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ABSTRACT. Let K/Qp be unramified. Inside the Emerton—Gee stack Xz, one
can consider the locus of two-dimensional mod p representations of Gal(K/K)
having a crystalline lift with specified Hodge-Tate weights. We study the case
where the Hodge—Tate weights are irregular, which is an analogue for Galois
representations of the partial weight one condition for Hilbert modular forms.
We prove that if the gap between each pair of weights is bounded by p (the
irregular analogue of a Serre weight), then this locus is irreducible. We also
establish various inclusion relations between these loci.

1. INTRODUCTION

1.1. Emerton—Gee and CEGS stacks. Let K be a finite extension of the p-adic
numbers Q,,, with residue field £ and absolute Galois group Gx. Emerton and
Gee [EG2] have pioneered the study of certain moduli stacks of d-dimensional
representations of G . More precisely, the Emerton—Gee stack Xy is a formal stack
over Spf(Z,) whose A-valued points, for each p-adically complete Z,-algebra A,
are the rank d étale (o, I')-modules with A-coefficients; in particular, the F-points
of Xy for any finite extension F/F, are interpretable as Galois representations
P : Gxg — GL4(F). The book [EG2] gives several important applications of this
construction, including the first proof that any such p has a lift to characteristic
zero, and still the only proof that any such p has a crystalline lift.

It is expected that the Emerton—Gee stacks will play a central role in a categori-
fication of the p-adic Langlands correspondence. This expectation is described at
length in the survey article [EGH]. As a first indication that the stacks X have some
bearing on the representation theory of p-adic groups, Emerton and Gee establish a
bijection between the irreducible components of the underlying reduced substack
Xirea of Xy in the sense of [Eme, Def 3.27], and the irreducible Fp—representations
of GL4(k) (which are traditionally called Serre weights). Let X7 ., denote the
component of Xy ,.q corresponding to the Serre weight o.

The bijection of [EG2] between Serre weights o and components X7 4 is char-
acterized by a description of a dense set of finite type points on each component
of Xjreq. In the rank d = 2 case, however, more is known: namely there is a
complete description of all finite type points on each component of Xy 4. Recall
that to each p : Gx — GLa(F) the work of [BDJ] associates a set W(p) of Serre
weights. In fact this set has several descriptions, which are known to be equivalent
due to the work of a number of authors [BLGG, GLS1, GLS2, GK]. One such
description is in terms of the existence of crystalline lifts having certain regular
Hodge-Tate weights. Then we have the following; here we recall that a Serre
weight is said to be Steinberg if it is isomorphic to a twist by a character of the
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representation St := @, 5 (Sym?~! k?) ® . F, the tensor product taken over
all the embeddings of k into Fp.

Theorem 1.1 ([CEGSa, Thm. 1.2], [EG2, Thm. 8.6.2]). Suppose that p > 2.

(1) If the weight o is non-Steinberg, then o € W (p) if and only if p lies on the
component Xy 4.
(2) If instead o = x ® St is Steinberg, then x ® St € W(p) if and only if p lies

. X X®St
on the union Xlred U X2,red .

In fact even more is true: the cycles X7 ; (in the non-Steinberg case) and

XZ)fred + X;igt (in the Steinberg case) form the cycles in a “universal” geometric
version of the Breuil-Mézard conjecture for potentially Barsotti—Tate representations.

The proof of Theorem 1.1 makes essential use of another stack 294, first defined
in [CEGSb], whose A-valued points are rank 2 étale p-modules with tamely ramified
descent data, and whose F-points are interpretable as Galois representations p :
Gk — GL4(F) having tamely potentially Barsotti—Tate lifts, or equivalently Galois
representations that are not tres ramifiée up to twist.

The irreducible components Z(c) of the underlying reduced substack of Z9¢ are
in bijection with the non-Steinberg Serre weights. To prove Theorem 1.1 one first
establishes the following analogue of Theorem 1.1(1) for the components Z (o).

Theorem 1.2 ([CEGSa, Thm 1.4(1)]). Suppose that p > 2. If the weight o is
non-Steinberg, then o € W(p) if and only if p lies on the component Z(o).

The authors then transfer this result from 294 to X, using the fact that these
stacks have the same versal deformation rings.

One of the main results of this paper is that certain closed substacks of X5 and
Z44 are in fact isomorphic (we will be more precise in a moment about exactly which
substacks). Although this is wholly expected, it is quite useful, for the following
reason. The existence of substacks of mod p Galois representations satisfying various
p-adic Hodge theoretic conditions is known on the side of the Emerton—Gee stacks
(we will denote these stacks by the symbol X with various decorations), but not
on the side of the CEGS stacks (which are the stacks here denoted Z with various
decorations). On the other hand, calculations are generally easier on the Z side
than on the X side. Thanks to the isomorphism between the two sides, we can pass
the existence of p-adic Hodge theoretic loci from the X side to the Z side, study
their properties on the Z side, and then transfer these results back to the X side,
which is the side of greater intrinsic interest.

1.2. Irregular loci. The other main results of our paper are applications of the
above method to the closed substacks of X5 ;cq of mod p Galois representations having
certain irreqular Hodge—Tate weights; these substacks have positive codimension in
X5 red. The condition of being irregular is the analogue for Galois representations of
the partial weight one condition for Hilbert modular forms.

To discuss these results, we assume for the remainder of the paper that the
extension K/Q, is unramified and write f = [K : Q,]; there is probably no
conceptual barrier that would prevent us from studying the ramified case, but the
analysis would become considerably more complicated. Let r denote the collection
of integers {rml,r,{,g}mk%ﬁ, with 0 < 741 — re2 < p. In the terminology of
Definition 4.7, we say that r is a p-bounded Hodge type.
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Let us write Xfed for the reduced closed substack of A5 ,.q whose F-points are
representations p : Gx — GLy(F) having crystalline lifts with labeled Hodge-Tate
weights {ry.1,7x,2}. Thanks to the results of [GLS1] on the weight part of Serre’s
conjecture, the condition that ¢ € W (p) is equivalent to a statement about the
existence of crystalline lifts of p. As a consequence, if the Hodge type r is regular,
meaning that 7,1 > 7,2 for all s, then Theorem 1.1 says precisely that X, is one
of the irreducible components of X3 ;eq (or a union of two irreducible components,
in case all the differences r,, 1 — r, 2 are equal to p).

We are interested in saying something about the stacks Xfe q in the irregular
case, i.e., when 7, 1 = 7, 2 for one or more embeddings « (in which case Xfed has
codimension in X ;eq equal to the number of embeddings « such that 7.1 = rq2).
To explain how we do this, we need to introduce the companions of the stacks Xéd
on the side of the CEGS stacks.

By construction the stack 294 is equipped with a morphism

(1.3) CIdBT , gid

where CI4BT is the stack of Breuil-Kisin modules of height at most one with tame

descent data and satisfying a Kottwitz-type determinant condition. Indeed, Z99 is
defined to be the scheme-theoretic image (in the sense of [EG1]) of C44BT in the
stack of étale p-modules with descent data.

The map (1.3) can be thought of as a partial resolution of the stack Z99. Resolu-
tions of moduli of Galois representations by moduli of objects coming from integral
p-adic Hodge theory have played a fundamental role in the deformation theory of
Galois representations, and hence in the study of automorphy lifting theorems, going
back to the work of Wiles and Taylor-Wiles [Wil, TW]. In this particular guise the
inspiration comes from the work of Kisin, as the map (1.3) can be thought of as a
globalization of the maps Oy, of [Kis].

A large part of this article can be thought of as an analysis of some of the finer
properties of the map (1.3). To say more, we need to introduce some additional
notation. The stack C14BT has a decomposition

H CT,BT

where the disjoint union is taken over tame inertial types 7 : Ix — GLQ(QP), and
the substack C™BT consists of Breuil-Kisin modules whose descent data has type .
We write Z7 for the scheme-theoretic image of C™BT in Z44. By Theorem 1.4(2) of
[CEGSa] the underlying reduced substack Z™1 of Z7 is precisely the union of the
components Z(o) for Serre weights o that occur as Jordan-Hélder factors of &(7),
the reduction mod p of the representation o(7) associated to 7 by the inertial local
Langlands correspondence. We can now state precisely which of the Emerton—-Gee
and CEGS stacks we check are isomorphic.

Theorem 1.4 (Theorem 4.5). The stack Z7 is isomorphic to X™BT the Emerton—
Gee stack of potentially Barsotti—Tate representations of type T.

Assume henceforth that the type 7 is non-scalar. The underlying reduced substack
CTBT1 of C™BT has precisely 2f irreducible components C™(.J), indexed by subsets .J
of the set of embeddings « : k < F,,. Write Z7(J) for the scheme-theoretic image
of C™(J) in Z™1.
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There is a combinatorial formula (which we recall in equation (1.12) below) which
associates to each pair (7,J) a tuple of integers s;, € [—1,p — 1] indexed by the
embeddings k : k — Fp, as well as a character ©; : k — F:. Define P, to be the
collection of sets J such that s, € [0,p — 1] for all , i.e., such that s;,, = —1 does
not occur. Then for each J € P, it makes sense to define the Serre weight

F(r)s = (0s0det) @ Q) (Sym™* k*) @ x Fp.

n:k‘—)fp

Every irreducible component of both C™BT:! and Z™! has dimension [K : Q,].
Under the map
CT,BT,l N ZT,l
it is proved in [CEGSc] that
e If J € P,, then the component C™(J) dominates a component of Z™1; that
is, Z7(J) is some irreducible component of Z7!; while on the other hand,
e If J ¢ P., then the scheme-theoretic image of C7(J) in Z7! has posi-
tive codimension. Following [CEGSc] we refer to these C™(J) as “vertical
components” of CTBT:1,

The first part is made more precise in [CEGSa], as follows.

Theorem 1.5 ([CEGSa, Thm. 6.2(5)]). If J € P,, then Z7(J) is precisely the
component Z(G () s); in particular, we have p € Z7(J) if and only if (1) ; € W (p),
and Z7(J) depends only on the Serre weight (7).

Equivalently, again using the results of [GLS1] on the weight part of Serre’s
conjecture, Theorem 1.5 can be rephrased as follows. (Here Oy is any extension to
G of the inertial character identified with © ; via Artin reciprocity. See Section 1.4.1
for the various normalizations related to Serre weights and Hodge-Tate weights that
we use throughout this paper.)

Theorem 1.6 ([CEGSa, Thm. 6.2(5)], second version). Suppose J € Pr. Then
p€Z7(J) if and only if p® @31 has a crystalline lift with k-labeled Hodge—Tate
weights {—s., 1} at each embedding r : k — F,.

In other words, for regular Hodge types r, the companions of the stacks X, on
the CEGS side are precisely the stacks Z7(J) for J € P,. It is natural, then, to
imagine that the positive codimension loci Z7(J) for J ¢ P, are the companions of
the stacks Xr%d for irregular r; and indeed, this is what we show.

Observe that the statement of Theorem 1.6 makes sense even if some sy, is
equal to —1, i.e., if J & P,. The only difference is that when J € P,, the Hodge—
Tate weights {—s,, 1} are always regular (distinct), while if sy, = —1 then the
k-labeled Hodge-Tate weights {—s,, 1} are irregular. We prove that the statement
of Theorem 1.6 remains valid even if J ¢ P,; that is, we prove the following.

Theorem 1.7 (Theorem 4.17). For general J we have p € Z7(J) if and only if
PR @;1 has a crystalline lift with r-labeled Hodge—Tate weights {—sj,,1} at each
embedding r : k — Fp. In particular Z7(J) depends only on the sy, and on © .

If one likes, one can therefore view Z7(J) as depending only on the expression
for the “fake Serre weight” 7(7); whose definition contains a Sym™" if .J ¢ P,.
As an application, we deduce the following.
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Corollary 1.8 (Corollary 4.19). Suppose that 0 < .1 —7w2 < p for all k, with
not all differences equal to p. The closed substack Xéd of X3 rea whose finite type

points are representations p : Gx — GLa(F,) having crystalline lifts with labeled
Hodge-Tate weights {ry1,7x 2} is irreducible.

This result is new in the irregular case. The point is that by Theorem 1.7 this
locus is isomorphic to one of the stacks Z7(J), and the latter is irreducible essentially
by definition.

Since the closed substack X, in the irregular case has positive codimension in

X5 red, it is reasonable to expect that there are inclusions Xrﬁed C ng for other
collections of Hodge-Tate weights r’. In the final section of the paper, we establish
this expectation in a number of cases. We define three operators 6, ux, and v, on
Hodge types r that are irregular at x (see Definition 5.1; the first two can be viewed
as analogues of partial theta operators and partial Hasse invariants, as described in
the work of Diamond and Sasaki on geometric Serre weight conjectures ([DS]) and

discussed further in [Wie]. We then establish the following.

