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ABSTRACT. Transfer operators are conjectural “operators of functorial-
ity,” which transfer test measures and (relative) characters from one ho-
mogeneous space to another. In previous work [Sak21, Sak23], I com-
puted transfer operators associated to spherical varieties of rank one, and
gave an interpretation of them in terms of geometric quantization. In
this paper, I study how these operators vary in the horospherical limits
of these varieties, where they have a conceptual interpretation related
to scattering theory. I also revisit Jacquet’s Hankel transform for the
Kuznetsov formula, which is related to the functional equation of the
standard L-function of GLn, and provide an interpretation of it in terms
of quantization.
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1. INTRODUCTION

1.1. Outline.

1.1.1. Let G be a connected reductive group over a local field F , and, for
a G-space X , consider the quotient stack X “ pX ˆ Xq{G, where G acts
diagonally. There is a notion of “relative characters” for G-representations
associated to this quotient (generalizing characters on the adjoint quotient
of the group), and many interesting questions that one can ask about them,
such as

Are there relations between representations and characters
associated to different spaces X, Y as above?

Such relations are often conjectured by the Langlands program and its
generalization, the relative Langlands program. Relative characters are,
roughly,G-invariant generalized functions onXˆX , or, equivalently, func-
tionals on the Schwartz space SpXq [Sak16], that are eigen- for the Bern-
stein center or the Harish-Chandra center. We would therefore like to an-
swer such questions by describing “transfer operators” between Schwartz
spaces

T : SpYq Ñ SpXq,

which pull back characters for X to characters for Y.
Such operators were described previously in [Sak21], whenX is an affine

homogeneous spherical variety of rank one, and Y is the Kuznetsov quo-
tient for the group G˚ “ SL2 or PGL2 (hence, the analogous to the space X
for Y is the quotient of G˚ by a nontrivial unipotent subgroup, “twisted”
by a nontrivial character ψ of this subgroup). The surprising discovery was
that, despite the non-abelian nature of the problem, the transfer operators
T were given by explicit, abelian, Fourier transforms. A phenomenologi-
cal “quantization” interpretation for this fact provided in [Sak23]: namely,
we can view SpYq and SpXq as “quantizations” of (roughly) the same sym-
plectic variety, and these Fourier transforms can be understood as direct
analogs of the “operators of change of Schrödinger model” (albeit in a non-
linear setting).

One goal of this paper is to provide another interpretation of these op-
erators, in terms of the “asymptotic cones” (boundary degenerations) of X
and Y. In the case of X, this is the degeneration that one obtains when one
lets the spherical variety X degenerate to its horospherical limit, and in the
case of Y, when one lets the character ψ degenerate to the trivial character.
In Section 3, we generalize to all rank-one (affine homogeneous) varieties
a discovery of [Sak22a, §4.3, 5] for the special cases X “ GmzPGL2 and
X “ SL2, namely, that the transfer operators for X and its boundary degener-
ation have exactly the same form (in appropriate coordinates); see Theorem
3.4.1.
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1.1.2. The argument for the study of transfer operators in the horospher-
ical limit is no different than the one used in [Sak22a], up to knowing the
scattering operators in each case. Those are the operators that control the
asymptotics of generalized matrix coefficients on X , and the Plancherel for-
mula for the “most continuous” part of L2pXq [SV17, DHS21]. Thus, we
start in Section 2 by computing the scattering operators for all spherical va-
rieties of rank one. The calculation should be very familiar to anyone with
experience in the calculation of “unramified/spherical (eigen)functions”
(for the Hecke algebra): Indeed, the scattering operators are the “functional
equations” of the Casselman–Shalika method and its generalizations. Thus,
our methods do not differ significanty from the ones employed in [Sak13]
to compute spherical functions.

