Math 211

First Midterm Exam, October 11, 1994

Problem 1.(30\%) Let V be the vector space of polynomials of degree less than or equal to 2. If the inner product is defined on V by

$$
\langle p, g\rangle=\int_{-1}^{1} p(t) q(t) t^{2} d t
$$

find an orthogonal basis for V.
Problem 2.(30\%) Let V be the vector space of all polynomials on \mathbb{R} and W the vector space of continuous functions on $[-1,1]$.
a) Is V a vector subspace of W ?

If we define $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$, is it an inner product on
b) V
c) W
(you do not have to give detailed proofs but, please, indicate your reasoning).
Problem 3. (40%) Let V be a vector space and S, T subspaces of V. We define

$$
S+T=\{s+t: s \in S \text { and } t \in T\} .
$$

a) Show that $S+T$ is a subspace of V.
b) Show that $\operatorname{dim}(S+T) \leq \operatorname{dim} S+\operatorname{dim} T$. Give an example where $\operatorname{dim}(S+T)<\operatorname{dim} S+$ $\operatorname{dim} T$.
c) If S, T, R are subspaces of V, is it true that

$$
(S+T) \cap R=(S \cap R)+(T \cap R) ?
$$