Theorem 1.9 (Theorem 5.2). Suppose r' € {0,(r), ps(r), vis(r)} and assume that r’
remains p-bounded. Then Xéd - ered,

As a consequence we deduce that every representation with a crystalline lift of
Hodge type r also has a crystalline lift of Hodge type r’/, for r, 7’ as in the theorem.

1.3. Outline of the paper. We begin in Section 2 by recalling from [CEGSb] the
definitions of various stacks of Breuil-Kisin modules and étale ¢p-modules with descent
data, and reviewing many of the results from the papers [CEGSa, CEGSb, CEGS¢]
that we will need.

In Section 3.1 we analyze the irreducible components of the tamely potentially
Barsotti-Tate Breuil-Kisin moduli stacks C7BT! from the point of view of the shape
of a Breuil-Kisin module, as studied in [Bre2, CDM, LLHLM1]. Using this idea we
give a new description of the irreducible components of C"BT:! with the advantage
that we can characterize all of the F,-points on each component C7(J) of C™BT-1.
This stands in contrast to [CEGSc|, where only a dense set of points are described.
As an application, in Section 3.2 we describe the F,-points of the stacks Z7(.J).
This is a key ingredient in the rest of the paper, and also leads to a new and purely
local proof of the characterization of the irreducible components of Z99 in terms of
crystalline lifts.

In Section 4.1 we introduce the Emerton—Gee stacks to the discussion, and
establish the isomorphism between the stacks X™BT and Z7. One consequence is
the existence of a reduced closed substack Zfed of 299 for each p-bounded and
non-Steinberg Hodge type r, whose Fp—points are precisely the representations
p : Gk — GL2(F,) having a crystalline lift of type 7. In Section 4.3 we combine
the results of Section 3.1 with results from [GLS1] and combinatorial input from
Section 4.2 to prove that the stacks Z, are equal to the stacks Z7(.J) for suitable
choices of 7 and J. This establishes Theorem 1.7 and Corollary 1.8.

Finally in Section 5 we prove Theorem 1.9. In fact we give two proofs. One
argument is relatively direct and computational. The other is more geometric, but
also somewhat more involved, making use of the description of the components of
C™BT1 in terms of shape.
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1.4. Notation and conventions. Let p > 2 be a prime number. Throughout the
paper we fix K/Q,, an unramified extension of Q,, of degree f with residue field k.

We also fix an algebraic closure Qp of Q,, with residue field F,. Our represen-
tations of the Galois group G will have coefficients in these fields. Let E be a
finite extension of Q, contained in Qp, with ring of integers O, uniformizer w, and
residue field F. As usual we will assume that the coefficient field E is “sufficiently
large”, in a sense that we make precise in Section 1.4.2 below.

Since K/Q, is unramified we can (and do) identify the embeddings K — Qp
with embeddings k < F,. We fix some embedding ko : k < F, and recursively
label the remaining embeddings by elements of Z/fZ by taking ! 1= Ki-

1.4.1. Hodge—Tuate weights and Serre weights. Throughout this paper we will use
notation and conventions as in the series of papers [CEGSa, CEGSb, CEGSc].
Hodge—Tate weights are normalized so that the cyclotomic character has all Hodge—
Tate weights equal to —1. We normalize local class field theory so that uniformizers
correspond to geometric Frobenius elements.

A Serre weight is an irreducible F,-representation of GLa(k). Each Serre weight
has the form

Try = @25 (det " Sym™ k%) @y, F,

for integers t; and integers 0 < s; < p — 1. If we furthermore assume that
0 <t; <p—1andnot all {; are p—1, each Serre weight has a unique representation
as one of the 7 /’s.

To each representation p : G — GL2(F,) one associates a set W(p) of Serre
weights. In our conventions, we have o7 ; € W (p) if and only if p has a crystalline
lifts with Hodge-Tate weights {—s; —t;,1 —¢;} for the embedding x; (cf. [CEGSc,
Def. A.3]).

1.4.2. Tame types. Throughout the paper we write 7 for a non-scalar tame inertial
type Ix — GL2(O). Such a representation is of the form 7 ~ n & ', and we say
that 7 is a principal series type if n, 1" both extend to characters of G . Otherwise,
7 = n?, and n extends to a character of G, where L denotes the unramified
quadratic extension of K. In this case we say that 7 is a cuspidal type.

Throughout the paper we will often need to handle the principal series and
cuspidal cases separately. We define

. f if 7 is principal series
' 2f if 7 is cuspidal

and set ¢/ = p/" —1. Fix a uniformizer 7 of K and choose 7’ such that (7/)¢ = 7. In
the principal series case we define K/ = K ('), while in the cuspidal case we define
K’ = L(n"), so that in either case K’ is a finite tamely ramified Galois extension
of K with inertial degree f’ and having the property that 7|;,, is trivial. We assume
that E is sufficiently large in the sense that all embeddings K’ — Qp have image
in E.

Write k' for the residue field of K’, and let ), : k' < F,, be any extension of
ko to k’. Recursively label the embeddings k¥’ < F, by elements of Z/f'Z by
taking (kj, ;)P = w;. For all g € Gk we set h(g) = g(n’) /7" € per (K'). Identifying
per (K') with pes (k'), we can then define fundamental characters w; of level f by
setting w; = k; 0 h : Ix — F; for each i € Z/fZ (cf. [CEGSc, Lem. 1.4.1] and
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the discussion following). Similarly define fundamental characters w; of level f’ by
setting w) = ko h: Ix — F; for each i € Z/f'Z. Let w; : Iy — Q; denote the
multiplicative lift of w;, and similarly for &;.

In the cuspidal case, let ¢ € Gal(K’/K) denote the unique nontrivial element
fixing 7'

1.4.3. Inertial local Langlands and Serre weights. Henniart’s appendix to [BM]
associates a finite dimensional irreducible E-representation o(7) of GLy(Ok) to
each inertial type 7; we refer to this association as the inertial local Langlands
correspondence. The reduction modulo p of o(7) is not well-defined, but its Jordan—
Holder factors are. We normalize the inertial local Langlands correspondence as in
[CEGSc, §1.4], so that p has a potentially Barsotti-Tate lift of 7 if and only if at
W (p) contains at least one Jordan—Hélder factor of the reduction mod p of o(7) by
[CEGSc, Lem A.5].

We now give an explicit description of the Jordan—Hoélder factors of the reduction
mod p of o(7), following the recipe from [CEGSc, Appendix A]. Recall that we
assume 7 to be a non-scalar tame type. We define 0 <~; <p—1 (fori € Z/f'Z) to
be the unique integers such that

=1

(1.10) nG)~ = T @

i=0
Observe in the cuspidal case that v; + v, =p — 1.
Definition 1.11. Let us say that a subset J C Z/f'Z is a profile if either
e 7 is non-scalar principal series, and J is any subset; or

e 7 is cuspidal, and for all ¢ we have i € J if and only if i + f & J.

For each profile J, we define tuples of integers (s,,;); and (¢,;); indexed by Z/ f'Z,
as follows.

(1.12) g qpm 1=y =0ye(i) ifi-1€l,
| T - 000 i 147
(1.13) oo )it dge() ifi-1 el
. "o ifi—1¢.J

Note that sy; € [-1,p—1], t;; € [0,p], and sy, is f-periodic. Define O : k* — F*
to be the unique character such that

(1.14) O oNwm=n® [] (&)
i€Z/f'Z

Here we regard 7 as a character of &’ via the Artin map for K’, and Ny, denotes
the norm map. (It is true, but not obvious, that the right-hand side of (1.14) factors
through Nk//k.)

Definition 1.15. Define S7(J) := {i € Z/fZ|s;; = —1} and take P; to be the
set of profiles J such that S7(J) is empty.
Then for each J € P,, we define

a(7); = (O o0det) ® ® (Sym®*”i k?) @p.; Fp.
i€Z/fZ
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Theorem 1.16. The Jordan—Hélder factors of the reduction mod p of o(T) are
precisely the Serre weights a(7); for J € P;.
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2. STACKS OF BREUIL-KISIN MODULES AND ETALE (¢-MODULES

As we have explained in the introduction, the main objects of study in this paper
are certain stacks C™BT of Breuil-Kisin modules and Z7 of étale p-modules, as well
as the map

CT,BT S Z7

between them. We begin with a brief recollection of the definitions and basic
properties of these objects.

2.1. Breuil-Kisin modules. Asin [CEGSc], we will consider Breuil-Kisin modules
with coefficients and descent data. Let & := W (k/)[u], and extend the arithmetic
Frobenius on W (k') (i.e. the homomorphism ¢ : W (k') — W (k') induced by
x+— zP on k') to a self-map ¢ of & by setting ¢(u) = uP. We extend the action of
Gal(K'/K) on W(K') to & via g(u) = h(g)u.

If Ais a p-adically complete Z,-algebra, we set &4 := (W(k') ®z, A)[u] and
extend the actions of ¢ and Gal(K’/K) A-linearly. Setting v := u¢ /%) we
define the subring &% := (W (k) ®z, A)[v], which is preserved by ¢ but on which
Gal(K'/K) acts trivially. Let E(u) denote the minimal polynomial of n’ over W (k').

Definition 2.1. A Breuil-Kisin module with A-coefficients and descent data is a
finite projective G 4-module 9 together with semilinear maps

o+ N — M
and
g:Mm— M, g € Gal(K'/K).
Write * I := 6 X, M. We impose the further requirements that the linearization
Doy : "M — M
of ¢oy is an isomorphism after inverting F(u), that each § commutes with ey,

and that g1 o go = g1g2 for all g1, g2 € Gal(K'/K). We say that the Breuil-Kisin
module 9 has height at most h if the cokernel of ®oy is killed by E(u)".
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Morphisms of Breuil-Kisin modules are morphisms of & 4-modules that commute
with the actions of ¢ and Gal(K'/K).

Recall from Section 1.4 that we have fixed a coefficient field F/Q,, with ring of
integers O, uniformizer w, and residue field F, and that E is sufficiently large in
the sense that it admits embeddings of the field K’.

Definition 2.2. For each embedding «/ : k' < F,, which we identify with its lift
W (k') < Q,, there is a corresponding idempotent e; € W (k') ®z, O such that
r® 1 and 1 ® kj(x) have the same action on e;(W (k') ®z, O).

For any O-algebra A and any W (k') ®z, A-module M, we set M; := ;M. In
case I is a Breuil-Kisin module, we write

q)gm)i : QD* (Dﬁi_l) — ml
for the morphism induced by ®gy, which we call the i-th partial Frobenius morphism.

We note the following lemma, which is an immediate consequence of [EGI,
Prop. 5.1.9(1)].

Lemma 2.3. Let A be a p-adically complete O-algebra, and let I be a Breuil-Kisin
module with A-coefficients and descent data. Then each IM; is Zariski locally on
Spec(A) free as an Au]-module.

Definition 2.4. Let 7 be a tame inertial type, and let A be a p-adically complete
O-algebra. We say that the Breuil-Kisin module 9T with A-coefficients and descent
data is of type 7 provided that Zariski locally on Spec(A) there is an I(K'/K)-
equivariant isomorphism 9; /ud; =2 A ®e 7 for each i.

Definition 2.5. We define C™BT to be the stack over Spf(O) which associates to any
O/w*-algebra A the groupoid of rank 2 Breuil-Kisin modules with A-coefficients
and descent data, of type 7, and of height at most 1, and additionally satisfying the
Kottwitz-type strong determinant condition of [CEGSb, §4.2].

We define C44BT to be the union of the stacks C™BT for varying 7 (including scalar
types), and further write C44BT:1 and C44BT1 for the special fibers CI4BT x o F
and C™BT x o F respectively.

Remark 2.6. We do not write out the strong determinant condition explicitly,
because we will not need it. However, we recall from [CEGSb, Lem 4.2.16] that
this condition guarantees that the Spf(O)-points of C™BT correspond to potentially
Barsotti-Tate representations with Hodge—Tate weights {0, 1} (rather than contained
in {0,1}) at each embedding.

Proposition 2.7. Suppose that A is a reduced F-algebra and let I be a rank 2
Breuil-Kisin module with A-coefficients and descent data, of type T, and of height
at most 1. Then M is an object of CBT(A) (i.e., it satisfies the strong determinant
condition) if and only if locally on Spec(A) the determinant of each partial Frobenius
maps Pon ;, with respect to some (hence any) choice of bases, lies in u® - Afu] .

