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Elementary Properties of Sheaves

Sheaves were introduced into complex analysis in the work of H. Cartan and I-P.
Serre in the early 1950s, and they have played an important role since then. In part,
through the notion of coherence, they provide a convenient and relatively simple
machine for handling some of the rather complicated local properties of holo-
morphic functions and holomorphic varieties; these properties were discovered and
their significance noted in the fundamental work of H. Oka. In part, through the
cohomology theory of sheaves, they provide a useful systematic procedure for
passing from local results to global results. The basic properties of sheaves and
sheaf cohomology will be presented here fairly much from the beginning, not
presupposing any previous knowledge of the subject. Those readers already familiar
with some or all of these general properties can skip this section.

1. DEFINITION. A sheaf of abelian groups over a topological space M is a topological space

¥ with a mapping n: ¥ - M such that:

fi} = is a surjective local homeomorphism.
(it} 2”1 (Z} has the structure of an abelian group for each point Z & M.
{ti} The group operations are continuous in the topology of .

Sheaves of other algebraic structures, such as complex vector spaces, rings,
modules over a fixed ring, and so on, can be introduced correspondingly by making
the obvious modifications of the preceding definition. To simplify the exposition
the discussion here will for the most part be limited to sheaves of abelian groups;
the extensions to other cases generally present no problems unless otherwise noted.
The mapping n in the preceding definition is called the projection. The subset
n Y2} < % iscalled the stalk of the sheaf % over the point Z ¢ M and is also written
. It is clear that for any subset X © M the inverse image » X} <= & can be
viewed as a sheaf of abelan groups over X with the projection =; this is called the
restriction of the sheal & to the subset X and is denoted by 1 X. Another useful
auxiliary notion is the following.

2, DEFINITION.  If % is a sheaf of abelian groups over M with projection m, then a section of

the sheaf & over a subset X 52 M is a continuous mapping f: X — & such that the

i
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composition n o f 1 X -» X is the identity mapping. The set of all sections over X will
be denoted by I'(X, &),

Let & be a sheaf of abelian groups over M with projection =, and consider a
point s € & lying over a point Z = n{s} ¢ M. From property {i} of Definition 1 it
follows that there is an open neighborhood U, of the point s in & such that the
restriction of # to the set U is a homeomorphism between U, and the open
neighborhood U = n(U.,} of the point Z in M. The inverse of this restriction is then
clearly a section of the sheaf % over U. It is thus evident that for any point of &
there is a section of & over some open subset of M passing through that point, and
that indeed the images f(U) of the sections fe I'(U, %} over the open subsets
U < M are a basis for the topology of & Moreover if /'« T(U, %) is any section
over U passing through s e &, then f~(U,) is ani open neighborhood of Z, so that
f coincides with the inverse of the projection mapping locally. Consequently any
two sections f, g € (U, #) that agree at a point Z ¢ U must also agree in a full
open neighborhood of Z.

The meaning of condition (i} of Definition | may not be altogether clear, so
a few words of explanation should be inserted here. Note that the group operations
in the sheal & are defined only on the individual statks of %, The Cartesian product
S x & can be given the natural product topology, and the subset

Fx,F={sneF xFnls=al}l ¢ ¥ x ¥ (1

which is called the fibred product over n, inherits a topology as a subset of the
topological space ¥ x % Now the group structures on the stalks of & can be used
to introduce the mapping o: % x, & — & that sends a point (s, ) € ¥ x_ ¥ to the
point ¢(s, £} = s ~ t € &, where Z = n{s) = n(r), and condition (iH) means precisely
that this is a continwous mapping. Note that if f, ge I'(X, %) for some
subset X < M, then it is possible to define & mapping f — g: X - & by setting
{f — gHZ) = {Z) — g(Z) e #,. But this is just the composition of the continizous
mapping [ x g: X — % x_ % that sends a point Z € X to the point ( f{Z), g{Z))
Y %, & F x Y and the continuous mapping o1 % %, ¥ — & and so is also
contingous, and hence f — e F(X, ). That means that the set I"(X, %) has the
natural structure of an abelian group as defined by pointwise group operations on
the sections. In particuiar, if / 6 (U, %) is any section over an open neighborhood
U, ofapoint A € M, then [ — f & ['(U,, %) Thus the mapping that sends any point
Z e M to the zero element in the group % is locally and hence globally a section
of & over M. The restriction of this zero section to any subset X & M is the zero
element of the group I'(X, #).

