| MATLAB Function Reference | Search  Help Desk | 
| rsf2csf | Examples See Also | 
Convert real Schur form to complex Schur form
The complex Schur form of a matrix is upper triangular with the eigenvalues of the matrix on the diagonal. The real Schur form has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.[U,T]=rsf2csf(U,T)
[U,T] = rsf2csf(U,T)
U and T represent the unitary and Schur forms of a matrix A, respectively, that satisfy the relationships: A = U*T*U' and U'*U = eye(size(A)). See schur for details.
Given matrix A,
1 1 1 3 1 2 1 1 1 1 3 1 -2 1 1 4with the eigenvalues
1.9202 - 1.4742i 1.9202 + 1.4742i 4.8121 1.3474Generating the Schur form of
A and converting to the complex Schur form
[u,t] = schur(A); [U,T] = rsf2csf(u,t)yields a triangular matrix
T whose diagonal consists of the eigenvalues of A.
U =
-0.4576 + 0.3044i   0.5802 - 0.4934i   -0.0197   -0.3428          
 0.1616 + 0.3556i   0.4235 + 0.0051i    0.1666    0.8001          
 0.3963 + 0.2333i   0.1718 + 0.2458i    0.7191   -0.4260          
-0.4759 - 0.3278i  -0.2709 - 0.2778i    0.6743    0.2466    
    
T =
1.9202 + 1.4742i     0.7691 - 1.0772i   -1.5895 - 0.9940i  -1.3798 + 0.1864i
0                     1.9202 - 1.4742i    1.9296 + 1.6909i   0.2511 + 1.0844i
0                    0                   4.8121             1.1314          
0                                               0                  0                      1.3474          
schur       Schur decomposition