Proof. In case A = F’ is a finite extension of F, the ‘only if’ direction is given
by [CEGSDb, Lem. 4.2.11(2)]. The converse to [CEGSb, Lem. 4.2.11(2)] is false in
general, because the type 7 in that reference is allowed to be mized (cf. [CEGSD,
Def. 3.3.2]). Since we assume here that the type is unmixed, the AJv]-determinants
of the maps ®op ;¢ (the ¢-isotypic part of oy ; for some character & of I(K’'/K), in
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the notation of [CEGSD]) are all equal up to units, and indeed equal up to units to
the AJu]-determinant of ®gy ;; and then the argument for [CEGSb, Lem. 4.2.11(2)]
runs in the reverse direction as well.

For general coefficients, we reduce immediately to the case where A has finite
type as an F-algebra. Since A is then both reduced and Jacobson, the strong
determinant condition for 91 is equivalent to the strong determinant condition for
the base change of 9 to each closed point of A. The result then follows from the
case F//F finite of the previous paragraph. |

The following results are proved in [CEGSD, Cor. 3.1.8, Cor. 4.5.3, Prop. 5.2.21]
and [CEGSc, Thm. 5.4.3].

Theorem 2.8. The stacks CA4BT1 and CTBT1 are algebraic stacks of finite type
over O, while the stacks CIYBT and C™BT are w-adic formal algebraic stacks.
Moreover:

(1) C™BT is analytically normal, Cohen—Macaulay, and flat over O.

(2) The stacks CI4BT:1 and CTBT:1 are equidimensional of dimension [K : Q).

(3) The special fibres CIVBTL and CTBT:L gre reduced.

(4) If T is non-scalar, then C™' has 2/ irreducible components C™(.J), in bijection
with the set of profiles J.

2.2. Etale p-modules.

Definition 2.9. If A is a Z/p®Z-algebra for some a > 1, then a weak étale w-module
with A-coefficients for K’ is a finitely generated & 4[1/u]-module M together with
a semilinear morphism

©M M — M

such that the linearization
Qp i "M =6 Qe M= M

is an isomorphism. Weak étale modules with A-coefficients for K are defined
identically, but with &%[1/v] in place of & 4[1/u].

A weak étale p-module with A-coefficients and descent data from K' to K is a
weak étale p-module with A-coefficients for K’ together with additional semilinear
morphisms

g: M — M, g € Gal(K'/K)
such that each g commutes with s, and g1 0 g2 = g1g for all g1, g2 € Gal(K'/K).

An étale p-module is a weak étale p-module such that M is furthermore projective

as an & 4[1/u}-module (resp. as an &Y [1/v]-module, for étale p-modules for K).

Definition 2.10. We define R to be the stack over Spf(Q) which associates to
any O/w®-algebra A the groupoid of rank 2 étale ¢ modules with A-coefficients
and descent data.

We will also sometimes want to make use of étale p-modules without descent data.
Write Ry for the Spf(O)-stack of rank 2 étale p-modules for K (without descent
data). The functor Ry — R4 sending M ~ M ®eo[1/y) ©[1/u] is an equivalence,
with inverse given by taking Gal(K'/K)-invariants; cf. [EG2, Cor. 2.3.21].

If 91 is a Breuil-Kisin module with A-coefficients and descent data, then evidently
M[1/u] is an étale p-module with A coefficients and descent data. Inverting u thus
defines morphisms

(211) Cdd,BT %Rdd7 CT,BT %Rdd.
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Definition 2.12. We define 299 and Z7 to be the scheme-theoretic images (in the
sense of [EG1]) of the morphisms given in (2.11). We further define 2441 Z71
and Z7(J) for each profile J to be the scheme-theoretic images of C44-BT:1 ¢T-BT.1,
C™(J) under the morphisms of (2.11).

Note that 2991 and Z™! are reduced as a consequence of Theorem 2.8(3), but
need not be (and in general presumably will not be) the special fibers of Z99 and Z7.

We recall some of the important properties of these stacks as established in
[CEGSb, Thm. 5.1.2, Prop. 5.1.4, Lem. 5.1.8, Prop. 5.2.20] and [CEGSa, Thm 6.2].

Theorem 2.13. The stacks 2% and Z™1 are algebraic stacks of finite type over O,
while the stacks 299 and Z7 are w-adic formal algebraic stacks. Moreover:

(1) The stacks 2%t and Z™1 are equidimensional of dimension [K : Q).

(2) The stacks 29941 and Z™1 are reduced.

(3) The irreducible components Z (o) of Z%1 are in bijection with non-Steinberg
Serre weights o. Furthermore, for each finite extension F'/F the F'-points
of Z(o) are precisely the Galois representations p : Gx — GLo(F') having
o as a Serre weight.

(4) If T is non-scalar, then Z7(J) = Z(5 (7)) for each J € P,, and these are
precisely the irreducible components of Z™1.

2.3. Galois representations. We fix a compatible sequence {m,,} of p"th roots of r;
since ged(e(K'/K),p) = 1, this determines a compatible sequence {7}, } of p"th roots
of 7 such that (n),)*E"/K) = 1, Let Ky := U, K (m,) and let K/ := U, K'(7).
Then we identify Gal(K’'/K) and Gal(K. /Ko).

By Fontaine’s theory of the field of norms, if |A| < oo then the category of weak
étale p-modules with A-coefficients is equivalent to the category of A-representations
of Gk:_. There are various ways to write down such a functor, and in particular we
will need to compare the functors to Galois representations of [CEGSc] and [GLS1].
For this reason we now recall the explicit descriptions of these functors.

Let Og denote the p-adic completion of & [%], it is a discrete valuation ring with
uniformizer p and residue field k'((u)). We let £ denote the field of fractions of Og¢.
Note that the actions of ¢ and Gal(K’/K) extend naturally to Og and .

Fix an algebraic closure K of K with ring of integers O, and an embedding
K/, — K, and set R := m O Write m:= (Tn)n, @’ = (7],) € R and write
[x], [z'] € W(R) for their multiplicative lifts in the Witt vectors W (R).

We may define a ¢-equivariant inclusion & — W(R) by sending u — [r'], and
this restricts to a ¢-equivariant inclusion 6 < W/(R) sending v to [x]. This
injection extends to inclusions

Og — W (Frac(R))

and

£ < W (Frac(R)) H .

The residue field Frac(R) of W (Frac(R)) contains a separable closure &' (1)) of the
residue field of Og, and this extension of residue fields corresponds to an unramified
extension E™ of £. We let £7¢ denote its p-adic completion, and we let O C o
denote its (p-adically complete) ring of integers.
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Definition 2.14. We define the covariant functor T from weak étale ¢p-modules
with A-coefficients to Galois representations, given by

T(M) = (O @epiu M)7™

If M has descent data from K’ to K, this is actually a representation of
Gk, because Gr acts on both Oz and M (the latter through its quotient
Gal(K/_ /K«) = Gal(K'/K)). Equivalently, since [K’ : K] is prime to p we have
that M© := MGal(K'/K) ig an étale p-module with A-coefficients for K, and the
natural map

G[l/u] &1 /v] M° - M
is an isomorphism. Write
=1

Ti(M°) := (O ©e0(1/u) M®)©

for the analogous functor on weak étale p-modules with A coefficients for K,
without descent data. Then Ty (M°) =2 T(M) and the right-hand side becomes a
representation of Gx_ by transport of structure.

Definition 2.15. There are further (contravariant) functors T* on weak étale -
modules with A-coefficients (with descent data from K’ to K, or for K, respectively),
defined as follows.

T* (M) = Hom@;[l/u]#p (M, ﬁr/0ﬁ>

T;((MO) = Homgo[l/v]W (MO,EI”/OE;) .

These are naturally an A-linear representation of Gx__, and when M? = M G21(K /1K)
then evidently 7 (M) = T (M°). When pre-composed with the functor from Breuil-
Kisin modules to étale p-modules, T is the functor used in [GLS1] (and denoted
Ts in §3 of that reference).

If Ais a Z/p*Z-algebra and 9 is a Breuil-Kisin module with A-coefficients and
descent data, so that 9[1/u] is an étale p-module with A-coefficients and descent
data, then we will freely write

TON) := TON[1/u]),  T*ON) := T*(M[1/u]).

Lemma 2.16. Suppose that A is a finite extension of Fp, and M is an étale p-module
with A-coefficients and descent data, and set M° = MUK /E) Lot

MY = Home , 1 /u) (M, & 4[1/u])
(MO)\/ = HomG%[l/v](MO, 6?4[1/7)})

be the (A-linear) dual p-modules with coefficients (and descent data, in the first
case). Then we have a functorial isomorphism

T(M) = Ty ((M°)Y)
as representations of Gg__ .

Remark 2.17. The Frobenius on M" is defined by the formula (¢ f)(>"; sip(m;)) =
>, sip(f(my)) for any s; € S4[1/u] and m; € M; and similarly for (MY)Y.
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Proof. Since M is a finite projective AQOg = & 4[1/u]-module, we have M = (MV)Y
and (M?)V = (MV)?. By the discussion in the preceding paragraphs, we can
therefore reduce to proving that

T(MY) = T*(M).
Furthermore, we have a natural isomorphism
(2.18) £ /O @0 MY 5 Home, (M, €% /O s

which is ¢- and G__-equivariant. Since M (and hence M) is p-torsion, the left
side of (2.18) is isomorphic to

Og,; Roe MY

and its @-invariant subspace is simply T (M"). On the other hand, the yp-invariants
of the right side of (2.18) are T*(M) by definition, so we are done. O

3. PoINTSs OF C"(J) AND Z7(J)

In [CEGSc] the irreducible components of the stack C™BT:! are studied by ana-
lyzing a morphism from C™BT to a certain auxiliary stack G, (the “gauge stack”).
Our goal in the first part of this section is to explain another approach to describing
the components of C"BT1, in terms of the notion of shape, and then to relate this
description to the one from [CEGSc|. The advantage of our approach is that we are
able to give a complete description of all of the points of each component of C7BT>1,
whereas [CEGSc] only describes a dense set of points; see Corollary 3.17. As an
application, in Section 3.2 we are able to characterize the F'-valued points of the
stacks Z7(J) for each finite extension F’/F; see Theorem 3.19.

3.1. Irreducible components via shape. Shapes for rank 2 Breuil-Kisin modules
with tame descent were introduced by Breuil in [Bre2], further developed by [CDM]
to study tamely Barsotti-Tate deformation rings (and called genre there), and
eventually generalized to higher dimensions in [LLHLM]1] and [LLHLM?2]. Each
field-valued point of C"BT! has an associated shape which describes the divisibility
by u of certain entries in the matrices of the partial Frobenius maps.

Throughout this section we fix a non-scalar tame inertial type 7 = n @ n’. We
will need the following notation. For each i, we let k;, &/ € [0,p/" — 1) be such that

~/

n= ()% and i/ = (&)¥. Let ~; € [0, p — 1] be the unique integers such that

m' ™= [ @)
i€Z/f'Z
Note that we are implicitly considering n and 7’ as an ordered pair of characters.
The formula

(3.1) PRy = kia] = R = k] = (0 = D)(p—1—7,)

is often useful, where for any a € Z/f'Z, [a] denotes the unique element of [0, p’ _ 1)
such that [a] is congruent to a mod p/* — 1. For brevity we will shorten [k; — k!] and
[k} — ki] to £;, £, respectively, so that n/n and ' /n are equal to (@))% and (@)%
respectively. Since the type 7 is nonscalar, ¢; and ¢} are always both nonzero, and
we have £; + £, = p/" — 1.
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Definition 3.2. Suppose that A4 is an F-algebra and let 9 be an object of C™BT1(A).
By Lemma 2.3 and the hypothesis that I(K’/K) has order prime to p, Zariski locally
on A one can choose a basis 8; = (e;, fi) of M; such that Gal(K'/K) acts on e;, f;
via 7,71’ respectively. Furthermore, in the cuspidal case we can and do suppose
that c(e;) = fiyy and ¢(f;) = eirs. Asin [LLHLMI], we call 8 = (B;)icz/ 'z an
eigenbasis of IN.

Definition 3.3. If the étale ¢-module M is free and has basis 8 = (5;), then the
matriz of the partial Frobenius map ®pr,; with respect to the basis 5 is the matrix
of ®r; with respect to the basis (1 ® £;—1) of ¢*M,;_1 and the basis 5; of M;. We
will also use the same terminology in the context of a Breuil-Kisin module 9t and a
basis for 9M[1/u] (which need not be a basis for 9).