To extend this calculation to the ramified (principal series) representa-
tions, we need to be very pedantic with the definitions of Radon trans-
forms (intertwining operators), to eliminate scalar ambiguities. Unfortu-
nately, this makes that section quite technical, and the reader might be wise
to just skim through it at first reading. On the flip side, we obtain a very
rigid formula, encoded in Theorem 2.4.2, that relates scattering operators
to the gamma factors of the local functional equation of L-functions. These
γ-factors will be our first encounter, in this paper, of the deep relations be-
tween local harmonic analysis and local L-functions.

1.1.3. Of similar nature to the transfer operators are the so-called Hankel
transforms, which are the trace-formula-theoretic incarnations of the func-
tional equations of local L-functions. For the purposes of the present paper,
we do not need to recall general definitions or conjectures around those,
as we will only be concerned with the standard L-function of GLn. By the
work of Godement and Jacquet [GJ72], the local functional equation for this
L-function is afforded by the Fourier transform (depending on an additive
character ψ)

F : DpMatnq
„
ÝÑ DpMat˚

nq,

between half-densities on the vector space of nˆnmatrices, and on its dual,
both viewed as G “ GLn ˆGmGLn-spaces. The natural embeddings of GLn
in both Matn and Mat˚

n allow us to view F as aG-equivariant map between
certain spaces of half-densities (or, by fixing a Haar measure, of measures)
on GLn. It therefore acts by a scalar on characters of irreducible representa-
tions π (at least, a scalar varying meromorphically, as the representation is
twisted by characters of the determinant, and therefore defined for almost
every π), and this scalar is, by definition, the gamma factor

γpπ,
1

2
, ψq

of the standard (local)L-function of π. Because of its equivariant nature, the
Fourier transform descends to a Hankel transform between spaces pN,ψq2-
coinvariants (where N is the upper triangular unipotent subgroup, and ψ
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now also denotes a generic character of it)

H : DpMatnqpN,ψq2
„
ÝÑ DpMat˚

nqpN,ψq2 ,

and we can now think of both sides as spaces D´, D` of half-densities for
the Kuznetsov quotient stack Y of GLn. Jacquet [Jac03] has computed a
formula for this transform – see Theorem 4.1.2.

In this paper, we will give a quantization interpretation for this formula,
Theorem 4.2.10, similar to the one given in [Sak23] to the rank-one trans-
fer operators. Namely, we will view the spaces D´, D` as two different
“geometric quantizations” of the same cotangent stack M (the latter being
the two-sided Whittaker reduction of T ˚ Matn “ T ˚ Mat˚

n), given by two
different Lagrangian foliations on it. And we will show that Jacquet’s Han-
kel transform is given by the integral along the leaves of these foliations,
just as in the case of intertwining operators between Schrödinger models
for the oscillator representation. This point of view also allows us to give a
geometric reformulation of Jacquet’s proof.

1.1.4. I view the results of this paper as further evidence for the microlo-
cal nature of conjectural “operators of functoriality.” This idea appeared
already in my earlier work mentioned above, but the study of Jacquet’s
Hankel transform given here is the first time that it is being confirmed in
higher rank. Similar ideas, but not in the context of trace formulas, have
appeared in talks and unpublished notes of Vincent Lafforgue.

Moreover, concepts such as “geometric quantization of symplectic stacks”
are essentially unexplored, and presently very vague. This paper provides
some examples and hints as to what they might mean.

1.2. Acknowledgments. It is my pleasure to dedicate this paper to Toshiyuki
Kobayashi, on the occasion of his 60th birthday. I met Professor Kobayashi
in 2007, when I visited him with Joseph Bernstein in Kyoto, and I have since
enjoyed the privilege of talking to him at various occasions in Japan, Israel,
and elsewhere. I have always admired his originality and independence as
a mathematical thinker, but also the breadth and depth of his knowledge
beyond mathematics, which ranges from Japanese mountain vegetables to
Greek mythology.

I am deeply indebted to the anonymous referees for pointing out many
errors in the original submission and for substantial suggestions on expo-
sition.

