ticular, F is not exceptional for X/X ′ and F ′ 6= 0. We can argue here as in
Step 3. However, F ′ can pass lc singularities of (X ′, D′ + tF ′). In this case
we go again to Step 2.

By Step 4 and termination we get an extremal fibered contraction X →
X ′/Z for which K+D+tF ≡ 0/X ′ and F is numerically positive over X ′. By
construction and since any contraction of Ft is Ft, X/X ′ 3 η has Ft, where
η is the generic point of X ′ and R-clct(X/Z,D;F ) = R-clct(X/η,D;F ) =
act(X/η,D;F ). Finally, denote X/η by X/o.

Step 6. We can suppose that Z = o is a closed point and ρ(X/o) = 1. In
terms of Italian understanding of the generic point we can replace X/o by
Xp/p, where p is a sufficiently general closed point of Z and Xp is the fiber
of X/Z, and

R-clct(X/Z,D;F ) = R-clct(X/o,D;F ) = R-clct(Xp/p,Dp;Fp) = act(Xp/p,Dp;Fp),
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where Dp = D|Xp , Fp = F |Xp . We loose only the extremal property of

contraction X → X ′/o but only when o 6= p. By Proposition 10 and Ad-
dendum 12 and since X/o has Ft, Xp is Q-factorial for sufficiently general
p ∈ Z (specialization). For o 6= p, dimXp < dimX. So, we use dimensional
induction in this case and go to Step 2. Otherwise, o = p is a closed point
and we are done.

Notice that our algorithm preserves multiplicities of D and of F .
The converse holds by definition. Moreover, the converse holds for con-

structed pairs.
Similarly we can treat bd-pairs.

Proof of Theorem 21. We reduce the acc to two acc’s: for lc and ac thresh-
olds, local over Zi 3 o.

Consider a sequence of pairs

(Xi/Zi 3 o,Bi), i = 1, 2, . . . , i, . . . (12.0.11)

with effective R-divisors Fi on Xi, such that

(1) every Xi/Zi 3 o has wFt with dimXi = d;

(2) every Bi ∈ Γb, Fi ∈ Γf and Fi > 0;

(3) every (Xi/Zi 3 o,Bi) has an R-complement; and

(4) the sequence of thresholds is nonnegative and monotonic

0 ≤ R-clct(X1/Z1 3 o,B1;F1) ≤ R-clct(X2/Z2 3 o,B2;F2)

≤ · · · ≤ R-clct(Xi/Zi 3 o,Bi;Fi) ≤ . . . .

For simplicity of notation we use same o everywhere instead of oi (as same 0
for every field). We need to verify the stabilization: for every i� 0,

R-clct(Xi/Zi 3 o,Bi;Fi) = R-clct(Xi+1/Zi+1 3 o,Bi+1;Fi+1).

Step 1. The case when every SuppBi, SuppFi have at most l prime divi-
sors. Equivalently, SuppBi ∪ SuppFi has at most l prime divisors, possibly
for a different natural number l. In other words, for every i = 1, 2, . . . , i, . . . ,
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there is a Z-linear map Ai : Rl →WDivRXi of height 1 and vectors xi, yi ∈ Rl

such that Ai(xi) = Bi, Ai(yi) = Fi.
Indeed, there exist distinct prime divisors Di,j, j = 1, . . . , l, on Xi such

that

Bi =
l∑

j=1

bi,jDi,j and Fi =
l∑

j=1

fi,jDi,j.

We put

Ai(1, 0, . . . , 0) = Di,1, Ai(0, 1, . . . , 0) = Di,2, . . . , Ai(0, 0, . . . , 1) = Di,l.

Hence xi = (bi,1, bi,2, . . . , bi,l) and yi = (fi,1, fi,2, . . . , fi,l), where by (2) every
bi,j ∈ Γb and fi,j ∈ Γf .

Since Γg,Γf satisfy the dcc, taking a subsequence of (12.0.11) we can
suppose that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xi ≤ . . . and 0 < y1 ≤ y2 ≤ · · · ≤ yi ≤ . . . ,
where ≤ for vectors as for divisors: (v1, . . . , vl) ≤ (w1, . . . , wl) ∈ Rl if every
vi ≤ wi.

Put x = limi→∞ xi, y = limi→∞ yi and

t = lim
i→∞

ti, ti = R-clct(Xi/Zi 3 o,Bi;Fi).

The limits x, x + ty and t are proper (< +∞): x, x + ty ∈ Rl and t ∈ R.
(Thus the limit y is proper if x + ty is proper and t 6= 0.) Indeed, for x,
this follows from the subboundary property: every xi ≤ (1, 1, . . . , 1) ∈ Rl

or Bi is a subboundary by (3). The same works for x + ty because every
xi + tiyi ≤ (1, 1, . . . , 1) or Bi + tiFi is a subboundary by the definition of R-
complements and (3) again. By (2-3) and construction every Bi and Bi+tiFi
are boundaries. On the other hand, since Fi 6= 0,

ti ≤ 1/min{γ | γ ∈ Γf and γ > 0}.

The minimum exists and is positive by the dcc of Γf . Thus t ∈ R. Note that
y and every yi are > (0, 0, . . . , 0) ∈ Rl by (2), in particular, 6= 0 ∈ Rl.

Now it is enough to verify that (Xi/Zi 3 o, Ai(x+ty)) has an R-complement
for every i � 0. Indeed, by construction, Ai(x + ty) = Ai(x) + tAi(y) ≥
Ai(xi) + tiAi(yi) = Bi + tiFi by the monotonic property of every Ai. So, by
definition Ai(x+ ty) = Ai(x) + tAi(y) = Ai(xi) + tiAi(yi) = Ai(xi + tiyi) and
x + ty = xi + tiyi for those i because every Ai is injective. Thus ti = t for
those i too because every y ≥ yi > 0. This is the required stabilization.
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The R-complement property follows from (1) and Theorem 19 under the
assumption (3) of Theorem 2. Indeed, Γ = {bi,j + tifi,j} satisfies the dcc
with the only limiting points x1, . . . , xl. On the other hand, by construction,
definition and (3), every pair (Xi/Zi 3 o,Bi + tiFi) has an R-complement.
For every positive real number ε, the estimation

‖Bi + tiFi − Ai(x+ ty)‖ ≤ l ‖xi + tiyi − x− ty‖ < ε

for every i� 0 concludes the proof in Step 1.
Below we reduce the general case to the situation of Step 1. By Lemma 14

we need to consider two local over X ′i 3 o or X ′′i /o cases. Indeed, by the
lemma every

ti =

{
lct(X ′i 3 o,B′i;F ′i ) = R-clct(X ′i 3 o,B′i;F ′i ), or

act(X ′′i /o,B
′′
i ;F ′′i ) = R-clct(X ′′i /o,B

′′
i ;F ′′i ),

where X ′i, X
′′
i are Q-factorial of dimension ≤ dimXi = d, ρ(X ′′i ) = 1, X ′i 3

o,X ′′i are Ft and all points o are closed; B′i, B
′′
i ∈ Γb, F

′
i , F

′′
i ∈ Γf , and

F ′i , F
′′
i 6= 0.

By dimensional induction and the converse we can suppose that every
dimX ′i = X ′′i = d.