Suppose that 901 has an eigenbasis 3, and let C'3 ; denote the matrix of the partial
Frobenius map ®op ; with respect to 8. Since ®goy ; commutes with the descent data
we find that

a; Uzé bl
(3-4) Cs.i = (u&' ci d;

for some a;,b;,c;,d; € AJv], meaning that ®on (1 ® e;—1) = a;e; + ubic;f; and
similarly for ®gp ;(1 ® f;—1). In the cuspidal case we additionally compute that

0 1
(3:5) Cpii+s = Ad (1 0) (Cs.4)

where Ad A(B) = ABA™L.
Any change of basis from an eigenbasis 3 to another eigenbasis 8’ is similarly
encoded by an f’-tuple of matrices of the form

VA
U _ Ty UMY
7 — 0.
U z; wy

so that 8] = f; - U;. The matrix U; has x;,y;, z;, w; in AJv] and determinant in
A[v]*, and in the cuspidal case one again has

0 1
r=na (0 )
Under this change of basis, the matrices Cg ; change by the formula
Cpi =U; " Cai- o(Uin).

Observe that the matrices U; are diagonal modulo u, so that the diagonal entries
x;, w; must be units in Afv]. In particular whether or not the entries a;, d; of Cp;
are divisible by v is unchanged under change of eigenbasis. We can therefore make
the following definition.

Definition 3.6. Suppose that 91 has an eigenbasis. We define the shape of MM at i
to be

o I, ifv]|a; and v{d,,

o I, ifv{a; and v |d;, and

e IIif v | a;,d; both.
The argument in Lemma 3.8 below proves that if 9t has an eigenbasis and A is
a domain, then 9 has a shape; but in general v may divide neither a; nor d;, in
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which case the shape of 9 at ¢ does not exist. The shape of M, if it exists, is the
f/-tuple whose i-th entry is the shape of 9 at i.

In the cuspidal case we observe from (3.5) that the shape of 9 at ¢ is I, if and
only if the shape of 9 at 7 + f is L/, and the shape of 9 at ¢ is I if and only if the
shape of 2 at i + f is also II.

We remark that having shape I,, or II (Zariski locally) at ¢ is a closed condition,
and similarly for having shape L, or II at ¢; and their intersection is the condition
of having shape II at i. Having shape I,, (respectively I,;/) is not a closed condition,
but it is locally closed.

Definition 3.7. Let J C Z/f'Z be a profile. We define £7(J) € C™BT1 to be the
substack such that an object 9 € C™BT:1(A) lies in £7(J)(A) if and only if Zariski
locally on A the Breuil-Kisin module 9t has shape I,, or II when i € J, and shape
I, or II when i ¢ J. The inclusion £7(J) C C™BT1 is a closed immersion (since
the condition of being a closed immersion is checkable locally on A).

Lemma 3.8. We have [CTBTY =, |£7(J)|, the union taken over profiles J.

Proof. Suppose that A is a field and 9 € C™BT-1(A4). The Breuil-Kisin module
9 has an eigenbasis 3, and Proposition 2.7 implies det C; € vA[u]* for each i.
Comparing with (3.4) and recalling that u® - u’t = v we find in particular that
v | a;d; as elements of AJv]. We conclude that either v | a; or v | d;. Therefore I

has a shape, and lies in £7(J)(A) for some J (possibly more than one). O

In some computations (such as the one upcoming), rather than working with
the matrices of ®gy; with respect to an eigenbasis, it is more convenient to write
the matrices of ®gp; in terms of bases for the n’-eigenspaces of ¢*9M;_; and M.
Concretely, if 8 = (8;) is an eigenbasis with 8; = (e;, fi), then the 7-eigenspace
of 9; has a basis given by (uzi e;, fi), while that of ¢*9;_; has a basis given by
(uei‘ ®ei—1,1® fi—1). The matrix of ®gy ; in terms of these bases is

ut 0 a; b

Note that this is not the same as “the matrix with respect to the basis (ul;ei, 1),
since 1 ® uééflei #* uhi ® e;—1 in general. These matrices have entries in Afv]; for
that reason, this process is sometimes called “removing the descent data.” In the
cuspidal case, one checks using ¢ + égﬂc = pf" — 1 that

L 0 1 o di C;
a0 b aa (0 Dan= ().
. u*ei 0 Ti Y .
Setting I; = Ad 0 1 U;) = ve ) Ve et the change of basis formula
_ vPTIT
(3.11) Ag i =1I7"45,; Ad ( 0 1) (e(I;-1).

using (3.1). In the cuspidal case the matrices I; and I, are related by the formula

(3.12) Livsi=Ad (U 0> I = (in x) .
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Let L™ GLy denote the positive loop group over F with variable v, i.e., the group
ind-scheme whose A-points are L™ GLy(A) = GLa(A[v]). Write C™! for the F-stack
of rank 2 Breuil-Kisin modules with coefficients and descent data, of type 7, and of
height at most 1; in other words, all of the defining conditions of C™B™-! except the
strong determinant condition. There is a map

(3.13) (Lt GLy), —¢™!

given by sending the f-tuple of matrices B; € GLa(A) for 0 < i < f to the
Breuil-Kisin module 9 with 0, = Afule; & Afu] f; for i € Z/f'Z, an eigenbasis
B with B; = (e;, fi) for i € Z/ f'Z, and partial Frobenius maps ®gy ; such that the
matrices Ag; as in (3.9) for 0 < i < f are given by the formulas

v 0 e
Bz(o 1> ified

10 o
(0 v)Bi ifi & J.

In the cuspidal case this means that the matrices Ag ;4 for 0 < i < f are determined
in terms of Ag; by the formula (3.10).

(3.14) Ag, =

Lemma 3.15. The map of (3.13) factors through the closed immersion L™(J) C C™!
to give a surjective map

7 (LY GLo) — L£7(J).
Furthermore L7 (J) is reduced and irreducible.

Proof. Since the loop group L™ GLs is reduced and the determinant of each matrix
Apg,; in (3.14) lies in vA[v]*, it follows from Proposition 2.7 that the map (3.13)
factors through the closed immersion C™BT:!1 ¢ C™!. Since by construction the
upper-left entry of Ag; is divisible by v if ¢ € J, and similarly for the bottom-right
entry if i ¢ J, the image in fact lies in £L7(J). We therefore obtain the claimed
factorization 7. In fact since L™ GLg is reduced, by [Sta, Tag 050B] the map 7 must
factor through the closed immersion £7(J)reqa C L7(J); here L7(J)eq denotes the
underlying reduced substack of £7(J).

Let A be a ring and suppose that 9 € L7(J)(A) admits an eigenbasis 5. For
each ¢ € J we have v | a;, say a; = va}, and Ag; has the factorization

!

v 0
Api =B (0 1)
a. b;

with B; = c? dZ< ; and analogously when i ¢ J. It follows that 9 is in the image

of 7. Since every MM € L7(J)(A) admits an eigenbasis Zariski locally, we deduce the
surjectivity of w. The irreducibility of £7(J) now follows from the surjectivity of 7
and the irreducibility of (L* GLy)/.

Now consider any morphism X — £7(J) with X a scheme over F. Cover X by
affine opens Spec A such that the induced object of £7(J)(A) admits an eigenbasis.
By the argument in the previous paragraph, each of the maps Spec A — L7(J)
lifts through 7, and therefore factors through £7(J)reqa C L7(J). It follows that
the morphism X — L7(J) itself factors through L£7(J)eq. Thus L7(J)(X) =
L7(J)rea(X) for all schemes X; it follows that L£7(J) = L7(J)rea and therefore
L7(J) is reduced. O
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Theorem 3.16. We have L7 (J) = C7(J) for all profiles J.

Proof. We have just proved that the stacks £7(J) are reduced and irreducible, and
by Lemma 3.8 their union is C"BT"1. On the other hand, there are 2/ stacks £7(.J),
and C™BT! has 2/ irreducible components. It follows that each £7(.J) must be a
different one of the irreducible components.

By [CEGSc, Prop. 5.4.2], the union U;5;C"(J) (the union over profiles J contain-
ing i) is the zero locus in C™BT:! of the n-isotypic part of ®gn ; : @* (M /uM);_1 —
(9T /udM);, i.e., the map induced by Pgn; between the n-eigenspaces of its source
and target. In the eigenbasis 3, this map is multiplication by a; (mod u). Since
a; € Av], we have u | a; if and only if v | a;. Therefore Uy5; C7(J) = Uys; L7(J).
Since this equality holds for each i we deduce that £7(J) = C™(J). O

Corollary 3.17. If A is an F-algebra, then Zariski locally on A, C7(J)(A) is
precisely the groupoid of Breuil-Kisin modules with partial Frobenius matrices Ag ;
of the form

v

v 0\ ... 1 0 s
B; (0 1) ifieJ, and (0 > B;ifi & J,
for some B; € GLa(A[v]).

3.2. Finite type points of Z7(J). As an application of Corollary 3.17 we are able
to give a direct description of the finite type points of Z7(.J), by which we mean the
points of Z7(J)(F') for each finite extension F'/F. Recall from Section 1.4.3 that
to the pair 7 and J we have associated a tuple of integers s;; and a character ©,
which is identified via the Artin map with the character O : k* — F* such that

(318) @J [¢] Nk'/k} = 7]/ %] H (Iﬂ?;)t‘]’i;
1€Z/f'Z

see equations (1.12) and (1.14). Write

f—1

07,

6] — H Wi J,
=0

for some integers 6,. In the cuspidal case by definition we have 8, = 6, for
all 5. The main result of this section is the following.

Theorem 3.19. Suppose F'/F is a finite extension and let M be an étale-p module
with ¥’ -coefficients and descent data from K' to K. Write M° for the Gal(K'/K)-
invariants of M. Then M is a finite type point of Z7(J) if and only if (M°); has
a basis x;,y; for each i € Z]fZ such that the partial Frobenius maps ® o ; with
respect to the basis (xi,Yi)icz, rz have matrices

(v 0 —04,4
B (O vSJvi>v

for matrices B; € GLo(F'[v]).

Remark 3.20. In the statement of the proposition, the ordering of the diagonal
elements of the diagonal matrix is irrelevant, in the sense that they can be swapped
by a suitable change of basis. Specifically, if J' C Z/fZ is any subset, then replacing
(xi—1,yi—1) with (y;—1,x;_1) for each i € J’ swaps the order of the diagonal elements,
at the cost of multiplying B;_1 and B; on the left and right by (§ ) respectively
for each i € J'.
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Proof of Theorem 3.19. The stack Z7(J) is the scheme-theoretic image of the mor-
phism C7(J) — R441; this morphism is proper because it is the composition of
the closed immersion C7(J) — C™B™>! with the proper morphism C™BT-! — Rdd1,
It follows from [EG1, Lem 3.2.14] that the F'-points of Z7(J) are precisely the
F’-points of R441 whose fiber in C7(.J) — R441 is nonempty; in other words, which
have a eigenbasis 8 = (f;); such that the partial Frobenius maps ®,;,; have exactly
the form given in Corollary 3.17, i.e., such that the matrices Ag; are

[V 0 P 1 0 ’
Bi<0 1) ifieJ, and (O >B itigJ

for some B) € GLo(F'[v]). Note that these matrices can be written in a single
formula as

1 0 , (v D0

Before continuing the proof we need to introduce some additional notation. Write
n = Hf _1( !)H for integers p; € [0,p — 1]. Using that n/ = (@))% for all i, we
have k = Zf 71pf 441, and

/

(3.22) pki_y — ki = (Pf — D).
Next, the equality

f/_l f/_l
0y = [] )’ = T] e
i=0 i=0
implies the existence of integers v; such that
(3.23) 07i=pi+tr;+vi—pri_;

for all i. Now for each ¢ € Z/f'Z we define a basis (m;,n;) of the inertial invariants
MIE'/E) by the formula

0
uti 0 —K, —14u
(m; n;) = (e; fi) < 0 U%c(i)) u i1ty

Then one computes directly using equations (3.9), (3.21), (3.1), (3.22), and (3.23)
that the matrix of ®,s; with respect to the basis (m;,n;)icz/ 5z is

85 () =i+t,
1 (U i 0 s
b ( 0 vp5J°(i—1)—(p—1)+tJ,7;) v

Substituting the definition of ¢;;, we obtain

—S5J,i
B! (” 0 )MM ifi-1eJ, B (” O) vOL i 1g

0 v 87 0 v

Finally, deﬁning (xi_l,yi_l) = (mi_l, ni_l) if i —1 € J and (xi—layi—l) =
(ni—1,mi—1) if i — 1 ¢ J, then by Remark 3.20 the matrix of ®»s; with respect to

the basis ($i,yi)i€Z/f'Z is
(v 0 —07.:
B’L <0 U-&],i) v
for suitable B;.