This work was supported by NSF grant DMS-2101700; the results of Sec-
tions 2–3 were previously announced, without proof, in the first arXiv ver-
sion of [Sak21], but were not included in the published version.

1.3. Notation. We will be working over a local field F , which is non-Archi-
medean of characteristic zero in Sections 2, 3, and Archimedean in Section
4. When no confusion arises, we will simply write X for the F -points of a
variety X over F .
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Once we fix a Haar measure on F , every volume form ω on a smooth
variety X gives rise to a density (measure) |ω| on its F -points, in the stan-
dard way. We mostly follow the standard habit of denoting differentials
and the associated densities by the same symbols, dx etc., when the mean-
ing is clear from the context; when not, we write |ω| for the density. One
can also define associated half-densities, which will be denoted by |ω|

1
2 .

We writeX�G for the invariant-theoretic quotient SpecF rXsG of a (typ-
ically affine) varietyX by the right action of a groupG. When quotients are
denoted by a single slash, X{G, unless we say otherwise, we will mean the
stack quotient. However, knowledge of stacks is not required to read this
paper: when this is not a variety, this symbol will mostly be a placeholder
for an explicitly-defined object associated to the G-action on X , such as a
space of orbital integrals.

We will sometimes switch right actions to left actions, via the rule g´1 ¨

x “ x ¨ g. The quotient of the product X ˆ Y two right G-varieties by the
diagonal action of G will be denoted by X ˆG Y .

The “universal” or “abstract” Cartan of a reductive group G is defined
as the quotient A “ B{N of any Borel subgroup B by its unipotent radi-
cal N ; different choices for the Borel give a canonically isomorphic torus,
which also comes equipped with a based root datum. Many constructions
in this paper are “universal” in this sense: they can be described using a
Borel subgroup, but a different choice leads to a canonically isomorphic
construction. In those cases, we will feel free to use a Borel subgroup B,
without commenting on the choice.

Finally, ifM is a HamiltonianG-space (i.e., a symplecticG-variety equip-
ped with a moment map to g˚, for some group G), and f P g˚ is a G-
invariant element, the Hamiltonian reduction of M at f , denoted M {{{f G, is
the symplectic “space” pM ˆg˚ tfuq{G. Often, this quotient does not make
sense as a variety, i.e., the G-action is not free. In those cases, the proper
way to think ofM {{{f G is as a derived stack, i.e., we also need to understand
the fiber product over g˚ as a derived fiber product. However, in this paper,
we will usually restrict to an open subset which is a variety, or else explain
some less sophisticated way of using this quotient.

2. SCATTERING OPERATORS IN RANK ONE

2.1. Spherical varieties of rank one, and their asymptotic cones.

2.1.1. Let X “ HzG be an affine, homogeneous spherical variety of rank
one over a local field F , withG andH split reductive groups. In this section
and the next, we will assume that F is non-Archimedean in characteristic
zero, because this is where a “cleaner” theory of asymptotics is available,
by [SV17, § 5].
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Remark 2.1.2. There are no serious obstacles to extending the theory of
asymptotics to positive characteristic, at least for the spaces of Table (1) be-
low, other than some care that needs to be taken when defining these spaces
and their boundary degenerations in small characteristics. Moreover, the
calculations of scattering operators in the present chapter extend to the
scattering operators for tempered representations, developed in [Car97],
[DKSBP22], in the Archimedean case.

We will assume thatX is contained in the following table, which contains
all such varieties, up to the action of the “center” ZpXq :“ AutGpXq.