To see at least one example, albeit a trivial one, consider a topological space
M and an abelian group ¢ with the discrete topology. Let & = M x G have the
natural product topology, and let m: & -— M be the natural projection. It is evident
that the space .% with the mapping = is a sheal of abelian groups over M; this is
called the trivial sheaf over M with stalk G and is often denoted merely by G. The
sections of this sheaf over any connected subset of M can naturally be identified
with the elements of the group G. In particular, when G is the zero group the
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resulting trivial sheaf, which might be considered as the trivial trivial sheaf, is usually
called the zero sheaf over M and is denoted merely by 0,

3. DEFINITION. A subsheaf of a sheaf & of abelian groups over M is an open subset B = %

such that #, is a subgroup of &, for each point Ze M.

It is evident that a subsheaf # of a sheafl & of abelian groups is itself a sheafl
of abelian groups over M; the condition that # be an open subset is of course
essential for this to be true. For an exampie, if # is any sheaf of abelian groups over
M, then the image of the zero section 0 e T(M, ¥) is a subsheal of ¥, the zero
subsheaf of &. For another example, if & is any sheaf of abelian groups over M and
L/ is an open subset of M, then # = { 2. #5 is a subsheaf of 7, where

e & i ZeU
<7 o if Z¢U 2

Here too it is essential that U be an open subset of M. This sheal 2 coincides with
# on the open subset U/ = M and is the zero sheaf on the closed complement of /.
If # is a subsheaf of a sheaf & of abelian groups and ¥, = ¥, /%, is the quotient
group of the stalks over Z € M, then introduce the set 7 = Uzen T2 Tt is asimple
matter to verify that, with the mapping ' 9 - M defined by w{¥,) = Z and with
the natural quotient topology derived from #, the set 7 is also a sheaf of abelian
groups over M. There is a natural mapping % — 7, and a subset of " is open in
the natural guotient topology precisely when its inverse image is an open subset of
& The sheal 7 is called the quotient sheaf of & by # and is written & = %/, As
an example, if # is the zero subsheaf of ¥, then #/4# == . As another exmﬁ;aie, if
# = & is the subsheaf (2), then the guotient sheal 7 = /% has stalks

t

S

z =

0 if ZeU
¥ i ZeU )

This sheaf coincides with % on the closed subset M — U % M and is the zero sheaf
on the open subset U,

4. DEFINITION. If # and & are sheaves of abelian groups vver M, then o sheaf homo-

morphism ¢: # —~ & is o continuous mapping such thar ${H,) & Fy for each poinr
Ze M and the restriction $1Rz: Ry~ 5, is a group homomorphism. A sheaf iso-
morphism is u sheaf homomor phism with an inperse that is also a sheat” homomaorphism.

For example, if # is a subsheaf of &, then the inclusion # — % and the natural
mapping & ~» /% are both sheaf homomorphisms. Note that for any sheaf homo-
morphism ¢; # - % the composition ¢ o [ of ¢ with a section Jel(X,#) isa
section ¢ o f'e I'(X, %), thus, ¢ induces a homomorphism ¢*: I'(X, #) - I'(X, S}
between the groups of sections over any subset X < M. It follows quite easily from
this that a sheqf homomorphism ¢: & — & is alwa vs an open mapping. The kernel of
a sheaf homomorphism ¢: # - % is the subset #HO) < #, where O is the zero
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subsheaf of & it is clear that the kernel of ¢ 1s a subsheaf of #. The image of a'shegk’
homomorphism ¢: # — & is the subset $(#) < &, since ¢is an open mapping, ?s
is also clear that the image of ¢ is 2 subsheaf of % A sheaf homomorphism é:'% - S
is an isomorphism if it is injective—that is, has as kernel the zero subsheaf of @—and
ts also surjective~-that is, has as image the fuli sheaf & Asa very useful terminology,
a sequence of sheaves and sheaf homomorphisms

- [?(i~1 $u-yg ‘9’; 4 i .9;;.” BN (4)

is called an exact sequence of sheaves if for each n the image of 4, ., is exactly the
kernel of ¢,. In particular,

0 s F 2y o

is an exaet sequence of sheaves, where 0 denotes the zero sheal and i s the natural
inchusion of 0 as the zero subsheaf of #, precisely when ¢ is injective; and

F o F o

is an exact sequence of sheaves, where 0 again denotes the zero sheaf, precisely when
i 1s surjective. An exact sequence of sheaves of the form

