Matrix inverse.
Syntax
R = inv(A)
Description
inv(A)
returns inverse of the symbolic matrix A
.
Examples
The statements
A = sym([2,
-1,0;
-1,2,
-1;0,
-1,2]);
inv(A)
return
[ 3/4, 1/2, 1/4]
[ 1/2, 1, 1/2]
[ 1/4, 1/2, 3/4]
The statements
syms a b c d
A = [a b; c d]
inv(A)
return
[ d/(a*d-b*c), -b/(a*d-b*c)]
[ -c/(a*d-b*c), a/(a*d-b*c)]
Suppose you have created the following M-file:
%% Generate a symbolic N-by-N Hilbert matrix.
function A = genhilb(N)
syms t;
for i = 1:N
for j = 1:N
A(i,j) = 1/(i + j - t);
end
end
Then, the following statement
inv(genhilb(2))
returns
[ -(-3+t)^2*(-2+t), (-3+t)*(-2+t)*(-4+t)]
[(-3+t)*(-2+t)*(-4+t), -(-3+t)^2*(-4+t)]
the symbolic inverse of the 2-by-2 Hilbert matrix.
See Also
vpa
Arithmetic Operations page
[ Previous | Help Desk | Next ]