X P pXq ǦX γ LX

A1 GmzPGL2 B SL2 α LpStd, 12 q2

An GLn zPGLn`1 P1,n´1,1 SL2 α1 ` ¨ ¨ ¨ ` αn LpStd, n2 q2

Bn SO2nzSO2n`1 PSO2n´1
SL2 α1 ` ¨ ¨ ¨ ` αn LpStd, n´ 1

2 qLpStd, 12 q

Cn Sp2n´2 ˆSp2 zSp2n PSL2 ˆ Sp2pn´2q
SL2 α1 ` 2α2 ` ¨ ¨ ¨ ` 2αn´1 ` αn LpStd, n´ 1

2 qLpStd, n´ 3
2 q

F4 Spin9 zF4 PSpin7
SL2 α1 ` 2α2 ` 3α3 ` 2α4 LpStd, 112 qLpStd, 52 q

G2 SL3 zG2 PSL2
SL2 2α1 ` α2 LpStd, 52 qLpStd, 12 q

D2 SL2 “ SO3zSO4 B PGL2 α1 ` α2 LpAd, 1q

Dn SO2n´1zSO2n PSO2n´2 PGL2 2α1 ` ¨ ¨ ¨ ` 2αn´2 ` αn´1 ` αn LpAd, n´ 1q

D2
4 Spin7 zSpin8 PSpin6

PGL2 2α1 ` 2α2 ` α3 ` α4 LpAd, 3q

B2
3 G2zSpin7 PSL3

PGL2 α1 ` 2α2 ` 3α3 LpAd, 3q

(1)

The table also shows the dual group ǦX of X , with its positive coroot γ
(the “normalized spherical root” of X) and the “associated L-value.” The
dual group admits an embedding into the dual group Ǧ of G with positive
coroot γ, and its Weyl group WX » Z{2 has a generator w which can also
be considered as an element of the Weyl group of G.

Associating L-values (i.e., special values of L-functions – in this case,
of local L-factors) to these varieties is motivated by number theory, but it
turns out that these mysterious quantities control a great deal of harmonic
analysis. In this paper, we will see how they control scattering operators on
the asymptotic cone ofX , and transfer operators for its relative trace formula.
We postpone the discussion of these L-values until we encounter them in
harmonic analysis.

2.1.3. The purpose of this section is to recall and precisely calculate scat-
tering operators, for all the varieties above. We must first recall the asymp-
totic cone (or boundary degeneration, in the language of [SV17]) of a (quasi-
affine, homogeneous) spherical varietyX . This is a horospherical varietyXH

(which, here, we will take to be homogeneous, by definition), which can be
defined in several equivalent ways. One of them is by identifying XH with
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the open G-orbit in the normal bundle to a closed G-orbit in a “wonder-
ful” (or rather, smooth toroidal) compactification of X [SV17, § 2.4]. In the
case at hand, where our varieties are of rank 1, they all possess a canonical
“wonderful” compactification X̄ , which is the union of X and a projective
orbit isomorphic to the flag variety BX “ P pXq´zG, for some parabolic
P pXq´. The opposite P pXq of this parabolic (or rather, its conjugacy class)
can be characterized as the stabilizer of the open Borel orbit X˝ Ă X , and
it admits a quotient to a torus AX , which is the quotient by which it acts
on X˝{UP pXq. In the rank-one cases of the table above, AX » Gm, either
via the spherical root γ (when ǦX “ SL2) or via its square root (when
ǦX “ PGL2). Let q : P pXq Ñ AX “ Gm denote the quotient map.

WhenX is symmetric (as are almost all1 of the varieties in Table (1)), with
θ “ the involution associated to a point in the open orbit for a chosen Borel
subgroup, P pXq is known as the “minimal θ-split parabolic.” The roots in
the Levi of P pXq, for the varieties of Table (1), are those that are orthogonal
to the spherical root γ, and the boundary degeneration is anAX -torsor over
P pXq´zG.

The quotient q : P pXq Ñ AX “ Gm, also defines a character q´ for the
opposite parabolic P pXq´, by the natural identification of the abelianiza-
tions of P pXq and P pXq´. The boundary degeneration is anAXˆG-variety
which can be identified with

XH “ SzG, (2)

where S “ ker q´, and our convention is that AX acts on XH via AX »

P pXq´{S. For the cases of Table (1), P pXq is self-dual, i.e., P pXq´ is conju-
gate to P pXq, so we could have written XH as an AX -torsor over P pXqzG.
However, our presentation helps recall our conventions for the AX -action,
and the action of the universal Cartan A of G: While AX is identified as
a quotient of the abstract Cartan via B Ñ P pXq Ñ AX , it acts on XH via
P pXq´ Ñ AX .