Step 2. (lct) Suppose that there exists infinitely many lct cases with
ti = lct(X ′i 3 o,B′i;F

′
i ) = R-clct(X ′i 3 o,B′i;F

′
i ). Taking a subsequence of

(12.0.11) and changing notation we can suppose that every ti = R-clct(X ′i 3
o,B′i;F

′
i ) = lct(X ′i 3 o,B′i;F

′
i ), where X ′i is Q-factorial. By [K, Theo-

rem 18.22] SuppBi, SuppFi have not more than d/µb, d/cµf prime divisors
respectively, where

µb = min{γ ∈ Γb | γ > 0}, µf = min{γ ∈ Γf | γ > 0} and c = min{ti},

assuming that all ti > 0 (see Warning below). Minima exist and are positive
by the dcc of Γb,Γf and by the monotonic property of ti (assuming that all
ti > 0). So, by Step 1 the required stabilization of ti holds.

Warning: our estimations depend on c. Either we can consider a fix
sequence of thresholds ti or consider the (truncated) thresholds ≥ c > 0.
This is sufficient to prove the require acc.

Step 3. (act) Now we suppose that there exists infinitely many act cases
with ti = act(X ′′i 3 o,B′′i ;F ′′i ) = R-clct(X ′′i 3 o,B′′i ;F ′′i ). As in Step 2, we
can suppose that every ti = R-clct(X ′′i 3 o,B′′i ;F ′′i ) = act(X ′′i /o,B

′′
i ;F ′′i ),

191



where X ′′i is Q-factorial Ft over o and ρ(Xi) = 1. By [BMSZ, Corollary 1.3]
SuppBi, SuppFi have not more than (d + 1)/µb, (d + 1)/cµf prime divisors
respectively, where µb, µf , c are same as in Step 2. Again by Step 1 the
required stabilization of ti holds.

Step 4. Addenda. Addendum 75 is immediate by the case with only the
prime divisors Ei and the dcc property of {

∑
γi | γi ∈ Γ} ⊂ [0,+∞) for

every dcc Γ ⊂ [0,+∞).
Similarly we can treat bd-pairs.

Corollary 23 (Lc thresholds [HMX, Theorem 1.1]). Let d be a nonnegative
integer and Γb,Γf be two dcc sets of nonnegative real numbers. Then the set
of lc thresholds

{lct(X/X,B;F ) | dimX = d,B ∈ Γb and F ∈ Γf}

satisfies the acc.

Addendum 77. Instead of B ∈ Γb, F ∈ Γf , we can suppose that B =∑
biEi, Fi =

∑
fiEi, where Ei are effective Weil Z-divisors and bi ∈ Γb, fi ∈

Γf .

Addendum 78. The same holds for bd-pairs (X/X,B+P) of index m and
the set of corresponding thresholds depends also on m.

Proof. Immediate by Theorem 21 for klt (X,B). Indeed, in this case X/X or
locally X has wFt. By definition of the lc threshold we suppose that (X,B)
is lc and F is > 0, R-Cartier. Since every lc (X/X,B + tF ) is a 0-pair,
lct(X/X,B;F ) = R-clct(X/Z,B;F ) by Example 1, (3).

If (X,B) is lc and F passes an lc center of (X,B) then lct(X/X,B;F ) =
R-clct(X/X,B;F ) = 0. Otherwise, (X,B) is lc and F does not pass the lc
centers of (X,B) and we can replace (X,B) by its dlt resolution and F by
its pull-back on the resolution. The construction preserves the lc threshold.
The pull-back of F does not blow up divisors, is the birational transform of
F with the same multiplicities as F . The new X is klt and we can apply
Theorem 21 again.

Similarly we can treat bd-pairs.
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Corollary 24 (Ac thresholds). Let d be a nonnegative integer and Γb,Γf be
two dcc sets of nonnegative real numbers. Then the set of ac thresholds

{act(X/Z,B;F ) | dimX = d,X/Z has wFt, (X,B) is lc, B ∈ Γb and

F =
∑

fiFi, where Fi are locally free over Z and fi ∈ Γf}

satisfies the acc.

Addendum 79. The same holds for bd-pairs (X/Z,B +P) of index m and
the set of corresponding thresholds depends also on m.

Remark 10. In general, the anticanonical threshold of a log pair (X/Z,D)
with respect to a nef over Z divisor H on X is

act(X/Z,D;H) = inf{t ∈ R | K +D + tH is nef over Z}.

In [ISh, p. 47] it was used for Fano varieties as one of invariants in the
Sarkisov program. In this situation Fano varieties X are Q-factorial, have
the Picard number 1, terminal singularities and H is an effective nonzero
(Weil) divisor. Thus act(X, 0;H) is t of (12.0.12) in the proof below with
D = 0, F = H. Moreover, such thresholds act(X, 0;H) form an acc set with
a single accumulation point 0 if dimX = d is fixed (cf. Corollary 25). This
follows from boundedness of those Fano varieties [B16, Theorem 1.1]. In
general it is not true (cf. Remark 11, (1) below).

Example 14. Let S be a cone over a rational normal curve of degree n and
L be its generator. Then

act(S, 0;L) = n+ 2.

In this situation L is not free for n ≥ 2 and pairs (S, L) form an unbounded
family. Notice also that R-clct(S, 0;L) = 1 and 6= act(S, 0;L) for n ≥ 2. This
is why we consider only act = R-clct. But lct = R-clct holds automatically
(cf. Lemma 14).

Proof of Corollary 24. Recall that by definition of t = act(X/Z,D;F ) we
suppose that (X,D) is a log pair, F 6≡ 0 generically over Z and

−(K +D) ≡ tF/Z. (12.0.12)

The proof uses Theorem 21.
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Step 1. It is enough to consider a local case act(X/Z 3 o,B;F ) with a
closed point o ∈ Z. Indeed, for any closed point o ∈ Z,

act(X/Z,B;F ) = act(X/Z 3 o,B;F )

because F 6≡ 0 generically over Z. We omit locally the divisors Fi with fi = 0
and suppose that every fi 6= 0. Hence every fi ≥ µf > 0, where

µf = min{γ ∈ Γf | γ > 0}.

We can consider truncated ac thresholds: t ≥ c for some positive real number
c.

Step 2. We can suppose that t and every fi ≤ 1. Notice for this that
t is bounded: t ≤ (d + 1)/µf . Indeed, since −(K + B) ≡ tF/Z 3 o and
t ≥ c > 0, X is covered by curves C/Z 3 o with −(C.K) ≤ d + 1 and
−(C.K +B) ≤ d+ 1 for such a sufficiently general curve C/o. Additionally,
we can assume that −(C.K + B) > 0. On the other hand, every (C.Fi) ≥ 0
and by (12.0.12) some (C.Fi) ≥ 1 because Fi are free over Z 3 o. Hence, for
(C.Fi) ≥ 1,

tµf ≤ tfi ≤ (C.tfiFi) ≤ (C.tF ) = −(C.K +B) ≤ d+ 1.