0 s @ s 7 2, 7 0 {5

is called a shori exact sequence of sheaves. The exactness of the sequence {5} means
that ¢ is injective, \ is surjective, and $(%#) is precisely the kerncl f'af _n,lt. leus, ¢ can
be viewed as an embedding of # as a subsheaf of %, and ¥ exhibits 5 as being
isomorphic to the quotient sheaf »/#. The exact sequence of sheaves (4) can be
rewritten as a collection of short exact sequences of sheaves of the form

0 — R, — % P @ s 0

where 4, is the kernel of the homomorphism ¢,: %, - Huiys here B, is a subsheaf
of &, and i: #, - &, is merely the inclusion mapping,

The actual construction of sheaves in practice usually fol@ows a rathc:j standard
pattern, but before deseribing that construction it is convenient to COI}.SEdEI“ sepa-
rately and more abstractly the purely algebraic aspect of Eha{cons#ruct:on, since it
will be used again later in another context. Suppose that I is a .d:rected set: that
means that I is a partially ordered set, so there is a binary relat‘mn a4 % f among
the elements of ! such that « £ « and that o < fand By imply x5y, and
moreover for any elements «, f of T there must be zm'other eiemenft vof I SilC%’l that
% yand f £y A direct system of abelian groups indexed by fisa cokiccngn of
abelian groups G,, one for each element € 1, an_d of group homomqrph;sms
Ppat U, —» G whenever « £ f, such tha? qﬁmaas the identity ho_momorphlisrn ang
GopPss = ¢, Whenever 2 < f 5 y. 1T {G, ) isa direct system of abelian groups mdfry.ce
by I, then on the disjoint union U“ G, introduce an equivalence relation by writing

B
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g: ~ gy for elements g, G gy & Gy precisely when there is an index y such that
2= f<y and P9} = ¢y(gs). To verify that this is an equivalence relation in
the ordinary sense it is clearly only necessary to demonstrate transitivity, since
both symmetry and reflexivity hold quite trivially. Suppose then that s ~ gy and
95 ~ g, 50 that there is an index & such thatx < 8, 8 < 8, and Gl = gééﬂ{g#) and
there is an index ¢ such that BF=Zeyseand Buplag) = #.,04,). There must also be
anindex { for which § < Zand ¢ % {, and upon using all these results, it follows that
¢Ca{gz) == ¢':§(¢5a(ga)) = ¢;Jf¢aﬁ(93}_} == ‘:ff':p{gg} = %z(@xy(.@ﬂ)) = ¢Ez{¢sy€gy)) = 4}5;;{9‘«,}» 50
that g, ~ g, and this is an equivalence relation as desired. The set of equivalence
classes will be calied the direct limit of the direct system of abelian groups {(,} and
will be denoted by dir lim, G,. Any two equivalence classes g’ g" e dir lim, G, will
have representatives 94, 95 in some common group G, and since the mappings é,,
are group homomorphisms, it follows quite readily that the equivalence class of the
element g — g/ depends only on the equivalence classes g’ ¢” and not on the
particular choice of representatives. That equivalence class will be denoted by
g~ ¢", and it is a straightforward matter to verify that this operation determines
the structure of an abelian group on dir lim, G,. The mapping ¢,: G, -» dir lim, G,
that associates to each element dp € Gy its equivalence class is evidently a group
homomorphism, and clearly g, = #,4,; whenever f§ < 2

5. DEFINITION. 4 presheaf of abelian groups over a topological space M is a collection of

abelian groups ¥, indexed by the open subsets U < M and group homomor phisms
Pyt &y — S associated to the inclusion relations U 2 V, such that Py is the identity
homomorphism and Pwy Pry = Py whenever U o V o W

To each sheafl & of abelian groups over M there is the naturally associated
presheaf for which Sy = (U, %) and vy DU, ) -0 TV, % is the restriction to
the subset ¥ < U of any section Se ', %) More interestingly and less obviously,
to each presheaf {7, oy} of abelian Broups over M there is a naturally associated
sheaf, constructed as follows. The collection of ail open subsets s a partially ordered
set, when the ordering U = Vis taken to mean that U o ¥ For any fixed point
£ & M the subcollection Tz consisting of those open subsets of M containing Z is a
directed set under this partial ordering, since whenever U, V& I, then for instance
W=UnVel,andU £ Wand v = W From the definition of a presheaf it follows
immediately that the collection of groups F; for U e [, and of homomorphisms p,,,
for U £ V forms a direct system of abelian groups indexed by I, so it is possible
to introduce the direct imit group #, = dir lim,, ;. Note that for any U & [, there
is a natural homomorphism Prut Sy - F. Then let & = Uzen Fy, introduce a
mapping m: % — M by setting n(%,) = Z, and note that #7'(Z) = %, has the
structure of an abelian group. Finally for any open subset 17 < M and any element