Note that the identification (2) is by no means canonical – any translation
by the action of AX leads to another such identification. But the boundary
degeneration XH is rigid, by construction, and this has consequences for
our geometric and harmonic-analytic calculations (which will not always
be invariant under the action of AX ). In particular, by [SV17, Theorem
5.1.1], there is a canonical “asymptotics” morphism

e˚
H : C8pXq Ñ C8pXHq, (3)

with the property that, in a suitable sense (that we will not review here), Φ
and e˚

HΦ “coincide in a neighborhood of the orbit at infinity.”
As another manifestation of the rigidity of XH, in a subsequent subsec-

tion we will show that there is a distinguished G-orbit XR
H in the “open

1In fact, as abstract varieties, all are symmetric; but the varieties SL3 zG2 and G2z Spin7

are symmetric under a larger group of automorphisms, namely, they are isomorphic to
SO6zSO7 and SO7zSO8, respectively.
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Bruhat cell” of XH ˆ XH, that is, whose image in BX ˆ BX under the map
induced from XH Ñ BX (the map taking a point to the normalizer of its
stabilizer) belongs to the open G-orbit.

2.1.4. Before we do that, let us recall an alternative, equivalent definition
ofXH: It is the openG-orbit in the special fiber of the “affine degeneration”
of X [SV17, 2.5]. This is a family X Ñ AX of affine varieties over a certain
affine embedding of the torus AX , which in our case can be identified with
A1. The fibers over AX are isomorphic to X , while the fiber over 0 P A1 is
an affine horospherical variety, whose open G-orbit can be identified with
XH.

Example 2.1.5. Let X “ SOnzSOn`1, identified with the “unit sphere” in a
maximally isotropic quadratic space V of the appropriate discriminant (if
we want SOn to be split, too). Then, in one version of the affine degenera-
tion, we can consider V itself as a family of spaces containing X , with the
map to A1 being the quadratic form. Note, however, that the fibers over
t ‰ A1 are only isomorphic over the algebraic closure, and depend on the
square class of t over F . Therefore, it may be arithmetically preferable to
define X “ V ˆA1 A1, with A1 Ñ A1 the square map. This is the family
over AX mentioned above.

2.2. Scattering operators.

2.2.1. We generally normalize actions of various groups to be L2-unitary.
Specifically for the action of AX on functions on XH, if δP pXq denotes the
modular character of P pXq (the inverse of the modular character of P pXq´,
when considered as a character of their common Levi subgroup), then this
unitary action is given by

a ¨ ΦpSgq “ δ
1
2

P pXq
paqΦpSagq. (4)

For χ a character of AX in general position, consider the normalized
(possibly degenerate) principal series representation

IGP pXq´pχq “ IndGP pXq´pχδ
´ 1

2

P pXq
q.

Up to a choice of scalar, we have an isomorphism

C8ppAX , χqzXHq » IGP pXq´pχq, (5)

where the space on the left is the space of smooth pAX , χq-eigenfunctions
under the normalized action above.

The scattering maps that we would like to describe form a meromorphic
(in χ) family of morphisms:

Sw,χ : C8ppAX , χ
´1qzXHq Ñ C8ppAX , χqzXHq,
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such that2 Sw,χ´1 ˝ Sw,χ “ I , and characterized as follows:
For χ in general position, there is a unique up to scalar morphism IGP pXq´pχq Ñ

C8pXq, and the scattering morphism Sw,χ encodes its asymptotics, in the
sense that the composition of this embedding with the asymptotics mor-
phism (3) lives in the space of Sw-invariant pairs of the direct sum

C8ppAX , χ
´1qzXHq ‘ C8ppAX , χqzXHq.