In the principal series case, where I(K’/K) = Gal(K’/K), this completes the
proof of the ‘only if’ direction of the proposition, and the ‘if’ direction follows on
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observing that our change of basis from the eigenbasis (e;, f;); of M to the basis
(w4,9:); of MY is reversible and depends only on the initial data of 7 and J.

For the remainder of the proof, we assume that 7 is cuspidal. To compute
M from MTK'/K) we take further invariants under the element ¢ € Gal(K'/K)
that fixes 7’ and lifts the Frobenius element in Gal(K'/K)/I(K'/K) = Gal(k'/k).

/

Another direct computation, recalling that c(e; fi) = (fitf €it+r), that k; = ki,
and that §;(i) = dsc(i + f), shows that

(3.24) c(m; ni) = v% (niyp miy )
where for each i, we have

&= Litki—k;
% pi —1

+ Vi — Vi — 6J('L)
But using (3.1), (3.22) and (3.23), we can compute

pici —& =P —1—)— i + pirr + (i +t5: —075)
— (pirs Ftrivs —05ivs) —pos(i — 1)+ 6(i).

Since 65; = 84+, this simplifies to

plic1— &=ty —trirs+(—1—7)—pdsi—1)+6;(3)

and substituting the definition of ¢;; (and recalling that ¢ — 1 € J if and only if
i+ f—1¢ J), we conclude finally that

p&ic1—& =0

for all 4. But then iteratively we have &; = pf,gi for all 4, and so in fact £ = 0, and
(3.24) simplifies to

(3.25) ¢(mi ni) = (Mitry Mity)

for all 4. Therefore (m; + n;y 5, miy s + n;) are Gal(K'/K)-invariant, and are a
basis for M. Furthermore the commutation relation between ¢ and ¢ implies
that if X; is the matrix of ®,;; with respect to the basis (mi,ni)iez/f/z then
0 1

Xitrr=Ad 10 (X5).

Now we can conclude just as in the principal series case: for each integer 0 <1 < f
we define (z;,y;) = (mi+nipp, miys+n;) ifi—1 € Jand (x;,y;) = (Migp+ni,mi+
niy+s) if i —1 ¢ J, and then the matrix of ® 0 with respect to (2, ¥i)i=o,...,f—1 18

) v O —9J,7:
B (O vSJvi>U

for suitable B;. O

Remark 3.26. Readers who are familiar with the article [GLS1] will recognize
that Theorem 3.19 has a reinterpretation in terms of crystalline lifts. This will be
discussed in the following section at Theorem 4.22, Remark 4.24, and Corollary 4.25.
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4. IRREGULAR LOCI

We are now ready to prove many of our main results about irregular loci in the
Emerton—Gee stacks. We begin in Section 4.1 by proving the isomorphism between
the stacks X™BT and Z7. This establishes the existence of substacks Zfed of Zzdd
whose finite type points are Galois representations having crystalline lifts of Hodge
type r, whenever r is p-bounded and irregular (cf. Definition 4.7). There is a Hodge
type associated to each pair (7, J), and in Section 4.2 we prove the combinatorial
fact that each p-bounded and irregular Hodge type arises from such a pair. In
Section 4.3 we use this combinatorial input along with the results of Section 3.1 to
prove that the stacks Z, are equal to the stacks Z7(.J) for suitable choices of 7
and J.

4.1. A comparison of [CEGSb] and [EG2] stacks. In this subsection only, we
allow K/Q, to be an arbitrary finite extension (i.e., not necessarily unramified).
Our goal in this subsection is to establish that the stack Z7 is isomorphic to the
Emerton-Gee stack X™BT of potentially Barsotti-Tate representations of type 7.
For this, we need to begin with a few recollections from [EG2].

Let X2 be the Emerton-Gee stack of rank 2 étale (¢, I')-modules over K with O-
algebra coefficients, i.e., the d = 2 case of the stack X; discussed in the introduction.
As before we write Ro for the Spf(O)-stack of rank 2 étale ¢-modules for K (without
descent data). We recall from [EG2, Thm. 3.7.2] that there is a morphism

f:XQ*)RQ

such that the map X>(A) — Ro(A), for each complete local Noetherian O-algebra A,
is given by restriction from Gk to Gk, on the corresponding Galois representations.
We emphasize that despite the notation, the map f is not simply “forgetting I'”,
because the (¢, I')-modules of [EG2] are cyclotomic, whereas the étale ¢-modules of
R2 are Kummer (following the terminology of [EG2, Examples 2.1.2-2.1.3]).

Emerton and Gee construct substacks of X5 which may be regarded as stacks of
potentially crystalline representations with specified inertial and Hodge types. For
our purposes we make the following definition.

Definition 4.1. A Hodge type of rank d is a tuple of integers r = {ry ; }v.k > E,1<j<d
with r; 1 > -+ > 7y g for all 4.

The integers 7, ; should be thought of as being the x-labeled Hodge-Tate weights
of a d-dimensional representation of Gx. When K/Q, is unramified and we have
indexed the embeddings «; : K — E by i € Z/fZ, we will generally write r; ; in
place of 7, ;.

For each inertial type 7 and Hodge type r of rank 2, Theorem 4.8.12 of [EG2]
guarantees the existence of a closed substack X, ™" of X» that is a p-adic formal
algebraic stack, flat over O, such that Xy ™ "*(A) for each finite flat O-algebra A is
the subgroupoid of potentially crystalline G g-representations having inertial type 7
and Hodge—Tate weights r.

Let BT denote the Hodge type r with (rg1,74,2) = (1,0) for all &, and let triv
denote the trivial inertial type. For brevity will write X BT and AT in place of
x5S BT and x5V respectively, and we will write X7PT and X~ for their
underlying reduced substacks. By [EG2, Thm. 4.8.12], the finite type points of
Xrﬁed are precisely the mod p representations with crystalline lifts of Hodge—Tate
weights 7.
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By [EG2, Thm. 4.8.14] the stack X;’f T is a union of irreducible components of
X3 red, and similarly for Xéd provided that r is regular; however, if r is irregular, then
Xrﬁed has codimension equal to the number of elements ¢ € Z/fZ with r; 1 = r; 2.
For a local Artinian O-algebra with finite residue field, let Repg g, (A) denote
the category of A-representations of G that are potentially finite flat and become
finite flat over K'. Let Repg, (A) denote the category of finite A-representations

of GKoo'

Lemma 4.2. Let A be a local Artinian O-algebra with finite residue field, and K' /K
any tamely ramified finite extension. The functor Repg rr/x(A) — Repg, (A)
given by restriction from G g -representations to G -representations is fully faithful.

Proof. For finite flat representations (as opposed to potentially finite flat), the
lemma is now standard; see for example [Brel, Thm. 3.4.3].

In the general case, let V, W be objects of Repg g/ /x(A), and let f:V — W be
an A-linear map which is G __-equivariant. We need to prove that f is actually Gx-
equivariant. Since f is G'k/_-equivariant, by the finite flat case it is G'x/-equivariant.
Therefore f is both Gk_ - and G k/-equivariant. But Gx_ and Gi generate all
of Gk, because K'/K is tamely ramified and any finite subextension of K., /K is
totally wildly ramified. The lemma follows. (Il

Lemma 4.3. For each tame type T the map X™BT — Ry given by the restriction
of f is a monomorphism.

Proof. We follow the strategy of the proof of [LLHLM2, Prop. 7.2.11]. Namely, it
suffices to show for any a > 1 and any finite type O/w®-algebra A that the functor
XTBT(A) — Ry (A) is fully faithful. In the case that A is a local Artinian O-algebra
with finite residue field, this follows directly from Lemma 4.2, because X7BT(A)
is equivalent to a full subcategory of the groupoid of A-module representations of
Gk that are potentially finite flat and become finite flat over K’. To see the latter,
note that an object of X™BT(A) specializing to the Galois representation p : G —
GL2(A/my,) is pulled back from a versal morphism Spf(R%’BT) — X7BT where

R%"BT is a potentially Barsotti-Tate deformation ring. Therefore the corresponding
Galois module becomes finite flat over K’ e.g. by [Kis, Prop. 2.3.8].

The general case follows exactly as in the final paragraph of the proof of [LLHLM2,
Prop. 7.2.11]: one establishes that for objects 1, xo of X™BT(A) with images v1,y2
in Ro(A), the functors Isom(z1, 22) and Isom(yy, y2) are representable by finite type
A-schemes, and then one applies [LLHLM?2, Lem 7.2.5] to reduce to the settled case
of local Artinian (O-algebras with finite residue field. ([

Remark 4.4. We elaborate one point in the second part of the above argument.
The reference to [EG1, Prop. 5.4.8] in the proof of [LLHLM2, Prop. 7.2.11] han-
dles the representability of Isom(y1, y2); it also establishes the representability of
Isom(z9, 23) where z? denotes the étale p-module underlying z; (here we really
do mean forgetting I'). It remains to check that commutation with I' cuts out
a closed condition on Isom(z{,z3). If it were the case that each projective étale
(p,T')-module were a direct summand of a free étale (¢, I')-module, as is the case for
étale p-modules by [EG1, Lem. 5.2.14], it would be straightforward to check this
exactly as in the proof of [EG1, Prop. 5.4.8]; but this does not seem immediately
evident. On the other hand, writing each z{ as the direct summand of a free étale
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p-module, the action of T' (regarded as a semigroup) on x; can be extended by zero
to the free étale p-module, and one can argue equally well using this extension.

Theorem 4.5. There is an isomorphism h™ : XTBT — Z7 which, for complete
local Noetherian O-algebras A, is given by the identity on the corresponding Galois
representations.

Proof. Let g : 27 — Ry be the closed immersion Z7 — R4 followed by the
isomorphism R4 — R,. Let Y sit at the corner of the pullback square

y =z

ixl J{g
x™BT 1, p.

Since both f, g are monomorphisms, so are iz and ix. In fact g is a closed immersion,
and therefore so is ix; in particular iy is representable, hence representable by
algebraic stacks in the sense of [Eme, Def 3.1(2)] (see also Remark 3.2 of loc. cit.).
It follows from [Eme, Lem. 7.9] that ) is a p-adic formal algebraic stack over Spf(O).
Each of X7BT Z7 and Y are topologically of finite type over @, e.g. because their
special fibers are of finite type over F.

Over any finite flat O-algebra A, the stacks X™BT and Z7 have the same A-points,
in the sense that X7BT(A) and Z7(A) each correspond to potentially Barsotti-Tate
representations of type 7 on projective A-modules. We deduce that functors ix (A)
and iz (A) are both essentially surjective.

Finally, X™BT and Z7 are each flat over Spf(©), and they are each analytically
unramified in the sense of [Eme, Def. 8.22]: as noted in the paragraph before
[LLHLM2, Warning 7.2.1], this is equivalent to having reduced versal rings at all
finite type points, which follows from [CEGSb, Cor 5.2.19] for Z7 and from [EG2,
Prop. 4.8.10] for X™BT. (Recall that the deformation rings R%’BT are reduced by
definition.)

Taking all these observations together, we see that the two maps ¢x and ¢z each
satisfy the hypotheses of [LLHLM2, Lem. 7.2.6(1)], hence each is an isomorphism.
We obtain an isomorphism by taking h™ :=1iyz o i}l : X7BT 5 Z7. The statement
about Galois representations then follows from the corresponding statements for f
and g (together with full faithfulness of restriction from G to Gk _). O

As an application of Theorem 4.5, we establish the existence and basic properties
of loci in Z99:1 of representations satisfying certain p-adic Hodge theoretic conditions.

Corollary 4.6. Suppose r and 7 are Hodge and inertial types with the property
that no twist of a tres ramifiée representation has a potentially crystalline lift of
type r and 7. Then there is a unique reduced closed substack Z;ﬁ C Z941 with the
property that a representation p: G — GLo(F') lies in Z]5(F') if and only if p
has a potentially crystalline lift of type r and 7. (Here F'/F is any finite extension.)

Furthermore Z:e’g s equidimensional of dimension equal to that of X;?;Z’T’E, and
the irreducible components of Z75 are in bijection with those of X;?;’T’K, such that

corresponding components have the same finite type points.

Proof. Uniqueness is immediate from the fact that reduced closed substacks of
reduced stacks are characterized by their finite type points. In particular the stack
Zfe’g must be independent of the various choices in the construction that follows.
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The reduced algebraic stack X; 75" has finitely many irreducible components Y.
By the hypothesis that no point of X 7" is a twist of a trés ramifiée representation,
it follows that each ); is contained in the union UUXQU, red> the union taken over
all non-Steinberg Serre weights; thus ); C &J:_ , for some non-Steinberg Serre
weight ;. Let 7; be any tame type such that a;- is a Jordan—Holder factor of the
reduction mod p of o(7;), so that Xy ; (and therefore ;) is contained in X7t
Define Z; C Z™! to be the image of V; under the isomorphism A" of Theorem 4.5.
Then the (reduced) union of the Z;’s inside Z44! has the desired property.