v € ¢ introduce the subset gy = {ppdfi}: Ze Ul © 7 and topologize & by
taking these subsets { #{fu}) as a basis for the open sets. That these subsets can
indeed be taken as a basis for a topology follows quite easily: whenever s & p(f,) n
pllihthen Z = n(sle U Vand s = Pzl fud = pup(fi) so from the definition of a
direct limit there must be some W e I, such that U/ S W, V= W and Pwel fo) ==
Pord ) = fy & Fpithen W < U Vandse p(f,) < 2 luh ol £ ) 1t 1s quite clear
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that with this topology on .7 the mapping = is a local homeomorphism, and since
pliu) = play) = p{fu — gy} for any elements i, g, € ., it is a simple matter to
verify that the group operations on % are continuous. Thus 7 is a sheaf, naturally
and canonically constructed from the presheaf {.%,, py, 1.

To gach sheaf # of abelian groups over M there is the naturally associated
presheafl {T'(U, ), pyy}, and to this presheaf there is in turn a naturally associated
sheaf 7. Singe for every point s & & there is a section f; e F(U, %) over some open
subset I/ & M passing through s, and since any two sections of & that agree at a
point necessarily agsee in a full open neighborhood of that point, an examination
of the construction of the sheaf & readily shows that there is a natural identification
of & with the original sheaf % On the other hand, to each presheaf {%,. pyy} of
abelian groups over M there is the naturally associated sheaf &, and io this sheaf
there is also in turn the naturally associated presheaf {T'(U, %), By} but the fatter
presheaf may be quite different from the former presheaf. For example, consider the
presheaf of abelian groups {4, py, } over some topological space M where Fy =1
for each open subset U = M and pyy, is the zero homomorphism for each inclusion
reiation U/ =2 V. The associated sheaf is just the zero sheaf &% = 0, and its associated

presheaf has (U, ) = 0 for each open subset U < M. It is evident that this

unpleasant behavior can be ruled out by considering only those presheaves that are
associated to sheaves, and indeed only by such a limitation. That raises the problem

of characterizing such presheaves, for the solution of which problem the following

notion is basic.

6. DEFINITION. A4 presheal” {#,, pyy} of abelian groups over  topological space M is '

complete if":

(i} Whenever U is an open subset of M, {UL} is an open covering of U, and f & 5, is
an element such that iju(f) = {) for each j, then f = 0.

(i) Whenever U is an open subset of M, {U,} is an open covering of U, und fe vy,
are elements such that Pu, e, v L) = Py, v, 0l f) for all j, k, then there is an
element f & Yy such that py () = f; for each .

1. THEOREM. 4 presheaf’ of abelian groups is the associated presheaf to a sheaf precisely

when that presheaf is complete.

Froof. Tt is obvious that the associated presheaf to any sheafis a complete presheaf,
On the other hand, let {#, pyy} be a complete presheaf over some topological
space M., and let 7 be the associated sheaf. It is clear from the construction of the
associated sheaf that for each open subset U < M there is a natural homomorphism
g S - T(U, F% indeed, it is merely the mapping that assigns to any element
Ju € # the section associated to the basic open set p{f;) € & in the topology of 7.
It is clear that to complete the proof of the theorem it is sufficient just to show that
this homomorphism p is an isomorphism. First consider an element f,, ¢ 5, such
that p(fy) = 0. That means that for each peint Z ¢ U the image p,,(f;) = 0¢ %,
and hence from the definition of the direct limit there must be some subneighbor-
hood U, « U of Z such that p,.{f,) = 0. A countable subcollection of such
neighborhoods U= UzJ will cover U, and it then follows from condition (i} of