More precisely, the following commutative diagram characterizes the
scattering morphisms, see [DHS21, § 10.17]:

C8ppAX , χ
´1qzXh

Hq

��

M´1

χ´1
// C8ppAX , χ

´1qzXHq

Sw,χ

��

C8
c pXq

Nχ´1
44

Nχ **
C8ppAX , χqzXh

Hq
M´1

χ // C8ppAX , χqzXHq,

(6)
where the notation is as follows:

(1) The space Xh
H is the space of generic horocycles on X , or on XH. It

classifies pairs pP, Y q, where P P BX (that is, in the class of parabol-
ics P pXq), with unipotent radical U , and Y is a U -orbit in the open
P -orbit of X , or of XH; by [SV17, Lemma 2.8.1], X and XH give
canonically isomorphic spaces by this construction, and we will
therefore also use the simplified notation Xh for Xh

H. In the rank-
one cases that we are considering, Xh

H is G-isomorphic to XH, but
not canonically. Moreover, the AX -action on XH, defined above,
gives rise to the w-twisted AX -action on Xh

H under such an isomor-
phism, where w is the longest element of WX (in rank one, this is
the inverse AX -action). It is therefore best to think of Xh

H as S`zG,
where S` Ă P pXq is the kernel of the character q.

(2) The operator Mχ, which can be thought of as the “standard inter-
twining operator”, is the operator which, in a region of conver-
gence, takes a function in C8ppAX , χqzXHq and integrates it over
generic horocycles. Because there is no canonical measure on those horo-
cycles, this operator depends on a choice of such measures, and more
canonically has image in the sections of a certain line bundle over
Xh

H (the line bundle dual to the line bundle whose fiber over a horo-
cycle is the set of U -invariant measures on it — see [SV17, §15.2]).

2We rely throughout on the fact that, in rank one, wχ “ χ´1; in general the scattering
operators relate induced representations from WX -conjugate characters.
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However, in the cases of Table (1) that we are interested in this pa-
per (and, more generally, whenever X , hence also XH, admits a
G-invariant measure), such a choice can be made G-equivariantly,
and it will not matter for the commutativity of the diagram — the
important point here being that horocycles in XH and X are identi-
fied, and the choices of Haar measures must be made compatibly.

(3) The operator Nχ is, similarly, the integral over the horocycles on
X , followed by an averaging over horocycles in the same B-orbit,
against the character χ´1 of AX ; that is, for a horocycle Y , consid-
ered both as a point in Xh

H and as a subset of X ,

NχΦpY q “

ż

AX

ˆ
ż

aY
Φpyqdy

˙

χ´1δ
´ 1

2

P pXq
paqda. (7)

In other words, this is the standard morphism to the principal series
representationC8ppAX , χqzXh

Hq, given by an integral over the open
Borel orbit. Again, the Haar measure used on AX does not matter
for the commutativity of the diagram.

Note that, via the noncanonical identification (5), the morphism Sw,χ has
to be (for almost all χ) a multiple of the “standard intertwining operator”

Rχ : IGP pXq´pχ´1q Ñ IGP pXq´pχq

given by the integral

Rχfpgq “

ż

U´

P pXq

fpw̃ugqdu,

for some lift w̃ of w toG. Hence, our goal is to describe this constant of pro-
portionality, but we must first give a careful definition of these intertwining
operators, since they depend on the isomorphism (5), and the lift w̃, as well
as the measure u that appear in the definition of Rχ. It turns out that there
is a way to do define Rχ (which I will call “spectral Radon transform”) that
is independent of choices.

2.3. The canonical Radon transform and the basic cases.

2.3.1. The spectral Radon transforms Rχ will be obtained as Mellin trans-
forms of a Radon transform R : C8

c pXHq Ñ C8pXHq which, under iso-
morphisms XH » SzG as before, can be written

RΦpSgq “

ż

U´

P pXq

ΦpSw̃ugqdu.