By construction Y; and Z; are isomorphic and have the same finite type points.
Since each ); is irreducible and there are no inclusions between the );’s, consideration
of finite type points shows that the same must be true of the Z;’s inside 2441, This

gives the final statement. O

4.2. Irregular loci in 299!, We now resume the running assumption that the
extension K/Q, is unramified, and introduce the following terminology.

Definition 4.7. We say that the Hodge type r is

o p-bounded if r; 1 —r; o < p for all i,
o Steinberg if r; 1 — r; o = p for all 4, and
o regular if r; 1 —7;2 > 0 for all 4.

Lemma 4.8. Assume that the Hodge type r is p-bounded and non-Steinberg. Then r
together with the trivial type satisfies the hypothesis of Corollary J.06, giving a reduced
closed substack Zfed = ZWvr of ZAdd1 ywhose finite type points are precisely those
having a crystalline lift of type r.

Proof. Suppose that p: Gg — GL2(F') has a crystalline lift of Hodge type r. We
must show that p is not tres ramifiée. If r is regular, then there is a non-Steinberg
Serre weight o such that p has a crystalline lift of Hodge type r if and only if
o € W(p), and we conclude by [CEGSc, Lem. A.5(2)]. So we may assume for the
remainder of the proof that r is irregular.

If p is reducible, then by [Bar, Thm. 1.0.1] or [Wie, Chapter 5, Cor 2.7] the ratio
of the diagonal characters of p has restriction to inertia equal to H{;()l wfi, where
for some subset J C Z/fZ we have t; =1r;1 — 12 for i € J and ¢; = r; 2 — ;1 for
i € J. In particular t; € [—p, p|] for all i. We will show that the ratio of characters
cannot be cyclotomic, and indeed that we cannot have

p—1

—1—i, _ pf—
(4.9) Sopi iy =2= (mod pf —1).
=0

Since r is irregular, we have t; = 0 for some j, and without loss of generality (e.g.
multiplying both sides by p/~!=7) we may assume ¢ f—1 = 0. Then the left-hand
side of (4.9), considered as an integer, is divisible by p; while the right-hand side,
again considered as an integer, is 1 modulo p. We must therefore have an equality

p—1

11— f_
DT =Bk - 1)
=0
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where k =1 (mod p). We have Zf:_ol pf_l_iti‘ <p- ppf:117 with strict inequality
because ty_; = 0. This already rules out £ > 1. Similarly

f_ f_ f_
1-p) —D+E5 =2 -p)27 <—p-B5

since p > 3, so k < 1 — p is ruled out as well. Therefore (4.9) has no solutions. O

To each non-scalar tame type 7 and profile J C Z/f'Z, we will now associate
a Hodge type r(7, J), or more precisely a Hodge type up to equivalence under an
equivalence relation that we will define in the next two paragraphs.

Let us write A C Z/ for the set of tuples A = ()\;) such that the inertial character

Hifz_ol wf‘ is trivial. Concretely, this is the set of tuples A such that

f-1
pr_i)\i =0 (modp’ —1).
=0

Interpreting A as a Hodge type of rank 1, we see that A can equivalently be described
as the set of Hodge types of crystalline characters of Gx that are trivial modulo p.

Definition 4.10. If 7 is a Hodge type and A € Z7, we define  + ) to be the Hodge
type {r;,; + Ai}i,;- We define an equivalence relation ~ on the set of Hodge types
by taking r ~ 7’ if and only if ' = r + A with A\ € A. If r ~ r’ then evidently
Xo, = Xfe/d, thanks to the description of A in terms of crystalline characters with
trivial reduction mod p.

To the pair 7 and J, we have already associated a tuple of integers s;; and a
character ©, as in equations (1.12) and (1.14). Write

f—1

07,

(_)J — H WZ‘ J,
=0

for some integers 65 ,;. The tuple 87 = (0,,;); is not uniquely defined, but it is unique
up to translation by an element of A. We then define r(7, J) by the formula

(4.11) r(1,J) = {=57i—054,1 = 05i}icz/sz
and obtain a Hodge type up to equivalence under ~. Recall from Sections 1.4.1

and 1.4.3 that in our conventions, and for profiles J € P,, we have o(7); € W(p) if
and only if p has a crystalline lift of Hodge type r(7, J).

Definition 4.12. We define N7 (.J) to be the stack Z, for any representative r of
r(7,J). This is well-defined by Lemma 4.8 and the final sentence of Definition 4.10.

If J € P, then N7 (J) = Z(5(7) ) is an irreducible component of Z4:1. However,
if instead J ¢ P, then the finite type points of N'™(J) are the representations with
crystalline lifts of (irregular) Hodge type r(7,J), and N7(J) has codimension
#{i: sj; = —1}. The following combinatorial result shows that Z ; arises as one
of the loci N7 (J) for every p-bounded and non-Steinberg Hodge type r.

Proposition 4.13. For each p-bounded and non-Steinberg Hodge type r, we can
find a non-scalar tame type T and a profile J C Z/f'Z such that r ~ r(7,J), or
equivalently such that Z., = N7(J).

Recall from [CEGSc]| that for ¢ € Z/f'Z and each profile J, we say that (i —1,4)
is a transition (at i) if #{i — 1,4} N J = 1, and a non-transition otherwise.
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Proof. Set s; =1;1 — 12— 1€ [—1,p — 1]. Recall that for each non-scalar tame
type 7 =1 @ n’ and each profile J there is an associated tuple of integers sz, given
by the formula

(4.14) J..{P—l—%—%c(i) ifi—1¢.J,

Yi — 0s(4) ifi—1¢J,

with the integers 7; € [0,p — 1] coming from writing the ratio n/n’ in terms of
multiplicative lifts of fundamental characters as in (1.10). It suffices to produce a
non-scalar tame type 7 and a profile J such that s; = s;; for all 4, for then we will
have r = r(7 ® x, J) for a suitable character x of G.

There are evidently p/ possibilities for the tuple o, ... ,Yf—1. (Recall that in the
cuspidal case we then have 7,4 = p —1 —~;.) Each of these p! possibilities can
arise from some cuspidal type n ® npf. To see this, note for example that there are
p?! — pf possibilities for the character n, and each possibility for the ratio n/npf
arises from pf — 1 different n’s. In the principal series case every possibility can
arise except the case v; = 0 for all ¢, or the case v; = p — 1 for all ¢, since these
would give a scalar type.

We now define a tuple 7o, ...,vf—1 and a profile J by the following procedure.
First, choose arbitrarily whether or not —1 lies in J. Then for each 0 <¢ < f—1in
turn, we proceed as follows.

o If s; € [0,p — 2], we choose arbitrarily whether or not 7 € .J, and then define
v; by the formula

(4.15) i =

p—1—s;—04:(1) ifi—1€J,
s; +65(7) ifi—1¢ J,

e If instead s; € {—1,p— 1}, then exactly one of the two possibilities for i € J
ori & Jin (4.15) yields a ; in the range [0, p — 1], and we make that choice.
Observe for what follows that if s; = —1 this requires making (i — 1,) a
transition, and if s; = p — 1 this requires making (i — 1,4) a non-transition.

Finally, if at the end of this procedure we have both —1,f — 1 € J or both
—1, f—1 & J then we can form a principal series type with profile J and yielding the
chosen integers 7, ...,vf—1; while if =1 € J and f —1 & J or vice-versa then J can
be extended to a profile for a cuspidal type yielding the chosen integers vo,...,vs—1.

This completes the construction, except for the possibility that by following the
above procedure we may have constructed a scalar principal series type. We check
that this can always be avoided. If at least one s; lies in the range [0, p — 2] then
there is at least one 0 < ¢ < f where we could freely choose to create either a
transition or a non-transition at ¢; therefore we may arrange to create an odd total
number of transitions among ¢ with 0 < ¢ < f, and thereby construct a cuspidal
type.

Thus we are reduced to the case where s; € {—1,p — 1} for all 4, with an even
number of transitions and therefore an even number of —1’s. Since r is non-Steinberg,
we do not have s; = p — 1 for all 4, and therefore there at least two transitions. Let
1 < i’ be two consecutive transitions; that is, j is a non-transition for each i < 7 < 4’
Then i € J and ¢/ ¢ J, in which case 7; = 0 and v+ = p — 1; or else the vice-versa.
In either case there is at least one 0 and at least one p — 1 among the ~;’s, and the
type we have constructed is non-scalar. [
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Remark 4.16. Suppose j satisfies 71 — ;2 € [1,p — 1]. Then in Proposition 4.13
we are always able to choose the tame type 7 and profile J so that for this fixed j,
there is either a transition at j or not, as desired, with the following exceptions:
(1) If f=1and rj1 — 72 =1, then (j — 1, ) is forced to be a transition.
(2) If f >2and

p—1 ifi=j,
i1 —Ti2 =140 ifi=754+1, and
p otherwise

then (j — 1,7) is forced to be a non-transition.

Indeed, according to the proof of Proposition 4.13, the only possible obstruction is if
there is a single j satisfying ;1 — ;2 € [1,p — 1], and for one choice for whether or
not there is a transition at j, our construction leads to a scalar principal series type.
Then we are obligated to make the opposite choice. By an analysis similar to the
argument in the last paragraph of the proof of Proposition 4.13, the construction
leading to the scalar principal series type must have either 0 or 2 transitions, and in
the latter case j must be one of the two transitions.

It therefore suffices to evaluate (4.14) with «; =0 for all ¢ or 7; = p — 1 for all 4,
and for J C Z/ fZ of the form @ or {i’,...,j—1} or their complements, and confirm
which ones lead to a single s;; =7;1 — 7,2 — 1 being in the range [0,p — 2]. This
leads to the two exceptions listed above. For example, the exception (2) comes from
choosing v; = 0 for all ¢ and J = {j}¢, as well as from choosing 7, = p — 1 for all ¢
and J = {j}.

4.3. Comparison of irregular loci and scheme-theoretic images of vertical
components. Our goal in this subsection is to establish the following, which shows
that each Z7(J) C 294! can be described as the closed substack whose finite type
points admit certain crystalline lifts.

Theorem 4.17. If 7 is a non-scalar tame type and J C Z/f'Z is any profile, then
N7T(J) = Z7(J); in other words, the finite type points of Z7(J) are precisely the
representations with crystalline lifts of Hodge type r(T,J).

Corollary 4.18. The stack Z7(J) depends only on the Hodge type r(t,J).

Theorem 4.17 was proved in [CEGSc] in the regular case (i.e., when J € P.), but
is new in the irregular case. We also note the following application of Theorem 4.17
to the Emerton—Gee stacks; again this result is new in the irregular case.

Corollary 4.19. Suppose the Hodge type 1 is p-bounded and non-Steinberg. Then
X~ is irreducible.

Proof. This follows by combining Proposition 4.13, Theorem 4.17, the irreducibility
of the stacks Z7(J), and the last part of Corollary 4.6. O

Note that Corollary 4.19 is false for Hodge types that are Steinberg, because if r is
Steinberg then X is the union of two irreducible components (¢f. Theorem 1.1(2)).

The proof of Theorem 4.17 will occupy the remainder of this subsection. The
strategy is to prove that N7(.J) and Z7(J) are equidimensional of the same dimen-
sion, and that there is an inclusion N7 (J) C Z7(J). Since Z7(J) is irreducible by
its definition as the scheme-theoretic image of the irreducible C7(.J), the inclusion
must be an equality.
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Recall that S7(J) is defined to be the set {i € Z/fZ : s;; = —1}; or equivalently
if r ~ r(r,J), then S7(J) is the set {¢t € Z/fZ : r;1 = r;2}. By the last part
of Corollary 4.6, we already know that A/7(J) is equidimensional of dimension
[K: Q] —|S7(J)|. We begin by checking that the same is true of Z7(J).

Proposition 4.20. We have dim Z7(J) = [K : Q,] — |S™(J)|.