This gives the required bound.
Similarly, we can verify that multiplicities fi are bounded: every fi ≤

(d+ 1)/c.
We replace every fiFi by

Di = {fi}Fi,0 +

bfic∑
j=1

Fi,j,

where {fi} is the fractional part of fi, belongs to [0, 1) and every Fi,j ∼ Fi
over Z 3 o. By definition

t = act(X/Z 3 o,B;F ) = act(X/Z 3 o,B;D),

where D =
∑
Di. We denote below D by F . Now F has additional multi-

plicities 1, {fi} which satisfy the dcc because fi are bounded. Thus we can
add them to Γf and suppose that every fi ≤ 1.

If t ≥ 1 we replace tF by {t}F and B by B′ = B + btcF , where {t}
is the fractional part of t. The log pair (X,B′) is lc with a boundary B′
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by Bertini if every copy of (btc copies of) Fi in btcF is sufficiently general
effective divisor in its linear system over Z 3 o. We need to add 1 to Γb if it
is necessary. Here we loos the assumption that t ≥ c. By construction

{t} = act(X/Z 3 o,B′;F ).

It is enough to verify the acc for {t} because t is bounded. Below we
denote B′ by B and {t} by t.

Step 3. The acc for t ≤ 1 holds. Since every fi ≤ 1 and t ≤ 1, (X,B+tF )
is lc again by Bertini if Fi in are sufficiently general in their linear system
over Z 3 o. Hence by definition and since F > 0,

act(X/Z 3 o,B;F ) = R-clct(X/Z 3 o,B;F )

holds and the corollary holds by Theorem 21.
Similarly we can treat bd-pairs.

The next result (with B = 0) was conjectured by the author in late 80’s
in relation to the acc of mld’s. It was suggested as a problem to V. Alexeev
who was a graduate student of V. Iskovskikh in that time (cf. Remark 11,
(1) below).

Corollary 25 (Acc for Fano indices). Let d be a nonnegative integer and Γb
be a dcc set of nonnegative real numbers. Then the set of Fano indices

{0 ≤ h ∈ R | − (K +B) ≡ hH, where dimX = d,X has (w)Ft,

(X,B) is lc, B ∈ Γb and H is a primitive ample divisor on X}

satisfies the acc.

Actually, X has Ft in the theorem, (X,B) in the definition of h is an lc
log Fano variety, if h > 0, and h in this case is its Fano index .

Addendum 80. Let Γh be a dcc set of nonnegative real numbers. Instead of
B ∈ Γb, H, we can take B =

∑
biEi, H =

∑
hiHi 6≡ 0, where Ei are effective

Weil Z-divisors, Hi are nef Cartier divisors and bi ∈ Γb, hi ∈ Γh.

Addendum 81. The same holds for the lc Fano bd-pairs (X,B + P) of
index m with −(K + B + PX) ≡ hH and the set of corresponding Fano
indices depends also on m.
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Proof. Primitive (ample) means that if H ≡ hH ′, where H ′ is also (ample)
divisor, then h ≥ 1.

There exists a positive integer N such that F = NH is free for every
(w)Ft X of dimension d [K93, Theorem 1.1] (cf. Corollary 2 above). Hence

h/N = act(X,B;F ).

Then Corollary 24 implies the acc for h.
In Addendum 80 we can use freeness of NHi with N depending only on

the dimension d by Corollary 2.
Similarly we can treat bd-pairs.

Remark 11. (1) For every positive real number ε, the Fano indices for ε-lc
log Fano pairs (X,B) of the corollary with a finite set Γb form a finite set
by BBAB [B16, Theorem 1.1], that is, there are only finitely many of those
indices. This was conjectured by Alexeev for B = 0.

However, the union of this finite sets for all ε gives the acc set of the
theorem. In general, the finiteness does not imply the acc.

(2) A Fano index is not always defined even for log Fano varieties (X,B).
However, it is defined for such a pair if B is a Q-boundary, e.g., Γb ⊂ Q.

ä-Invariant. Let (X,B) be a log Fano variety. Then the ä-invariant of
(X,B) is

ä = ä(X,B) = (1− glct(X,B))h,

where glct(X,B) is the global lc threshold or α-invariant of (X,B) and h is
the Fano index of (X,B). Since h > 0, ä ≥ 0 if and only if glct(X,B) ≤ 1.

Notice that ä is not always defined but defined for Q-boundaries B (cf.
Remark 11, (2) and Addendum 83 below).

The same definition works for a bd-pair (X/Z,D + P) with

glct(X,B+P) = sup{t ∈ R | (X,B+E+P) is lc for all 0 ≤ E ≡ −t(K+B+PX)}

and −(K +B + PX) = hH, where H is a primitive ample divisor on X.
Below we discuss some properties of ä-invariant and of glct.

Corollary 26 (Acc for ä-invariant). Let d be a nonnegative integer and Γb
be a dcc set of nonnegative real numbers. Then the set of ä-invariants

{0 ≤ ä(X,B) | (X,B) is an lc log Fano variety, dimX = d,X has Ft and B ∈ Γb}

satisfies the acc.
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Addendum 82. Let Γh be a dcc set of nonnegative real numbers. Instead of
B ∈ Γb and ample H in the definition of ä-invariant, we can take B =

∑
biEi

and H =
∑
hiHi, where Ei are effective Weil Z-divisors, Hi are nef Cartier

divisors and bi ∈ Γb, hi ∈ Γh.

Addendum 83. If additionally Γb,Γh ⊂ Q then H always exists and ä(X,B), glct(X,B) ∈
Q. Moreover, if Γb,Γh are closed Q, then the sets of ä-invariants is also closed
in Q limits.

(Cf. other statements about limits of thresholds in Corollary 33 and its
addenda.)

Addendum 84. The same holds for the lc Fano bd-pairs (X,B+P) of index
m with −(K +B+PX) ≡ hH and the set of corresponding ä-invariants ≥ 0
depends also on m.

Proof. We can replace H by free F = NH, where N is a positive integer
depending only on d. It is enough to verify that t = ä /N satisfies the acc.
Since ä is bounded (≤ d+ 1), we can suppose that t < 1 for appropriate N .

The acc is enough to verify for ä > 0, equivalently, t > 0. In this situation
t is also a threshold:

t = sup{0 ≤ r ∈ R | K +B + rF + E ≡ 0 and

(X,B + E) is lc but nonklt pair for some effective R-divisor E on X}.

This threshold can be converted into an R-clct one. In particular, it is at-
tained, that is, the supremum can be replaced by the maximum (cf. Corol-
lary 27 below). For sufficiently general effective divisor M ∼ F , M does not
pass the prime components of SuppB, SuppE, the lc centers of (X,B + E)
and (X,B + rM + E) is lc. Take a prime b-divisor P of X such that
a(P ;X,B + rM + E) = a(P ;X,B + E) = 0, log discrepancies at P . Let
(Y, (B + rM + E)Y ) be a crepant blowup of P . The blowup is an isomor-
phism X = Y if P is not exceptional on X. For exceptional P , the crepant
transform (B+ rM +E)P of B+ rM +E on Y is equal to B+ rM +E+P ,
where B + rM + E denotes also its birational transform on Y . Then by
construction in the exceptional case

r ≤ R-clct(Y,B + P ;M) ≤ t.

In R-clct(Y,B+P ;M), the divisor M is the birational transform of M on Y
and is free again. Note also that every Y in the construction has Ft [PSh08,
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Lemma-Definition 2.6, (iii)]. Replacing r by R-clct(Y,B + P ;M), we can
suppose that

r = R-clct(Y,B + P ;M).