N 0 s D T oo A b e i
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De!?mition 6 t_hat j:U = {, 50 that p is an injective homomorphism. Next consider an
arbatrar){ section f € [(U, &). In some open subneighborhood U, % U of any point
Z ¢ U this section must coincide with some basic open set pl fy,,) in the topology of
. A countable subcollection of such neighborhoods U, == Uy will cover U, and the
clements f; = fuy, have the property that P, v A0~ Py, n(f) lies in the
kernel of the natural homomorphism 20 Sy, e, = VU Uy, #). Hence by what
has already been proved, py .y, 1 (f) = Py, ) 80 it follows from property
{ii) of Definition 6 that there is an element Tv € #, for which p{ f,,) = F. That shows

that the homomorphism is also surjective and thereby concludes the proof,

The preceding shows how to construct sheaves from presheaves, It is natural
then to ask how to construct homomorphisms of sheaves in terms of presheaves,

8. DEFINITION. 4 homomorphism ¢: {#,. p,;} ~ 1% oyy} between two presheaves of

abelian groups over M is a collection of group homomorphisms ¢: Ry~ ¥, such thar
Py Py = Oy ptby whenever U o V. 4 homomorphism i is an isomorphism i1 all the
homomorphisms ¢, are isomorphisms.

If {#, 6,y ) is a presheal of abelian groups and #,; are subgroups of B, such
that oy, {(#,} = #, whenever U 2 ¥, then {#y, 0p) is also & presheaf, called
naturally enough a subpresheaf of {%,, o, }. The inclusion mappings iy #, — 5,
then determine a presheaf homomorphism, If ¢ { Ry, pyy} = (%, 6y ) is 2 homo-
morphism between two presheaves and Ay is the kernel of the group homo-
morphism ¢,,: #y, — %, for each U, then clearly p, () © #, whenever U 2 ¥,
50 {.¥Yy, pyy} is a subpresheaf of {#y, ppy )i this presheaf is called the kernel of the
homomorphism ¢. Furthermore if Fy is the image of the group homomorphism
it #y — Sy for each U, then clearly a,,(77) o Ty whenever U 2 ¥, so {7y, 0,
is a subpresheafof {%, g, |; this presheaf is called the image of the homomorphism
¢ A homomorphism of presheaves §: {#e, prot = {#, 0py) is evidently an isow
morphism precisely when its kernel is the zero subpresheal of [#,, gy | and its
image is all of { %, ,,}. It is then possible to introduce exact sequences of pre-
sheaves in the obvious manner.

3. THEOREM. 4 homomorphism $: {:Zi?vl Pvut = (%, 6yy} between presheaves induces a

natural homomorphism g% # — F between the associated sheaves, in such a manner
that the identity presheaf homomaorphism induces the identity sheaf homomor phism
and (¢h o Yy* = ¢* o i*. Moreover if

. # - -
0 == {Ry, oo} = (S oy} P (Tt s B (6)

Is an exact sequence of presheaf homomorphisms, then the induced sequence of
homomorphisms of the associated sheaves

o~ —~

0 — & -2 7 2,5 Ly . (7

is also an exact sequence.
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Proof  Notethatif Ze Un Vandif fi; e #,. f, & 9, represent the same element
in the direct limit .«5?4 = dir lim, #y;, then there must be an open set W e I, such
that U g WOV = Wand puyl £y} = pwp (). Butthen W < U Vand op g, (£, =
Pwlowulfu)) = owlpwyify)) = Fwy(dv(fy)), 50 that dy(fi,) and ¢y { £y ) represent the
same element in the direct limit % = dir lim; %, Thus the homomorphisms ¢,
induce a well-defined mapping ¢3: #, — %,, which is clearly a group homomor-
phism. These mappings moreover take a basic open set p(f,} in # 1o the basic open
set a{gy(f)) in # and so determine a continuous mapping ¢* # — % which must
be a sheaf homomorphism. To demonstrate that the exact sequence of presheaf
homomorphisms {6) induces an exact sequence (7) of sheaf homomorphisms it is
sufficient to show that for each point Z € M the sequence

0 — @, M 3 M 5 g

is an exact sequence of abelian groups. If £, & %, represents an element in the kernel
of ¢¥, then ¢y(f) represents zero in %, hence, there is an open set ¥ such that
ZeV o Uand0 = gupldpl fu)) = dlpyol fu)). However since ¢, is injective by the
exactness of {6), it follows that p, ., ( fi,} = 0 and hence that f;; necessarily represents
the zero element of #,. It is of course obvious that y¥é¥ = (Yh)¥ = 0. gy e %
represents an element in the kernel of ¢}, then i (g,) represents zero in 77; hence,
there is an open set ¥ such that 0 = 1, {4y, (g;)) = ¥ loy {9y 3 However from the
exactness of (6} it follows that there is an element f, & #, such that oy p(g,) = ¢, ()
and hence that g, represents an element in the image of ¢# Finally since the
homomorphisms ¥ %, — 7, are suriective by the exactness of (6), it is obvious
that ¥ is surjective. What remains to be shown is rather clear, and that suffices for
the proof,

