110.211 Honors Multivariable Calculus and Linear Algebra – B. Shiffman

FINAL EXAM

December 18, 1996

Show all of your work. No books, notes, or calculators are allowed.

There are 7 problems making a total of 120 points.

Time: 3 hours

1. (20 points)

a) Find the inverse of the matrix $\begin{bmatrix} 3 & 9 & -7 \\ 1 & 3 & -2 \\ 0 & 2 & 5 \end{bmatrix}$.

b) Let A and B be $n \times n$ nonsingular (i.e., invertible) matrices. Prove that AB is nonsingular.

2. (15 points) Consider the theorem from geometry: The sum of the squares of the lengths of the diagonals of a parallelogram equals the sum of the squares of the lengths of its four sides.

a) Draw a figure illustrating this theorem and give a vector-algebra identity which expresses the theorem. Label the illustration with the vectors from your identity. (You do not need to prove that your identity gives the theorem.)

b) Give a proof of your identity from part (a).

3. (15 points) Find the orthogonal projection of u = (7, -4, -1, 2) on the solution space of the system:

$2x_1 + x_2 + x_3 + 3x_4$	=	0
$3x_1 + 2x_2 + 2x_3 + x_4$	=	0
$x_1 + 2x_2 + 2x_3 - 4x_4$	=	0

4. (15 points) Consider the function $f(x, y) = \log(1 + xy)$.

a) Find the maximum directional derivative (derivative with respect to a unit vector) of f at the point (1, 2).

b) Find an equation for the tangent plane to z = f(x, y) at the point $(1, 2, \log 3)$.

5. (20 points) Find the quadratic polynomial that gives the best least-squares approximation to the data points:

(-2,6), (-1,3) (0,0), (1,3)

6. (20 points) Let f(x, y) be a differentiable function on an open set S in \mathbb{R}^2 containing the point (2, 0). Suppose that f(2, 0) = -1 and

$$G(x, y, f(x, y)) = 0$$

where G(x, y, z) is a differentiable function with

$$\frac{\partial G}{\partial x} = z^3 + \sqrt{1 + x^3}, \quad \frac{\partial G}{\partial y} = z + e^{y^2}, \quad \frac{\partial G}{\partial z} = 3xz^2 + y \;.$$

a) Determine the value of ∇f at the point (2,0).

b) Determine the value of $\frac{\partial^2 f}{\partial x^2}$ at the point (2,0).

- 7. (15 points) Let A be a 3×3 matrix such that $A^2 \neq 0$ and $A^3 = 0$.
- a) Prove that there is a vector $X \in \mathbb{R}^3$ such that $\{X, AX, A^2X\}$ is a basis for \mathbb{R}^3 .
- b) Determine the rank of A and the nullity of A. Give reasons for your answers.