Proof. The proof is an elaboration of the proof of [CEGSc, Thm. 5.1.12]. The
construction of the stack Z7(J) in [CEGSc, Def. 4.2.12] furnishes a map

¢ : Spec B free 5 27()))

where ¢ is scheme-theoretically dominant and the source has dimension [K : Q] + 2.
We freely use the notation of [CEGSc, §3.3]. Assume first that |[S7(J)| < f,
and let X be the dense open subscheme of Spec B¥fe® defined in the paragraph
preceding [CEGSc, Rmk. 3.3.8] (and also denoted X there). By [Sta, Tag 0DS4], it
suffices to show that the restriction of £ to X has fibers of dimension |[S™(J)| + 2 in
the sense of [Sta, Tag 0DRL].
Given an A%free_algebra A, an A-point of X is an extension class
[€] € Extyeqay(M(S) az N(S)ag)
which does not become the trivial class on inverting u after any base change, where
M(J), N(J) are as in [CEGSc, Def. 4.2.8], M(J) 4.z, N(J) 4 5 are “unramified twists”
as in [CEGSc, Def. 3.3.2], and 7,7 denote the images of x,y € A¥free in A.
Setting U gx-tree 1= ker‘Ethlc(Ak»free)(W(J)Ak-ﬁree’m, N(J) gcsree ) as in the discus-
sion before [CEGSc, Rmk. 3.3.8], Y := Spec Ak'free[UXk_free] is a closed subscheme of
Spec B¥free whose A-points are extensions [f] € Ext,lc(A) (M(J) a4z N(J)ay) that
do become trivial upon inverting u. There is a map
(4.21) (X Xgpec altree Y) X Gy X Gy — X Xgpec Arctreexpzr () X — X Xzr(n X
given by mapping an A-point ([€], []],r, s) in the domain to
e the extension [€] in the first coordinate,
e the extension [¢'] := r - [€] 4 [£&] in the second coordinate, along with
e the data of an isomorphism €&[1/u] = &[1/u] which on the quotients
M(J)az[1/u] is induced from multiplication by s on Dt(J).
Note that the automorphisms of &[1/u] are a torsor for Gy,: this follows from
[CEGSc, Lem. 3.3] and the fact that &[1/u] is non-split after any base change.

It is immediately verified that the map (4.21) is a monomorphism and a bijection
on finite type points, observing that

X XspecAk—freeXFZ‘r(J) X=X XZ7(J) X

is bijective on finite type points by [CEGSc, Lem. 3.3.5] and the fact that points of
X remain nonsplit after inverting u.

Therefore, if F/ is a finite extension of F, the fiber of £ over an F/-point of X
admits a surjective monomorphism from

Spec F’[ker—Ext,lc(F,)(SJT(J)F/E,‘JT(J)F/@)V] X G X7 G
which has dimension |S7(J)| + 2 by a comparison between [CEGSc, Prop. 5.1.8]
and (1.12). (The restriction to B¥'¢ ayoids the exceptional case of [CEGSc,

Prop. 5.1.8].) Thus, the dimension of the fiber is also |S7(J)| 4+ 2 by an application
of [Sta, Tag 0DS4].
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Now, suppose |ST(J)| = f, or equivalently,
ker-Ext 1) (M) a2, M) ag) = Exticiay (M) az, (T a,5)
for all A¥free_algebras A. In this case, the map ¢ factors as
€ : Spec B¥free _y Spec Ak-free 2, Z7(J)

where the first arrow is the structure map and g maps the universal point of
Spec AXTree t0 M(J) gictree ,[1/u] & N(T) aretree [1/u].

Let py € Spec A<fe¢(F’) be fixed. The fiber of g over g(py) is given by
SpecF’ X z+(7) Spec AK°®. For a finite type F’-algebra A, an A-point of this
fiber is a A free_algebra structure p : Afree — A together with an isomorphism

M) 4,p(2)[1/1] & N(T) 4 [1/u] = M) g () [1/ ] @ NUT) 4, () [1/ ).

It follows that the fiber of g over g(pp) admits a monomorphism, bijective on
finite type points, either from G,, xXg G, or else from the disjoint union of two
copies of G,,, Xg G,,. One copy comes from A-points with A%fe® algebra structure
p o Akfree PO pr o A 5o that p(z) = po(z) and p(y) = po(y); the other copy, if it
exists, comes from the unique A¥°_algebra structure p such that

M(T) 4,p(a) [1/1] = N(T) A,po () [1/ 1]

N(T) a,p() [L/ 1] = IM(T) A po () [1/ 0]
again if it exists. Note that because we are on AXf°¢ there is no isomorphism
IM(JT) Apo () [1/1] = N(T) 4,po(y)[1/u], sO there is no GL in the fiber.

By density of finite type points, the topological spaces associated to the scheme-

theoretic images of the one or two copies of G,, Xg G, are precisely the irreducible
components of |Z7(.J)|, and by [Sta, Tag 0DS4], each scheme-theoretic image has

dimension 2. Thus, using [Sta, Tag 0DRZ], the dimension of the fiber is 2. Another
application of [Sta, Tag 0DS4] then shows that the dimension of Z7(J) is 0. O

We recall the following, which (more or less) is one of the main results of [GLS1].

Theorem 4.22. Let ¥'/F be a finite extension. Suppose that p: Gx — GLo(F') is
a Galois representation, and that M° € Ro(F') is an étale p-module for K (without
descent data) such that pla,_ = Tx(M°). If p has a crystalline lift with p-bounded
Hodge type r, then (M°); has a basis z;,y; for each i € Z/fZ such that the partial
Frobenius maps ® o ;, written with respect to the basis (x4, Y;)icz/ 5z, have matrices

vl 0
a0

Remark 4.23. As in Remark 3.20, the theorem remains true for any reordering of
the diagonal elements in the matrices (v .9, ).

for some B; € GLo(F'[v]).

Proof. Twisting by a character we reduce to the case where each r; ; € [—p, 0]. This
case will follow from [GLS1, Thm. 4.22] after translating between the conventions
of [GLS1] and [CEGSc¢] for Galois representations and Hodge—Tate weights. More
precisely: from Lemma 2.16 recall that Tk (M°) = T%((M°)Y). On the other
hand, having crystalline lifts with Hodge type r in the conventions of [CEGSc]
(i.e., in our conventions) is equivalent to having crystalline lifts with Hodge type
—r := {—ri1,—7i2}tiez/sz in the conventions of [GLS1]. Thus Tk (M) has a


https://stacks.math.columbia.edu/tag/0DS4
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crystalline lift with Hodge type r in our sense if and only if, in the sense of [GLS1],
T3 ((M°)V) has a crystalline lift with Hodge type —r. Then [GLS1, Thm. 4.22] tells
us that (M?)Y admits a basis for which the partial Frobenius maps have matrices

vt 0
Bi ( 0 v”ﬂ)

for some B; € GLy(R[v]). Finally, by Remark 2.17 the partial Frobenius matrices
for MO are the inverse transpose of those for M©. O

Theorem 4.17 now follows easily from all the work we have already done.

Proof of Theorem /.17. Theorem 3.19 and Theorem 4.22 show that N7(J) C Z7(J).
By [EG2, Thm. 4.8.14] and Proposition 4.20, N7(J) and Z7(J) have the same
dimension. Since Z7(J) is irreducible, being the scheme-theoretic image of the
irreducible component C7(J) of C™BT:1| the theorem follows. g

Remark 4.24. If the Hodge type r is p-bounded and regular, then under the
additional hypothesis that p is not a twist of a trés ramifiée representation, the results
in [GLS1, §§7-9] can be reinterpreted as providing a converse to Theorem 4.22; that
is, if p is not a twist of a trés ramifiée representation, then the if-then of Theorem 4.22
is in fact an if-and-only-if. (The extra hypothesis on p is necessary because if p is
trés ramifiée then p|g,.. can be split, and in that case p|g .. = Tk (M?) for MY as
in Theorem 4.22 with r = BT, although 7 has no Barsotti—Tate lift.)

For regular r, Theorem 3.19 and Theorem 4.22 therefore prove directly that the
F’-points of Z7(J) are precisely those admitting a crystalline lift of Hodge type
r(r,J), furnishing a new, purely local proof of a result from [CEGSa].

In the irregular case, we can instead use Theorem 4.17 to deduce the converse to
Theorem 4.22.

Corollary 4.25. Suppose p is not a twist of a trés ramifiée representation. The
“if-then” of Theorem /.22 is an “if-and-only-if ” when the Hodge type r is p-bounded.

Proof. As explained in Remark 4.24 it remains to prove the Corollary when r
is irregular. Suppose more generally that r is non-Steinberg. By Proposition
4.13, can find non-scalar 7 and a profile J such that N7 (J) is the locus of mod
p representations with crystalline lifts of Hodge type r. The converse statement
follows from the equality N7 (J) = Z7(J) together with Theorem 3.19. O

5. INCLUSIONS BETWEEN p-BOUNDED CRYSTALLINE LOCI

Suppose that the p-bounded Hodge type r is irregular. Since the locus Xfed -
X5 req has positive codimension, it is reasonable to imagine that there exist inclusions

T T/
Xrea € Xrea
for certain other p-bounded Hodge types r’. For example when f = 1, so that

K = Q,, the locus X% 4 of unramified representations is contained in the irreducible

component of Xs eq associated to the Serre weight Sym? -2 F;. Up to twist, this is
the only proper inclusion of p-bounded crystalline loci when K = Q,,.

For the remainder of this section, we assume that f > 2, and we will prove in
some additional situations that representations having a crystalline lift with Hodge
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type r necessarily also have a crystalline lift with Hodge type r’, and deducing as a
corollary that X, C ng'

In fact we give two arguments. The first argument is short and direct, using
Corollary 4.25 and an explicit change of basis for étale p-modules. The second argu-
ment, which we call “shape-shifting”, is more geometric and (in our opinion) carries
some explanatory power, but is also more complicated. The shape-shifting argument
relies on the observation that for the Hodge types r and 7’ under consideration,
there exists a tame type 7 and profiles J, J’' with r = r(7,J) and r’ = r(7, J').

5.1. The direct argument. We begin by defining several operators on Hodge
types. The first two can be viewed as analogues of partial theta operators and
partial Hasse invariants in the work of Diamond and Sasaki on geometric Serre
weight conjectures ([DS]).

Definition 5.1. Let f > 2. For each j € Z/fZ, we define operators 0;, 1;, and v;
on Hodge types r by setting:

(rig,rie—1) ifi=j—1,
9j(£)i = (rig +p,rie) ifi=j,
(ri1,732) otherwise.
(rig —1,mi2) ifi=j—1,
pi(r)i = (ri1+p,riz) ifi=j,
(ri, ri2) otherwise.
(rig,mio—1) ifi=yj,
vi(r)i:=1q (riz+pria) ifi=j+1,
(ri1,mi2) otherwise.

We now establish the following.

Theorem 5.2. Suppose that 1 is p-bounded and irregular, with vj1 = ;2. If p has
a crystalline lift of Hodge type r, then p also has crystalline lifts of Hodge type p;(r),
and v;(r), as well as of Hodge type 0;(r) provided that rj_11 —Tj_1.2 # p.

Note that p;(r) and v;(r) in the statement of the theorem are still p-bounded,
and the hypothesis 7;_1 1 — r;j_12 # p guarantees the same for 6;(r).

Proof. The proof of Lemma 4.8 shows that p is not a twist of a trés ramifiée
representation. By Corollary 4.25, it suffices to prove that if M? € Ro(F’) has a
basis 3 = (8:)icz/fz = (%i,Yi)icz/ sz such that the partial Frobenius maps ® 0 ,
written with respect to [, have matrices

vt 0
Bi ( 0 v”?)

for some B; € GLy(F'[v]), then the same holds with r; 1,7; 2 replaced by 7} 1,7}
for all i, for each 1’ € {u;(r), vj(r), 6;(r)}. (The hypothesis rj_11 —7j_12 #p is
necessary to apply Corollary 4.25 when ' = 6,;(r), but not for any other part of
the argument.) The key is simply that, since 71 = 7; 2, the matrix (v'/* 9,) is
scalar and therefore lies in the center of the matrix ring My (F’((v))). Consider the
basis 3’ in which

By =Bj-1BC, Bj=p;D
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and g} = B; if i # j — 1,4. Here B,C,D € GLy(F'((v))) are matrices to be chosen
momentarily such that

o B e GLy(F'[[v]),
e (., D are diagonal, and
e C commutes with B~ B;_;.

Then the matrices of ® 0 ; with respect to 5’ for i = j—1, 5, j+1 are checked to be

1 -1l 0 1
B™"Bj ( 0 Urj1,2) G
YTt 0

D_lBjap(B)D< 0 m2) D™ 'p(C), and

pTi+ia 0
Bji1 ( 0 Urj+1,2> ¢(D)

respectively. The theorem follows by Remark 4.23, choosing B, C, D as follows:

e For §;, take B=B;_1,C = ((1) 2) and D =1,
v 0
e For pj, take B=B;j_,,C = <O 1) and D =1,

e For v}, choose B = B;l, so that Bjo(B) =1 (mod v), and take C'= I and
10
D= (0 U).