Now we can use Theorem 19 with assumption (3) of Theorem 3 or Theorem 21
with Addendum 75 and get t in terms of an R-complement threshold: for r
sufficiently close to t,

t = r = R-clct(Y,B + P ;M).

Indeed, M = 1M and
B + P, 1 ∈ Γb ∪ {1}

and it is a dcc set. So, Theorem 21 with Addendum 75 again implies the acc
for t and ä.

Similarly, if P is not exceptional then Y = X and (B + rM + E)Y =
B+ rM +E. By construction multP (B+ rM +E) = multP (B+E) = 1. In
this case

r ≤ R-clct(X,B + pP ;M) ≤ t,

where p = multP E. (So, multP (B + pE) = 1, E ′ = E − pP ≥ 0 and
B+pP +E ′ = B+E.) Replacing r by R-clct(X,B+pP ;M) we can suppose
that

r = R-clct(X,B + pP ;M).

Again we can use Theorem 19 or Theorem 21 with Addendum 75 and get t
in terms of an R-complement threshold: for r sufficiently close to t,

t = r = R-clct(X,B + pP ;M).

Indeed, M = 1M ,
B + pP, 1 ∈ Γb ∪ {1}

and it is a dcc set. As above Theorem 21 with Addendum 75 implies the acc
for t and a.

We prove more: every ä > 0, glct < 1 invariants are attained. See expla-
nations in Corollary 27 below. We also established that ä ∈ Q for B ∈ Q
because ä = R-clct(Y,B+P ;M) or = R-clct(X,B+pP ;P ) is rational by the
Theorem 6 and B + pP ∈ Q too. This proves rationality in Addendum 83.
The closed rational property follows from the similar result for R-clct thresh-
olds (see Corollary 33 below).
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Similarly we can treat ä-invariants with H as in Addendum 82 (cf. the
proof of Corollary 27) and bd-pairs.

Corollary 27. Let (X,B) be an lc log Fano variety with a boundary B. Then
every threshold glct(X,B) ≤ 1 is attained, that is, there exists an effective R-
divisor E such that (X,B+E) is lc but not klt and E ≡ − glct(X,B)(K+B).

The same holds for glct(X,B+P) ≤ 1 of lc Fano bd-pairs (X,B+P) of
index m.

Notice that ä(X,B), ä(X,B + P) ≥ 0 are also attained as it was estab-
lished in the proof of Corollary 26.

Proof. We can suppose that (X,B) is a klt log Fano variety and has Ft.
Otherwise, (X,B) is not klt and glct(X,B) = 0 and E = 0. The cone of
semiample divisors on X is rational polyhedral. In particular,

−(K +B) ≡
l∑

i=1

riHi,

where ri are positive real numbers and Hi are very ample (Cartier) divisors.
We can suppose also that every ri ≤ 1.

We start from the case t = glct(X,B) < 1. Then by definition there
exists a real number r > 0 and effective R-divisor E such that (X,B +E) is
lc but not klt and

K +B + E + r
l∑

i=1

riHi ≡ 0.

Those r ≤ a < 1 and have a tendency to a, where a = 1− t > 0 and

E ≡ (1− r)(−K −B) ≡ (1− r)
l∑

i=1

riHi.

(Remark that this a is not the ä-invariant but it is its nonintegral and pos-
sibly irrational but more anti log canonical version.) For given r, E, take
sufficiently general effective divisors Fi on X such that every Fi ∼ Hi does
not pass the prime component of SuppB, SuppE,Fj, j 6= i, the lc centers

of (X,B + E) and (X,B + E +
∑l

i=1 Fl) is lc. By construction r < 1

and (X,B + E + r
∑l

i=1 riFi) is an lc but not klt 0-pair. As in the proof
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of Corollary 26 take a prime b-divisor P such that (P 6= F1, . . . , Fl and)
a(P ;X,B + E + r

∑l
i=1 riFi) = 0. If P is exceptional then

r ≤ R-clct(Y,B + P ;
l∑

i=1

riFi) ≤ a

where Y → X is blowup of P and B,Fi are respectively birational transforms
of B,Fi on Y . Actually, we can suppose that (for given Y and P but possibly
different r, E)

r = R-clct(Y,B + P ;
l∑

i=1

riFi).

We can take r arbitrary close to a. Hence by Theorem 19 with assumption (3)
of Theorem 3 or Theorem 21 with Addendum 75 we get a in terms of an R-
complement threshold: for r sufficiently close to a,

a = r = R-clct(Y,B + P ;
l∑

i=1

riFi).

Indeed, there exists a finite subset Γ in [0, 1] such that B ∈ Γ and

B + P and every ri ∈ Γ ∪ {1, r1, . . . , rl}

and it is a dcc set. So, t and a are attained because the R-clct thresholds are
attained on Ft X by the closed property in Theorem 6.

Similarly, if P is not exceptional then Y = X and multP (B + E +
r
∑l

i=1 riFi) = 1, actually, multP (B + E) = 1. In this case

r ≤ R-clct(X,B + pP ;
l∑

i=1

riFi) ≤ a,

where p = multP E. (So, multP (B + pE) = 1, E ′ = E − pP ≥ 0 and
B + pP +E ′ = B +E.) Replacing r by R-clct(X,B + pP ;

∑l
i=1 riFi) we can

suppose that

r = R-clct(X,B + pP ;
l∑

i=1

riFi).
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Again we can use Theorem 19 with assumption (3) of Theorem 3 or Theo-
rem 21 with Addendum 75 and get a in terms of an R-complement threshold:
for r sufficiently close to a,

a = r = R-clct(X,B + pP ;
l∑

i=1

riFi).

Indeed,
B + pP and every ri ∈ Γ ∪ {1, r1, . . . , rl}

and it is a dcc set. As above Theorem 21 with Addendum 75 implies the
attainment of t and a.

The case with t = glct(X,B) = 1 and a(X,B) = 0 is more delicate
because in this case r < a = 0 are negative. In this case, we use r = 0,
effective E ′ ≡ −(K +B) and a prime b-divisor P with the log discrepancy

a(P ;X,B + E ′) = ε > 0

very close to 0. Such E ′ can be constructed by normalization of E in the
definition: put

E ′ =
1

s
E,

where (X,B + E) is lc but not klt and E ≡ −s(K + B). By construction
s ≥ 1. By [B16, Theorem 1.1] if s goes to 1 then ε goes to 0. (In other words,
if (X,B) is ε-lc then glct(X,B) ≥ δ > 0. This case is easier than general
BBAB because here X is fixed! But B is not fixed!)

Then we apply to a sequence of εi, Ei with limi→∞ εi = 0 Theorem 21 with
Addendum 75 or Theorem 19 with assumption (1) of Theorem 3 , that is, for
ε sufficiently close to 0. For exceptional prime b-divisors Pi, P , in both cases
we replace Pi, P by (1 − εi)P, (1 − ε)P respectively. In the nonexceptional
case we replace B+piPi, B+pP by B+ (pi− εi)P,B+ (p− ε)P respectively.

Similarly we can treat bd-pairs.

Remark: In general glct(X,B) behaves badly, e.g., does not satisfies the
acc or dcc even if dimX = d is fixed and B ∈ Γb, a dcc set [Sh06, ??].