The relation between sheaves and presheaves is actually rather subtler than
might be imagined from the simplicity of the preceding discussion. In fact the
exactness of a sequence of presheaf homomorphisms as defined above is much more
restrictive than the exactness of a sequence of sheaf homomorphisms, and much less
useful though convenient in some constructions. To see this, consider the problem
of obtaining a converse to the preceding theorem; part at least is also trivial, as
follows.

10. THEGREM.  For any short exact sequence of sheaves of abelian groups over M of the form

0 —s 9 iy L7 LA N 0 {8}

and any subset X < M, there is an induced exact sequence of sections of the form
0 — (X, #) 25 TX, 2 25 1, s ' 9
Proof.  In the exact sequence of sheaves (8) the homomorphism ¢ can be viewed as

an embedding of # as a subsheaf of %, and the homomorphism i can be viewed as
the natural mapping from .# to the quotient sheaf & /¢{%#). For a subsheaf # < &

L W Y S R
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it is obvicus that the inclusion it # — % induces an injective homomorphism
*: (X, #) = F'(X, %) over any subset X < M, and that the image of * is exactly
the kernel of the homomorphism (X, ) TEX, #/#) induced by the natural
mapping & — /4. That is alf that is needed to conclude the proof.

Almost trivial examples show that (9) cannot always be extended to 1 short
exact sequence-—that is, that ¢* is not necessarily surjective. Consider for instance
the trivial sheaf C over a connected topological space M. Let A and B be two distinct
points of M and # < € be the subsheaf having as stalks

4, J€ il Z#4andZ#B
270 if Z=AdorZ =8

and let 7 be the quotient sheaf 7 = C/#, 50 that

T 0 if Z#AdandZ # R
TETIC O Z=AorZ =B

Sections in I'(M, .7} can have distinct values at the points 4 and B, but any section
in I'(M, C) must have the same value at all points of M, thus, the homomorphism
UiM, €} — T(M, 7} is not surjective. On the other hand, though, if &/ = M — B,
then the homomorphism T(U, €} - T'(U, '} is clearly surjective. One of the prin-
cipal parts of the theory of sheaves is devoted to examining obstructions measuring
the extent to which surjective sheaf homomorphisms do not induce surjective
homomorphisms of sections; that leads to the cohomology theory of sheaves, to be
developed in subsequent scctions. Before turning to that theory, though, it is
instructive to introduce some additional and more interesting examples of sheaves,
after one prefiminary general remark.

It is useful to note that if ¢: {Ry, pyy ) — {4, oyy | is & homomorphism of
presheaves and if both {#y, pyy } and { %, oy, } are complete presheaves. then the
kernel of 4 is also a complete presheaf; the verification is trivial and will he left as
an exercise. On the other hand, the image of 4 is not necessarily a complete presheal
Indeed if ¢ # — % is a surjective sheaf homomorphism such that ¢*: I'(M, #) -
I"(M, &) is not surjective, then the induced homomorphism ¢* of the associated
presheaves has an image that is clearly not a complete presheaf. The question of the
completeness of images fs thus closely related to the question of extending Theorem
10, and the example of the preceding paragraph flustrates that.

Examples. Let M be an arbitrary topological space. To each open subset U ¢ M
associate the ring %, of continuous complex-valued functions in U, and to each
inclusion relation U < ¥ associate the natural restriction homomorphism pyy:
By > 6y. It is obvious that this is a presheaf of rings over M, even a complete
presheaf of rings. The associated sheaf % is called the sheaf of germs of continuous
complex-valued functions over M. Upon comparing the construction of the asso-
ciated sheaf and the discussion of germs of functions in section T1-A, it is evident
that the stalk 4, consists of the ring of germs of continuous complex-valued
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functions at the point Z on M; that explains the terminology. Since the presheaf is
compiete, there is a natural identification ¥y, = (L, %) Note that each ring €, can
also be viewed as an algebra over the complex numbers, and % can thus also be
considered as a sheaf of complex algebras.