Interpreting such an integral without fixing such an isomorphism or a lift
w̃ for the Weyl group element, we must describe a distinguished G-orbit
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XR
H Ă XH ˆXH, living over the open Bruhat cell of BX ˆBX , such that the

Radon transform is given by:

RpΦqpxq “

ż

px,yqPXR
H

Φpyqdy. (8)

2.3.2. Choice of measure for Radon transforms. This integral (8) also depends
on fixing (G-equivariantly) measures dy on the fibers of XR

H with respect
to the first projection. The formulas for the scattering operators that we
will present in this section are only true for one such choice of measure, be-
cause the spectral scattering operators Sw,χ are completely canonical (and
unitary on L2ppAX , χqzXHq, for χ unitary). The measure (and formulas)
will depend on a nontrivial, unitary additive character ψ : F Ñ Cˆ, which
we fix throughout, thereby fixing the corresponding self-dual Haar mea-
sure on F .

It is enough to describe the measure for the standard intertwining oper-
ators for nondegenerate principal series,3

Rχ,w̃ : IGB´pw
´1
χq Ñ IB´pχq,

defined for almost every character by meromorphic continuation of

Rχ,w̃fpgq “

ż

pN´Xw´1N´wqzN´

fpw̃ngqdn, (9)

since the operator for degenerate principal series descends from those. This
will be applied, in the course of our argument, to various spaces which
are (noncanonically) quotients of N´zG (i.e., horospherical), hence, being
mindful of the noncanonical nature of such isomorphisms, we should think
of f above as a function on a space Y which is isomorphic to N´zG, and of
the representative w̃ of the Weyl element w as determining a distinguished
G-orbit in Y ˆ Y , so that Rχ,w̃ is given by an integral analogous to (8).
Choosing a reduced decomposition w̃ “ w̃1 ¨ ¨ ¨ w̃n into representatives for
the simple reflections, it is well-known (and immediate to check) that

Rw̃ “ Rw̃1 ˝ ¨ ¨ ¨ ˝ Rw̃n , (10)

hence we only need to describe the measure for w a simple reflection in
the Weyl group. In this setting, we are reduced to the case of SL2, through
the map from SL2 to the Levi of the parabolic corresponding to the simple
reflection.

Hence, we take G “ SL2, with a chosen G-orbit on pNzSL2q2. We can
then fix an isomorphism between SL2 and the special linear group of a
symplectic vector space pV, ωq, with the chosen G-orbit equal to V R “

tpv1, v2q|ωpv1, v2q “ 1u. (Any two such identifications differ by the scalar

3In keeping with standard conventions for boundary degenerations when χ stands for
a character of the universal Cartan, i.e., the torus quotient of a Borel subgroup, we use χ
to index the Radon transform whose image is in the induction of χ from the opposite Borel
subgroup. This ensures compatibility with the notation of [Sak22a].
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action of ˘1, which does not affect Haar measures.) The canonical choice
of measure, then, is the one described in [Sak22a, § 3.3], and it is as fol-
lows. By our isomorphism, the intertwining operator descends from the
following Radon transform on V ,

Rw̃Φpuq “

ż

ωpu,vq“1
Φpvqdv, (11)

with dv the measure to be described.4 But the horocycle ωpu, vq “ 1 (for
fixed u), here, is canonically an F -torsor under px, vq ÞÑ v ` xu, thus inher-
iting the Haar measure from F .

This completes our description of the measure used to define Radon
transforms. We complement it with a well-known formula for its inverse.
It uses the gamma factors of the local functional equation of L-functions:

γpχ, s, ψqLpχ, sq “ ϵpχ, s, ψqLpχ´1, 1 ´ sq. (12)

They are defined by the theory of local zeta integrals (Iwasawa–Tate), see
[Sak22a, 2.1.4] for a recollection.