However, glct(X,B) satisfies certain interesting properties. Some of them
were conjectured by G. Tian.
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Corollary 28 (glct gap). Let d be a nonnegative integer and Γb be a dcc set of
nonnegative real numbers. There exists a positive real number g such that if
(X,B) is an lc log Fano variety with dimX = d, B ∈ Γb and glct(X,B) > 1
then glct(X,B) ≥ 1 + g.

The same holds for glct(X,B +P) > 1 of lc Fano bd-pairs (X,B +P) of
index m with g also depending on m.

Proof. Similar to the proof of Corollary 27 in the case t = glct(X,B) = 1.
Actually, we need to prove that if t ≥ 1 and sufficiently close to 1 then t = 1.
However, in this situation we need BBAB of the full strength.

Corollary 29. Let (X,B) be an lc log Fano variety with a rational boundary
B. Then ä(X,B) ≥ 0, glct(X,B) ≤ 1 are also rational.

The same holds for ä(X,B + P) ≥ 0, glct(X,B + P) ≤ 1 of lc Fano
bd-pairs (X,B + P) of index m.

Examples of nonrational ä(X,B) < 0, glct(X,B) > 1 with a rational
boundary B are unknown.

Proof. Immediate by Addendum 83 and Addendum 84.

But we have a more effective statement.

Corollary 30 (Effective attainment). Let ä ≥ 0 be a rational number, d
be a nonnegative integer and Γb be a rational closed dcc set in [0, 1]. Then
there exists a positive integer n = n(d,Γb, ä) such that every ä(X,B) = ä,
equivalently, glct(X,B), with dimX = d, is attained by a divisor E = D/n ≡
− glct(X,B)(K +B), where

D ∈ |−nK − nB − naH|

and H is a (primitive) ample divisor on X such that −(K +B) ≡ hH.
The same holds for ä(X,B + P) = ä, glct(X,B + P) of lc Fano bd-pairs

(X,B + P) of index m with E = D/n ≡ − glct(X,B)(K + B + PX) and
−(K +B + P) ≡ hH, where n depends also on m and

D ∈ |−nK − nPX − nB − naH| .

.
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Proof. By Corollary 27 a is attained. Actually, t ≤ 1 is attained and a =
(1− t)h. Thus there exists an effective R-divisor E such that (X,B + E) is
lc but not klt and

K +B + E + aH ≡ 0.

There exists N depending only on d such that NH ≡ F , where F is a free
divisor on X. In particular, we can suppose that (X,B +E + (a/N)F ) is lc
too, that is, F does not pass the prime components of SuppB, SuppE and
the center of any prime b-divisor P with a(P ;X,B+E) = 0. As in the proof
of Corollary 27, in the exceptional case,

(Y,B +
a

N
F + P )

has an R-complement. More precisely, in this case we suppose that every
P is exceptional. The set of multiplicities Γb ∪ {1, a/N} is a rational closed
dcc subset of [0, 1]. (We can suppose that a/N ≤ 1.) Hence there exists a
monotonic n-complement (Y,B+) of (Y,B + (a/N)F + P ). We suppose also
that na/N is integer. Then by monotonicity the divisor (in the linear system
of Q-divisors)

D′ = nB+ − nB − na

N
F − nP ∈

∣∣∣−nKY − nB −
na

N
F − nP

∣∣∣
is effective. Taking the image of D′ on X we get

D ∈ |−nK − nB − naH|

and E = D/n is required effective.
Similarly, if there are nonexceptional P then B+E = B′+E ′+S, where

S is reduced part of B+E, that is, the sum of those P (assuming that (X,B)
is klt) and B′ = B,E ′ = E ≥ 0 outside of SuppS. In this situation, we have
a monotonic n-complement (X,B+) of (X,B′ + (a/N)F + S). Thus there
exists an effective divisor

D′ = nB+ − nB′ − na

N
F − nS ∈ |−nK − nB′ − naH − nS| .

By construction B′ = B outside of S and B′ = 0 on S. Hence

nB′ + nS ≥ nB,
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because B is a (sub)boundary and S is reduced. Hence again

D = D′ + nB′ + nS − nB = nB+ − nB − na

N
F ∈ |−nK − nB − naH|

is also effective and E = D/n is required effective.
Similarly we can treat bd-pairs.

Bounded affine span and index of divisor. Let V ⊆ Rn be a class of
R-linear spaces Rl with a standard basis and with their Q-affine subspace V .
Such a subspace V can be given by linear equations (possibly nonhomoge-
neous) with integral coefficients in the standard basis. We say that V in this
class is bounded if, for all V of the class, the integer coefficients of equations
are bounded. Equivalently, V is bounded if, in every V , there exists a finite
set of rational generators vi, i = 1, . . . , l, with coordinates in a finite set of
rational numbers. Vectors vi generate V if 〈v1, . . . , vl〉 = V .

We apply the boundedness to affine Q-spans 〈D〉 of certain R-divisors D
on X. Every such span is in the space WDivRX of R-divisors, actually, in
the space of divisors supported on SuppD. The standard basis of WDivRX
consists the prime components of SuppD or prime divisors of X.

Example 15. (1) If D is rational divisor then 〈D〉 is a rational divisor itself.
Those spans or divisors are bounded if their multiplicities belong to a finite
set of rational numbers. In general, 〈D〉 is bounded if there exists a finite
set of Q-divisors Di, i = 1, . . . , l, in 〈D〉 with multiplicities in a finite set of
rational numbers, which generate 〈D〉.

(2) The spaces x1 = x2, . . . , x2l−1 = x2l are bounded. Every of those
spaces has generators (1, 1, 0, . . . , 0, 0), (0, 0, 1, 1, . . . , 0, 0), . . . , (0, 0, 0, 0, . . . , 1, 1)
with 2l coordinates 0 or 1.

Due to the rationality of intersection theory and since the lc property
is rational, if (X/Z 3 o,D) is a 0-pair then (X/Z 3 o,D′) is a possibly
nonlc 0-pair for some D′ ∈ 〈D〉 but a 0-pair in some neighborhood of D in
〈D〉. The last neighborhood depends on (X/Z 3 o,D). Notice also that
the maximal lc property also holds in some neighborhood of D in 〈D〉 if it
holds for (X/Z 3 o,D). Moreover, a = a(P ;X,D) = a(P ;X,D′) holds for
all D′ ∈ 〈D〉 if a is rational.

Let I be a positive integer. We say that I is a lc index of a 0-pair
(X/Z 3 o,D) if there are rational generators Di, i = 1, . . . , l, of 〈D〉 such
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that every I(K + Di) ∼ 0/Z 3 o. Note that if (X 3 o,D) is a log pair with
D ∈ Q then (X 3 o,D) is a 0-pair over X 3 o and an lc index of (X 3 o,D)
is a Cartier index of K +D.

The same applies to 0-bd-pairs (X/Z 3 o,B + P) (of index m) with
I(K +Di + PX) ∼ 0/Z 3 o.

