Matrix inverse.
 Syntax 
R = inv(A)
 Description 
inv(A) returns inverse of the symbolic matrix A.
 Examples 
The statements
A = sym([2,-1,0;-1,2,-1;0,-1,2]);
inv(A)
return
[ 3/4, 1/2, 1/4]
[ 1/2,   1, 1/2]
[ 1/4, 1/2, 3/4]
The statements
syms a b c d
A = [a b; c d]
inv(A)
return
[  d/(a*d-b*c), -b/(a*d-b*c)]
[ -c/(a*d-b*c),  a/(a*d-b*c)]
Suppose you have created the following M-file:
%% Generate a symbolic N-by-N Hilbert matrix.
function A = genhilb(N)
syms t;
for i = 1:N
        for j = 1:N
        A(i,j) = 1/(i + j - t);
        end
end
Then, the following statement
inv(genhilb(2))
returns
[    -(-3+t)^2*(-2+t), (-3+t)*(-2+t)*(-4+t)] 
[(-3+t)*(-2+t)*(-4+t),     -(-3+t)^2*(-4+t)] 
the symbolic inverse of the 2-by-2 Hilbert matrix.
 See Also 
vpa
Arithmetic Operations page
[ Previous | Help Desk | Next ]