110.211 Honors Multivariable Calculus and Linear Algebra - B. Shiffman

FINAL EXAM
December 18, 1996

Show all of your work. No books, notes, or calculators are allowed.
There are 7 problems making a total of 120 points.
Time: 3 hours

1. (20 points)
a) Find the inverse of the matrix $\left[\begin{array}{ccc}3 & 9 & -7 \\ 1 & 3 & -2 \\ 0 & 2 & 5\end{array}\right]$.
b) Let A and B be $n \times n$ nonsingular (i.e., invertible) matrices. Prove that $A B$ is nonsingular.
2. (15 points) Consider the theorem from geometry: The sum of the squares of the lengths of the diagonals of a parallelogram equals the sum of the squares of the lengths of its four sides.
a) Draw a figure illustrating this theorem and give a vector-algebra identity which expresses the theorem. Label the illustration with the vectors from your identity. (You do not need to prove that your identity gives the theorem.)
b) Give a proof of your identity from part (a).
3. (15 points) Find the orthogonal projection of $u=(7,-4,-1,2)$ on the solution space of the system:

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3}+3 x_{4} & =0 \\
3 x_{1}+2 x_{2}+2 x_{3}+x_{4} & =0 \\
x_{1}+2 x_{2}+2 x_{3}-4 x_{4} & =0
\end{aligned}
$$

4. (15 points) Consider the function $f(x, y)=\log (1+x y)$.
a) Find the maximum directional derivative (derivative with respect to a unit vector) of f at the point $(1,2)$.
b) Find an equation for the tangent plane to $z=f(x, y)$ at the point $(1,2, \log 3)$.
5. (20 points) Find the quadratic polynomial that gives the best least-squares approximation to the data points:

$$
(-2,6), \quad(-1,3) \quad(0,0), \quad(1,3)
$$

6. (20 points) Let $f(x, y)$ be a differentiable function on an open set S in R^{2} containing the point $(2,0)$. Suppose that $f(2,0)=-1$ and

$$
G(x, y, f(x, y))=0
$$

where $G(x, y, z)$ is a differentiable function with

$$
\frac{\partial G}{\partial x}=z^{3}+\sqrt{1+x^{3}}, \quad \frac{\partial G}{\partial y}=z+e^{y^{2}}, \quad \frac{\partial G}{\partial z}=3 x z^{2}+y
$$

a) Determine the value of ∇f at the point $(2,0)$.
b) Determine the value of $\frac{\partial^{2} f}{\partial x^{2}}$ at the point $(2,0)$.
7. (15 points) Let A be a 3×3 matrix such that $A^{2} \neq 0$ and $A^{3}=0$.
a) Prove that there is a vector $X \in R^{3}$ such that $\left\{X, A X, A^{2} X\right\}$ is a basis for R^{3}.
b) Determine the rank of A and the nullity of A. Give reasons for your answers.