Corollary 31 (Boundedness of lc index). Let d be a nonnegative integer and
Γ be a dcc subset in [0, 1]. Then there exists a finite subset Γ(d) ⊆ Γ and
positive integer I = I(d,Γ) such that, for every maximal lc 0-pair (X/Z 3
o,B) with wFt X/Z 3 o, dimX = d and B ∈ Γ,

(1) B ∈ Γ(d);

(2) 〈B〉 is bounded; and

(3) I is an lc index of (X/Z 3 o,B).

The same holds for maximal lc 0-bd-pairs (X/Z 3 o,B + P) of index m
with Γ(d,m),I(d,Γ,m) depending also on m.

In the proof below, we use n-complements for a finite set of rational
boundary multiplicities. On the other hand, in construction of complements
we use the corollary in very special case Γ = Φ(R), a hyperstandard set, and
(X,B) is a klt 0-pair with wFt (cf. Corollary 32 and What do we use in the
proof? in Introduction).

Proof. We suppose that d ≥ 1. (The case d = 0 is trivial.)
(1) Γ(d) = Γ∩R-clct(d,Γ), where R-clct(d,Γ) denotes the set of R-clct(X/Z 3

o,B) for dimX = d,B ∈ Γ. By Theorem 21 R-clct(d,Γ) is an acc set. Thus
Γ(d) satisfies acc and dcc, and is finite.

By definition, for every prime divisor P on X over Z 3 o,

R-clct(X/Z 3 o,B − bP ;P ) = b,

where b = multP B. By construction B−bP, b ∈ Γ and b belongs R-clct(d,Γ).
Hence b, B ∈ Γ(d).

(2) Put l to be the number of elements in Γ(d). Then for every 0-pair
(X/Z 3 o,B) under the assumptions of the corollary there exist distinct
reduced Weil divisors D1, . . . , Dl such that B =

∑l
i=1 biDi, where bi ∈

Γ(d). (Some of multiplicities bi are 0.) This gives a Q-linear map A : Rl →
WDivRX, which transforms the standard basis e1 = (1, 0, . . . , 0), . . . , el =
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(0, 0, . . . , 1) into the divisors D1, . . . , Dl respectively. The hight of A is 1.
There exists a unique vector v ∈ Rl with A(v) = B.

By Corollary 21 under the assumption (3) of Theorem 3, there exist
vectors w0, w1, . . . , wr ∈ 〈v〉 , r = dim 〈v〉 ≤ l, which generate 〈v〉 and such
that B0 = A(w0), B1 = A(w1), . . . , Br = A(wr) are rational boundaries.

Thus 〈B〉 = A(〈v〉) is generated by B0, B1, . . . , Br and is bounded.
(3) By construction all multiplicities of boundaries Bi belong to a finite

set of rational numbers. On the other hand, every pair (X/Z 3 o,Bi) is
a 0-pair and has a monotonic n-complement (X/Z 3 0, B+) for some n,
depending only on the multiplicities of boundaries Bi and on d. We can take
I = n. Indeed, n(K +Bi) ∼ 0 over Z 3 o because B+ = Bi.

Similarly we can treat bd-pairs.

Corollary 32 (Invariants of adjunction). Let d be a nonnegative integer and
Γ be a dcc set of rational numbers in [0, 1] . Then there exists a finite subset
Γ(d) ⊆ Γ and positive integer I = I(d,Γ) such that every 0-contraction
f : (X,D) → Z as in Theorem 9 has the adjunction index I. Moreover,
Dh ∈ Γ(d) and IrP ∈ Z for every adjunction constant rP as in 7.2.

The same holds for every 0-contraction (X,D + P) → Z as in Adden-
dum 36. In this situation I = I(d,Γ,m),Γ(d,m) depend also on the index m
of the bd-pair (X,D + P).

However, first we establish the following.

Proof of Theorem 9. (General case.) We suppose that 1 ∈ Γ and take Γ(d)
and I = I(d,Γ) as in Corollary 31. We use the same proof as in the hyper-
standard case with one improvement. According to Corollary 31 the maximal
lc 0-pair (X/Z,D) locally over SuppDdiv, in Step 2 of the proof of Theorem 9,
has index I = I(d,Γ) and Dh = D ∈ Γ(d). Recall, that the vertical multi-
plicities of D are 0 or 1 locally over SuppDdiv.

Proof of Corollary 32. Immediate by Theorem 9.

Accumulations of R-clct thresholds. Denote by R-clct(d,Γb,Γf ) the
thresholds of Theorem 21. Denote by act(d,Γb,Γf ), lct(d,Γb,Γf ) correspond-
ing ac and lc thresholds (see Lemma 14 and Corollaries 23, 24; cf. Remark 10
and Example 14). The thresholds satisfies the acc but not the dcc. However,
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the accumulations have rational constrains it terms of the closures Γb,Γf . No-
tice that both closures Γb,Γf are also dcc (nonnegative) sets if so do Γb,Γf .
Thus for simplicity we can suppose that Γb,Γf are already closed.

The same applies to bd-pairs of index m. In particular, we can consider
R-clct(d,Γb,Γf ,m), act(d,Γb,Γf ,m), lct(d,Γb,Γf ,m) and their accumulation
points.

Corollary 33. Let d be a nonnegative integer and Γb,Γf be two closed dcc
sets of nonnegative real numbers. Then every accumulation threshold t in
every set

R-clct(d,Γb,Γf ), act(d,Γb,Γf ), lct(d,Γb,Γf )

has a rational constrain between B = (b1, . . . , bl), 0 < tF = t(f1, . . . , fl),
where all bi ∈ Γb, fi ∈ Γf , that is, B + RF 6⊆ 〈B + tF 〉.

Addendum 85 (cf. [Sh94, Corollary+]). If additionally Γb,Γf ⊂ Q, then

R-clct(d,Γb,Γf ), lct(d,Γb,Γf ), act(d,Γb,Γf ) ⊂ Q.

Addendum 86. The same holds for thresholds

R-clct(d,Γb,Γf ,m), act(d,Γb,Γf ,m), lct(d,Γb,Γf ,m)

of bd-pairs of index m.

Proof. By Lemma 14 and dimensional induction it is enough to prove the
result for the accumulation points of ac and lc thresholds in the dimension
d. We consider only ac thresholds. Lc thresholds can be treated similarly.

Consider now an accumulation point t for act(Xi, Bi;Fi) = R-clct(Xi, Bi;Fi), i =
1, 2, . . . , i, . . . , where

(1) X is Q-factorial, Ft of dimension d with ρ(X) = 1;

(2) Bi ∈ Γb, Fi ∈ Γf and Fi > 0; and

(3) (Xi, Bi+tiFi) is a 0-pair, in particular maximal lc, where ti = act(Xi, Bi;Fi).

Put t = limi→∞ ti. However, this time

0 < t < · · · < ti < · · · < t1
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because act(d,Γb,Γf ) satisfies the acc and t is an accumulation point. (t = 0
is rational and always an accumulation point in dimensions ≥ 1. Cf. with
our assumption 0 ∈ Φ in Hyperstandard sets is Section 3.)

By (1-2) and our assumptions, every SuppBi ∪ SuppFi have at most l
prime divisors for some positive integer l. We will use the same notation
as in Step 1 of the proof of Theorem 21. Since Γb,Γf are closed, A(x) ∈
Γb, A(y) ∈ Γf hold. As in Step 1 ibid (Xi, A(x + ty)) has an R-complement
and A(x+ ty) = A(x) + tA(y) is a boundary for all i� 0.