Corollary 5.3. Suppose that r is p-bounded and irregular, with v;1 = ;2. Then

O

’
T T
Xred C Xred

for each r" € {p;(r),v;(r),0;(r)}, provided if r' = 0;(r) that we additionally assume
Tj—1,1—Tj—1,2 # D, so that v’ is p-bounded.

Remark 5.4. It is natural to ask whether Xéd is equal to the reduced intersection
of the irreducible components of X5 ;cq that contain it. For example, suppose that
f = 2, that r is irregular at ¢ = 1, and that 0 < ro,1 — 792 < p. Then [DS,
Lem. 11.2.6] has the following geometric reinterpretation: if ro1 — 792 # 1, then
xE = xm A ©. instead 701 — 702 = 1, then the X%, = Mo o 0 x),

re
Note that in the latter case p;(r) is irregular at ¢ = 0, and moreover vo(pi(r)) ~ r,

so that X, = Xr‘;h@. (The intersections here are all reduced intersections, i.e., we
make no claims about intersection multiplicities.)

For general f, an explicit conjecture in the same spirit can be found in [Wie,
Conj. 4.4], and will be addressed in forthcoming work of Wiersema.

5.2. Shape-shifting. We now give another proof of Theorem 5.2. The strategy is
as follows. By Proposition 4.13 we can find a tame type 7 and a profile J such that
r =r(7,J). Recall that the set S7(J) is precisely the set of embeddings at which r
is irregular.

The substack Z7(J) is the scheme-theoretic image in 244! of C™(J), which by
the results of Section 3.1 is the stack of Breuil-Kisin modules of type 7 that have
shape I, or II when ¢ € J, and shape I,/ or II when i ¢ J.
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The key observation will be that if U C C"(J) is the closed substack of Breuil—
Kisin modules with shape II for each ¢ € S7(J), then the image of U in Z7(J) is
still dense (cf. the proof of Theorem 5.9). Since Breuil-Kisin modules of shape II
may be regarded as having either “shape I, or II” or “shape I, or II”, we see that
if J' is any other profile such that the symmetric difference JAJ' is a subset of
ST(J), then U C C7(J’) as well. (This observation is the source of the name shape-
shifting.) It follows that Z7(J) is contained in Z7(J'). Finally, setting ’ = r(r, J'),
Theorem 4.17 and the results of Section 4.1 imply that szed C Xfe/d. Note that in
this argument the inclusion of stacks comes first, and the statement about crystalline
lifts is the corollary.

In fact the collection of profiles J’ to which the shape-shifting argument can be
made to apply is somewhat larger than we have described above.

Remark 5.5. In the cuspidal case, each profile J C Z/ f'Z has the property that
i€ Jifand only if i+ f & J. It follows that the symmetric difference JAJ' C Z/f'Z
of two profiles has the property that ¢ € JAJ' if and only if ¢ + f € JAJ', and
may thus be identified with a well-defined subset of Z/fZ. We will freely make this
identification in what follows. This allows us sensibly to write JAJ' C S7(J) in the
cuspidal case and not only in the principal series case, even though in the cuspidal
case JAJ' is literally a subset of Z/f'Z while S7(J) is a subset of Z/fZ.

To implement the above strategy, we begin with a brief review of some results
from [CEGSc, §§3-5]. As we have already alluded to in the proof of Proposition 4.20,
the constructions of [CEGSc| furnish us with a morphism

€ : Spec BYSt — C7(J) = 27(J)

such that the maps from Spec BYs* to both C™(J) and Z7(J) are scheme-theoretically
dominant. The source Spec B4t has the following description: there are rank one
Breuil-Kisin modules 9t(J) and 9(.J) such that Spec B4t is a universal family of
extensions of unramified twists of 9(J) by unramified twists of 9(J); the superscript
‘dist’ indicates that for certain (7, J) — namely if D(J)[1/u] = N(J)[1/u] — then
we restrict from the whole universal family to the (dense, open) subfamily whose
F'-points are extensions of M(J)gs o by N(J)pr p with a # b.

The rank one Breuil-Kisin modules D (J)gs , and N(J)g p admit the following
descriptions. Set (¢;,d;) = (ki kL) if i € J, and (¢;,d;) = (kl, k;) if i € J. Define

[di — Ci] when
T, = ’
pl —1 when

{[Ci - dz} when
S; =

Finally set ap = a, bp = b, and a; = b; = 1 if i # 0. Then M(J)p' o is the
Breuil-Kisin module 9(r, a,c) of [CEGSe, Lem 4.1.1] (with F’-coefficients), and
N(J)gp is the Breuil-Kisin module M (s, b, ¢). In particular, the i-th component
(OMM(J)¥.q)i has a basis element m; on which I(K’/K) acts vian if i € J and 7’ if
i ¢ J, while the reverse holds for basis elements n; of (M(J)g p);.
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As explained in [CEGSc, Rem. 4.1.9], an extension P of M(J)gs o by N(J)r s
has partial Frobenius given by

P (1 ®@ni—1) = bu’ing,
Oy i(1 @mi1) = agu”'m; + hau’ing,

where h; € F/ and 6; = 0 if (¢ — 1,4) is a transition while 6; = [¢; — d;] otherwise.
The descent data on P is given by specifying that if we define 8; = (m;,n;) for
i€ Jand B; = (ng,my) for i € J, then 8 = (5;) is an eigenbasis. Observe for later
reference that P has shape II at 4 if and only (i — 1,4) is a transition and h; = 0 (in
which case the matrix of ®q ; with respect to 8 is anti-diagonal). In this manner
we identify Ext' (0(J)g.q, W(J)g ) with the f-dimensional vector space spanned
by the elements h; € F’.
To describe the subspace

ker-Ext' (M) g 0, M(T)Er p) C Ext* (O T)gr 0, M(T)F )
of extensions that split after inverting u, we need to introduce some notation.

Definition 5.6. An interval in Z/fZ is the image in Z/fZ of any interval in Z. If
S is any subset of Z/ fZ write S(n) for the shift of S by n, and S¢ = SUS(—1). Any
subset S C Z/fZ then has a unique decomposition S = I; [[--- ][ I, as a disjoint
union of maximal intervals. The maximality condition is equivalent to the condition
that I7 NI = @ for all ¢ # j.

The discussion in [CEGSc, §5.1] establishes that ker-Ext! (9(J)gs o, 0(J)5 5)
has dimension |S7(J)|, and in fact that it has the following more precise description.
Note that the assumption that a # b if D(J)[1/u] = N(J)[1/u] implies that we
are not in the “exceptional case” of [CEGSc, Prop. 5.1.8]. In what follows, we let
L IT--- 111, be the decomposition of S7(J) as a disjoint union of maximal intervals.
(For simplicity of notation, we suppress 7, J from the notation for Iy, ..., I;.)

Proposition 5.7. Suppose that S™(J) # Z/fZ. For each k = 1,... ¢ there is a
hyperplane V, = {Ziel,‘; azh; = 0} with each «; # 0 such that

~

ker-Ext" (M (J)r o M) 1) = €D Vi
k=1

under the identification discussed above.
If instead ST(J) = Z/fZ then ker-Ext'(M(J)g oN(J)g+ ) is equal to all of
Ext' (M) g, N p)-

Definition 5.8. Continue to let I; []---]] I be the decomposition of S7(J) as a
disjoint union of maximal intervals as above. If I # Z/fZ is an interval let m(I) be
the unique element of 7€\ I, and set

, ) I¢ if (m(I) — 1,m(I)) is a transition for J
|1 if (m(I) = 1,m(I)) is not a transition for J.

If I =2Z/fZ set I' =1. Define S™(J) =11 [[--- 111}

We can now prove the following.
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Theorem 5.9. Let J' be any profile with JAJ' C S™(J)'. If ST(J) # Z/fZ,
assume further that JAJ' does not contain I for any k.

Write r = r(7,J) and v’ = r(7,J'). Then X5, C Xrﬁe/d'

Proof. Let V. C Z7(J) be the collection of finite type points lying in the im-
age of Ext'(M(J)g o, M(J)gp) for some a,b with a # b, so that V is dense
in Z7(J). Proposition 5.7 implies that each point in V has a preimage P €
Ext'(O(J) g0, M(J)p ) with h; = 0 for all i € JAJ' (here using the fact that
a; # 0 for all 4, and the hypothesis that Iy ¢ JAJ’ for any k). By the discussion
at the beginning of the section, this preimage has shape II at all ¢ € JAJ’, here
using in an essential way that ¢ = m(I}) € I, is allowed only when (m(I) —1,m(I))
is a transition. Therefore P € C™(J')(F’). It follows that V C Z7(J’), and so also
Z7(J) C 27(J"). O

Corollary 5.10. Theorem 5.2 holds for vj(r) and 0;(r).

Proof. Using Proposition 4.13 choose 7 and J so that r = r(7,J). By hypothesis
rj1 =12 and so we have j € S7(J). Taking the unique profile J’ with JAJ" = {j},
one computes that v;(r) ~ r(r,J’). The result for v; now follows from Theorem 5.9.

The argument for ;(r) is similar but slightly more involved. If j — 1 € S7(J)
then 0;(r) = v;_1(r) and we are done by the previous paragraph. Otherwise, since
we have assumed that rj_11 —rj_12#p, we have r;_11 —rj_12 € [1,p—1]. By
Remark 4.16 we may choose (7, J) with r = (7, J) such that there is a transition at
j — 1, unless we are in the exceptional case described in Remark 4.16(2). Observe
that this exceptional case occurs precisely when 6;(r) is Steinberg.

Assume first that 6;(r) is non-Steinberg. Then as explained above we may arrange
that there is a transition at j —1, so that j—1 € S7(J)’. Taking the unique profile J’
with JAJ = {j — 1}, one computes that 6;(r) ~ r(7,J"). The result in this case
now follows from Theorem 5.9.

Finally suppose that 6;(r) is Steinberg. Applying v,41, V42, ...,V;—1 successively
to r one obtains a Hodge type of the form BT +\ with A € Zf, and such that
0;(r) ~ St + A. Here St is the Steinberg Hodge type {p,0};cz/sz. The result for v
shows that p has a crystalline lift of Hodge type BT +\. Since it is standard that a
representation with a crystalline lift of Hodge type BT also has a crystalline lift of
Hodge type St, the result follows. O

The argument for p; proceeds somewhat differently. For brevity, since the
argument for Theorem 5.2 in the previous subsection was complete, we content
ourselves with giving a sketch.

Proposition 5.11. Theorem 5.2 holds for 11 (r).

Sketch of proof. If r is irregular at j — 1 then p; = v;_;, so we may assume that r
is regular at j — 1. Using Proposition 4.13 choose 7 and J so that r = r(7, J). By
Remark 4.16 we can always arrange that 7 — 1 is not a transition, and we do so. Let
J' be the unique profile such that JAJ' = {j — 1}. Then r(r,J') ~ u(r). Note that
|ST(J")] = |S7(J)| — 6 where 6 =1 if rj_11 —7j_1,2 > 1 and § = 0 otherwise. In
the latter case j — 1 € S7(J’).

Unfortunately we cannot apply Theorem 5.9 to the pair J, J', because j — 1 ¢
ST(J)'. Instead we argue as follows. The extensions of MM (J)g: o by N(J e
have a description that is parallel to the one for M(J)gs o by N(J)g . We let R
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denote the extension parameters for J’ that were denoted h; for J. Since j — 1 is a
transition in J', the locus {h;_; = 0} C C7(J')(F’) consists of Breuil-Kisin modules
having shape II at j — 1, which therefore also lie in C7(J)(F').

If § = 1 then j — 1,5 ¢ S™(J') and according to Proposition 5.7 we have
ker-Ext(MM(J")a, N(J")p) C {h;_; = 0}. If 6 = 0 then ker-Ext(M(J")a, N(J)s)
meets {h}_; = 0} in codimension 1 instead. In either case ker-Ext(9(J")q, N(J")p)N
{h;_; = 0} has dimension [ST(J')| +d —1=[S7(J)| — 1.

The image of the locus {h}_; = 0} in Z7™' will therefore have dimension ([K :
Q-1 —(57(N) -1 =K : Q] —15S"(J)|. It follows that Z7(J’) contains
a ([K : Q] — |S7(J)|)-dimensional subset of Z7(J). But Z7(J) is irreducible of
dimension [K : Q] — |S7(J)[; after checking that this implies Z7(J") N Z7(J) is
dense in Z7(J), we conclude that Z7(J) C Z7(J'). O
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