Next let M be a differentiable manifold of dimension » and of class C*=. To
each open subset U < M associate the complex vector space &7 of complex-valued
C*= differential forms of degree r in U, and to each inclusion relation I7 © V associate
the natural restriction homomorphism gy, €5 — &7. 1t is obvious that this too is
a complete presheal of complex vector spaces over M. The associated sheaf 47 is
the sheaf of germs of C™ complex-valued differential forms of degree r over M. For
the special case r = 0 the sheaf #° = & of germs of C* complex-valued functions
can also be viewed as a sheaf of complex algebras over M. Note that exterior
differentiation d: &7 - &5 comrmutes with restriction and is thus a homomorphism
of presheaves. The induced homomorphism of sheaves d: £ — #*' is also cailed
exterior differentiation. In the special case d: #° — &', the kernel of this homo-
morphism is just the subsheaf of £° consisting of functions that are constant in an

open neighborhood of each point and hence is the constant sheaf C, Tt is familiar )

from advanced calculus that every differential form f of degree r > 0 satisfying
df = O can be written locally as f = dg for some differential form g of degree r — 1.
There results the de Rham exact sequence of sheaves

0o Cod bgt Sgr et Sen g (10}

I M is a complex manifold of complex dimension n, it is possible to introduce
in addition to the sheaves of vector spaces £* the subsheaves £79 < £ defined by
the presheaves {£5} of differential forms of bidegree (p, ¢); #79 is the sheaf of germs
of C* complex-valued differential forms of bidegree (p, ) over M. The decomposi-
tion of differential forms of degree r into sums of differential forms of bidegrees (p, g)
with p + g = r was discussed in section [-E. It is clear that this decomposition is

possible on an arbitrary complex manifold as well. Correspondingly the exterior

derivative can be decomposed into the sum of differential operators d = § + &,
where J: £79 — &7 Sand §: £77 — £79%* The kernel of the sheal homomorphism
G170 —» &7 is called the sheaf of germs of holomorphic p-forms and is denoted

by @7°. In particular the kernel of the sheaf homomorphism J: & — &% 1 is the sheaf §
of germs of holomorphic functions and is denoted merely by ¢, This is the associated 3

sheaf to the complete presheaf {¢, p,, }, where @y is the ring of holomorphic
functions in U and pyy is the natural restriction mapping; there is thus a natural

identification I'(U, ¢} = ¢, Note that Dolbeault’s lemma, Theorem 1-E3, implies

that the following is an exact sequence of sheaves for any index p,0 S p < m:
0 om0 lgri ligra, o prni ] grn g (1)
This is called the Dolbeault exact sequence of sheaves,

Next consider a holomorphic variety V. To each open subset U & ¥ associate
the ring , &, of holomorphic functions in U, and to each inclusion relation U, & U,

associate the natural restriction homomorphism Poo, v Oy, — v 0y . This s
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obviously a complete presheaf over V. The associated sheaf i 0 18 the sheaf of germs
of holomorphic functions over V. This can be considered either as 4 sheaf of rings or
as a sheal of algebras over the complex numbers. Here too there is a natural
identification I'(U, ;) = ¢, for any open subset U < ¥,

Ft should be pointed out particularly that in these examples the construction
of the associated sheaf is really a very familiar construction. The stalks v of the
sheaves ,.() are precisely the rings of germs of holomorphic functions on ¥ at the
point Z, as discussed in section 1I-B. On the one hand, that should serve 1o clarify
the ahstract construction of the sheaves associated to presheaves, and on the other
hand, it should also serve to indicate the significance of sheaves, atl least as sets. [t
should also help explain the terminology. The topology is introduced on sheaves
in order to permit the reconstruction of the original presheaves as continuous
sections of the associated sheaves. The sheaves themselves may provide a good deal
of tocal information, as for example ali the local properties of the rings of germs of
holomorphic functions discussed in Volume I1; but the sections of these sheaves,
the rings of global holemorphic functions for example, are realiy the primary objects
of interest. The question whether an exact sequence of sheaves feads to an exact
sequence of sections was already considered in section I-F for the special case of
the Dolbeault exact sequence of sheaves, Indeed the Dolbeault cohomology groups
of Definition I-E4 are measures of the extent to which the associated sequence of
sections fails to be exact. Theorem I-ES demonstrates that the associated sequence
of sections is exact in some cases, and Theorems I-E6 and I-B7 show the usefulness
of this exactness.