By Corollary 21 there exists a neighborhood U of x+ ty in 〈x+ ty〉 such
that, for every v ∈ U , (Xi, A(v)) has an R-complement. Thus if x + Ry ⊆
〈x+ ty〉 then there exists a real number ε > 0 such that (Xi, A(x + (t +
εy)) has an R-complement, or equivalently, R-clct(Xi, A(x);A(y)) ≥ t + ε
for all i � 0. On the other hand, by construction every xi ≤ x,Bi =
A(xi) ≤ A(x) and yi ≤ y, Fi = A(yi) ≤ A(y) > 0; by (1) ρ(X) = 1. Hence
R-clct(Xi, A(x);B(x)) ≤ ti: for every curve C on X and t′ > ti,

(C.A(x) + t′A(y)) > (C.A(x) + tiA(y)) ≥ (C.Bi + tiFi) = 0

by (3). So, ti ≥ t+ ε, a contradiction. This proves that B+RF 6⊆ 〈B + tF 〉,
where B = x ∈ Γb, F = y ∈ Γf .

For Addendum 85 notice that if B, 0 6= F ∈ Q and B + RF 6⊆ 〈B + tF 〉
then t is rational: (B + RF ) ∩ 〈B + tF 〉 = {B + tF}.

Similarly we can treat bd-pairs.

13 Open problems

It is expected that in most of our results and, in particular, in most of our
applications we can omit the assumption to have wFt but bd-pairs should
be of Alexeev type.

Example 16. Let E be a complete nonsingular curve of genus 1 and P,Q ∈ E
be two closed points on E. Then P = p − q is a numerically trivial Cartier
(b-)divisor, in particular, nef. Thus (E,P) is a bd-pair of index 1 in the
Birkar-Zhang sense but in the Alexeev sense only if p = q and P = 0. The
pair (E,P) has an R-complement if and only if P ∼Q 0, that is, a torsion.
Since the torsions are not bounded, n-complements of those pairs are not
bounded too.
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Notice also that (E,P) is a maximal lc pair. But the lc indices of those
pairs are also not bounded.

Thus general bd-pairs are a very good instrument for wFt morphisms but
for general morphisms it is expected that a generalization of our results works
only for Alexeev bd-pairs (X/Z,D+P) of index m. Such a pair or, for short,
Alexeev pair of index m is an Alexeev pair (X/Z,D + P) with P =

∑
riLi

and 0 ≤ mri ∈ Z (cf. Conjecture 3 and Corollary 34). Notice also that we
collect all mobile linear systems in P and with one fixed prime divisor in D.

Conjecture 1 (Existence and boundedness of n-complements). It is ex-
pected that Theorems 1, 2, 3, 17 and 18 hold without the assumption that
X/Z 3 o has wFt. Additionally we can relax the connectedness assumption
on Xo and suppose instead that the number of connected components of Xo

is bounded (cf. Addendum 1).
The same expected for Alexeev pairs of index m (cf. Conjecture 3 below).

The conjecture holds in dimension d ≤ 2. Methods of the paper allows to
prove Theorem 3 in dimension d ≤ 2 with the existence of an R-complement
instead of a klt R-complement in (1) of the theorem (cf. Examples 11, (1-3)
and [Sh95, Inductive Theorem 2.3]). In this situation assumptions (2-3) of
Theorem 3 and Theorems 17 and 18 are redundant. See n-complements for
d = 1, essentially, for P1 in Examples 3, 13.

Most of our applications follows directly from results about n-complements.
The following result also follows from the boundedness of n-complements.

Corollary-Conjecture 1 (Boundedness of lc index). Let d be a nonnegative
integer and Γ ⊂ [0, 1] be a dcc subset. Then there exists a finite subset
Γ(d) ⊆ Γ and positive integer I = I(d,Γ), depending only on d and Γ, such
that, for every maximal lc 0-pair (X/Z 3 o,B) with dimX = d and B ∈ Γ,

(1) B ∈ Γ(d);

(2) 〈B〉 is bounded; and

(3) I is an lc index of (X/Z 3 o,B).

The same is expected for maximal lc Alexeev 0-pairs (X/Z 3 o,B+P) of
index m with Γ(d,m),I(d,Γ,m) depending also on m.
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Proof-derivation. Indeed, we can use the proof of Corollary 31. However,
before we need to derive nonwFt versions of Theorem 21 and of Corollary 21.

In particular, the last conjecture includes the global case with a rational
dcc subset Γ ⊂ [0, 1]: every 0-pair (X,B) with B ∈ Γ of a bounded dimension
has a bounded (global) lc index I, that is,

I(K +B) ∼ 0.

Moreover, for a proof of Conjecture 1, two extreme cases are important: Ft
pairs and global 0-pairs with B = 0 and canonical singularities, known as
Calabi-Yau varieties. So, the following very famous conjecture is indispens-
able for the theory of complements and possibly related to topology (cf. [FM,
Theorema 6.1]).

Conjecture 2 (Index conjecture). Let d be a nonnegative integer. Then
there exists a positive integer I = I(d) such that, every complete variety or
space X with dimX = d, only canonical singularities and K ≡ 0 has index
I:

IK ∼ 0.

E.g, if we assume additionally that X has only canonical singularities,
then I(1) = 1, I(2) = 12 (classical) and

I(3) = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19,

the Bauville number. The next indices I(d), d ≥ 4, and their existence is
unknown. We know that, for every variety or space in Index conjecture,
K ∼Q 0, that is, there exists an index [A05, Theorem 0.1,(1)].

A reduction to Ft varieties and varieties of Index conjecture uses the
LMMP and the following semiampleness.

Conjecture 3 (Effective b-semiampleness; cf. [PSh08, (7.13.3)]). Let d be a
nonnegative integer and Γ ⊂ [0, 1] be a rational dcc subset. Then there exists
a positive integer I = I(d,Γ) such that, for every 0-contraction (X,D)→ Z
under assumptions 7.1 and with dimX = d,Dh ∈ Γ, IDmod is b-free, that
is, IDmod = M , where M is a base point free divisor on some model Z ′ of
Z. In other words, (Z,Ddiv + Dmod) is an Alexeev log pair (not necessarily
complete) of index I.

The same is expected for 0-contractions (X,B+P)→ Z of Alexeev pairs
(X,B + P) of index m with I(d,Γ,m) depending also on m.
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Corollary-Conjecture 1 and construction of n-complements for fibrations
can be reduced to the global case as for Ft fibrations. In its turn, if a global
0-pair (X,B) has a nonzero boundary then the lc index conjecture can be
reduced to a Ft variety X or to a nontrivial Ft fibration (X,B)→ Z. In the
latter case we can use dimensional induction for the base Z. If dimZ ≥ 1, we
get a bd-pair (Z,Bdiv +Bmod) with possibly nonFt Z. As we already noticed
the induction will not work for bd-pairs of Birkar-Zhang pairs but is expected
to work for Alexeev pairs. As for Ft varieties in the most critical for us
situation B has hyperstandard multiplicities. Then according to Conjecture 3
(X,Bdiv + Bmod) is actually an Alexeev pair of bounded index.

It is well-known [PSh08, Corollary 7.18] that the Alexeev log pair (X,Bdiv+
Bmod) can be easily converted into a log pair (X,Bdiv +Bmod) for a suitable
boundary Bmod with a finite set of rational multiplicities (depending only on
the index of the Alexeev pair).

Corollary 34. Let (X,D + P) be an Alexeev (log, lc, klt) pair of index
m. Then there exists an effective divisor P such that (X,D + P ) is also a
(respectively, log, lc klt) pair, mP ∈ mPX and SuppD, SuppP are disjoint.
In particular, P ∈ [0, 1] ∩ (Z/m).

Addendum 87. D(X,D + P ) ≥ Ddiv = D(X,D + PX)− P.

Addendum 88. Let Γ be a set of real numbers. If additionally D ∈ Γ then

B + P ∈ Γ ∪ ([0, 1] ∩ Z
m

).

Addendum 89. If additionally Γ satisfies the dcc (in [0, 1], in a hyperstan-
dard set) then

Γ ∪ ([0, 1] ∩ Z
m

).

satisfies the dcc (respectively, in [0, 1], in a hyperstandard set).

Proof. (Cf. [PSh08, Corollay 7.18].) Take a crepant model f : (Y,DY +P)→
(X,D + P) such that P is free over Y , that is, P =

∑
riLi and every Li is

a base point free linear system on Y . Since (X,D+P) is an Alexeev pair of
indexm, mri = mi is a nonnegative integer. By the Bertini theorem we can
pick up mi rather general effective divisors Ei,j, j = 1, . . . ,mi in every linear
system Li such that

P =
∑

f(Ei,j)/m
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satisfies the required properties. The inclusion mP ∈ mPX means that every
summand f(Ei,j) of mP belongs to the corresponding linear system Li on
X. The klt property of (X,D+P ) follows from that of (X,D+P) if m ≥ 2.
Otherwise we replace m = 1 in our construction by any positive integer ≥ 2.

Notice that log discrepancies of (X,D+P ) are strictly larger than that of
(X,D + P) only over Supp∪Ei,j. The other log discrepancies are the same.
This proves Addendum 87.

Two other addenda are immediate by definition.

The most important case of Index conjecture is the case with a variety
X having only canonical and even terminal singularities. Otherwise, we can
blow up a prime b-divisor P of X with a log discrepancy a = a(P ;X, 0) < 1.
A result is a crepant 0-pair (Y, (1 − a)P ) with 0 < 1 − a ≤ 1. Every such
case can be reduced as above to Ft varieties or varieties of Index conjecture
of smaller dimension. However, this works for all lc or klt 0-pairs X of given
dimension d if a belongs to an acc set. This follows from the acc of mld’s
[Sh88, Problem 5] for mld’s a < 1 because then 1 − a form a dcc set in the
dimension d. Actually, we can use much weaker and already known results
about n-complements when a is sufficiently close to 0. In this situation
a = 0, 1 − a = 1 and Index conjecture again can be done by dimensional
induction. The same works for a which are not close to 1. But a < 1
are actually not close to 1 by the following very special case of the acc for
mld’s conjecture. If singularities are canonical we can blow up all P with
a(P ;X, 0) = 1; in this case 1− a = 0.

Conjecture 4 (Gap conjecture). Let d be a nonnegative integer. Then there
exists a positive integer a < 1 such that if X 3 P with dimX = d is a-klt,
that is, the mld of X at P is > a, then X 3 p is canonical, that is the mld
of X at P is ≥ 1.

Index and Gap conjectures are established up to dimension d = 3 [J,
Theorem 1.3 and Corollary 1.7] [LX, Theorem 1.4].

Finally, we state the following ε-lc strengthening of n-complements. How-
ever, we use a instead of ε.

Conjecture 5 (a-n-complements; cf. [Sh04b, Conjecture]). Let a be a non-
negative real number. Assume additionally in Theorems 1, 2, 3, 17 and 18
that (X/Z 3 o,B) has an a-lc over o R-complement then in all of these the-
orems it expected the existence an a-n-complement (X/Z,B+) with n ∈ N ,
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that is, additionally (X,B+) is a-lc over o. The set of complementary indices
N is this case depends also on a. However, Restrictions on complementary
indices are expected to hold only for I but not for approximations if a is not
rational.

The same expected for Alexeev pairs of index m.

To remove the wFt assumption in the conjecture we need the following
concept.

Definition 10. Let (X/Z,D) be a log pair and δ be a nonnegative real
number. The pair is strictly δ-lc if for every b-0-contraction

(X,D)
ϕ
99K (Y,DY )

f ↓
Z

such that

(1) ϕ is a crepant birational 1-contraction;

(2) f is a 0-contraction as in 7.1,

(Z,DY,div) is δ-lc, that is, every multiplicity of the b-R-divisor DY,div is≤ 1−δ,
or, equivalently, the bd-pair (Z,DY,div +DY,mod) is δ-lc.

Notice that the strict δ-lc property implies the usual δ-lc property of
(X,D). The converse holds for δ = 0 by (6) in 7.5. The converse also
is expected for wFt X/Z but with a different δ′ ≤ δ but not in general,
e.g., for fibrations of genus 1 curves. Of course, the strict δ-lc property
means exactly the boundedness of adjunction constants (multiplicities) l = lP
in 7.2 for every vertical prime b-divisors P of Y with r = rP = 1 (cf. [GH,
Theorem 1.6, (3)]).

Addendum 90. In Conjecture 5 we can replace the wFt assumption by the
strict a-lc property over o: the exists δ ≥ 0 such that

δ > 0 if a > 0; and

there exists a strict δ-lc over o R-complement of (X/Z 3 o,B).

But still we keep the assumption that (X/Z 3 o,B) has an a-lc over o R-
complement.

The boundedness of lc indices expected for indices of maximal a-lc 0-pairs
under additionally the strict δ-lc property over o.
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We already established the conjecture for a = 0. So, corresponding n-
complements are better to call lc n-complements.

Notice that the a-lc property over a point o means that a(P ;X,B) ≥ a
for every b-divisor of X over o. In particular, if (X/o,B) is global and a > 0
then by BBAB projective Ft varieties X are bounded in any fixed dimension
d and the conjecture can be easily established by approximations as for lc n-
complements in the exceptional case of Section 5 if positive multiplicities of B
are bounded from below. However, the case with small positive multiplicities
of B is already difficult. This case is interesting because then a can be very
close to 1 but not above 1 in the global case. The nonglobal case is much
more difficult and related to other nontrivial conjectures [BC, Conjectures 1.1
and 1.2].

Notice also that if a is not rational then Restrictions on complemen-
tary indices related to approximations can collide with a because for a-n-
complements, the a-lc property implies m/n-lc property with upper approx-
imation m/n of a.

Conjecture 5 does not hold for nonFt morphisms X/Z. For instance,
minimal nonsingular fibrations of genus 1 curves over a curve have fibers with
unbounded multiplicities. Thus lc indices of a canonical divisor near those
fibers are unbounded too. This contradicts to related Index conjecture for
1-lc maximal 0-pairs (for a = 1). However this does not give a contradiction
if additionally the pair is strictly δ-lc (see Addendum 90).

Possibly, it is better to start from Addendum 90 and [BC, Conjecture 1.2]
because they imply Conjecture 5.
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