When χ is a character of a split torus T , and r is a representation of the
dual torus, we will use Langlands’ notation for L- and γ-factors:

γpχ, r, s, ψq “
ź

i

γpχ ˝ λi, s, ψq, (13)

where λi ranges over the weights of r (with multiplicities).

Lemma 2.3.3. The operator Rχ,w̃ is defined and invertible almost everywhere,
with inverse

R´1
χ,w̃ “

ź

αą0,w´1αă0

γpχ, α̌, 0, ψqγpχ,´α̌, 0, ψ´1qRw´1χ,w̃´1 . (14)

Proof. This reduces again, by the same argument, to SL2, where the for-
mula can be proven by relating Radon transforms to Fourier transforms, as
before [Sak22a, (3.25)]. However, there is a sign error in op.cit.: The asser-
tion that F˚ ˝ F “ 1 at the bottom of p.50 of op.cit. is incorrect. The correct
statement is that F ˝ F “ 1, which implies that the characters ψ´1 in (3.25)
and (3.28) of op.cit. should be ψ. However, the Radon transform of (3.25)
corresponds to what we denote here by Rχ,w̃ for a representative of the
nontrivial Weyl element of SL2 with w̃2 “ ´I ; this is χp´IqRχ,w̃´1 , and
using χp´Iqγpχ,´α̌, 0, ψq “ γpχ,´α̌, 0, ψ´1q, we obtain our formula. □

Remark 2.3.4. A technical detail: When w2 “ 1, the operator Rw´1χ,w̃´1

is not necessarily equal to the operator Rw´1χ,w̃
– which is why we stress

the choice of representative w̃ in the notation. For example, for SL2, we

4The definition of Radon transform here is opposite to the convention of [Sak22a], where
the integral was taken over the set ωpv, uq “ 1. This change will only affect the formula (18)
below.
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cannot find w̃ with w̃2 “ 1. More abstractly, in terms of the chosen G-
orbit on Y ˆ Y (where Y » N´zG), this orbit does not necessarily get
preserved by switching the two copies of Y . However, this will be the case
for the cases of Table 1 – even when X “ SL2, the group acting will be
pSL2 ˆSL2q{µdiag2 “ SO4, where the longest Weyl element is represented by
an involution in the group.

2.3.5. Review of the basic cases. Having fixed the measure for the Radon
transform (8), there remains to describe the “canonical” G-orbit XR

H Ă

XH ˆ XH. Such G-orbits were described in [Sak22a, §3] for the basic cases
of the two families of Table (1), denoted by A1 and D2: X “ SO2zSO3 “

GmzPGL2 and X “ SO3zSO4 » SL2. The word “canonical” is too strong,
since there is nothing compelling about choosing these G-orbits over oth-
ers. However, they are independent of choices of isomorphisms, and even-
tually their importance is that they are useful in obtaining exact formulas
for the scattering operators.

Remark 2.3.6. The varieties of the second group of Table (1) admit various
forms over the field F with G and H split, parametrized by Fˆ{pFˆq2.
Namely, since they are all isomorphic (as abstract varieties) to SO2n´1zSO2n,
the forms depend on the discriminant of the orthogonal complement of
a p2n ´ 1q-dimensional, maximally isotropic quadratic space V inside of
a split p2nq-dimensional quadratic space U . We choose to compute only
for the cases where this discriminant is (square equivalent to) 1, of which
X “ SL2 is the base case; minor modifications are needed to accommo-
date other discriminants. The same choice was made for the calculation
of transfer operators in [Sak21], but unfortunately I did not explicitly state
that choice there.

2.3.7. In the case of X » GmzPGL2, we should fix a 2-dimensional sym-
plectic vector space V , an isomorphism G » PGLpV q, and an isomorphism
of X » SO2zSL2 with the space of quadratic forms of the form q “ xy
for some choice of standard symplectic coordinates (i.e., such that the sym-
plectic form is dx^ dy). Once the isomorphism G » PGLpV q is fixed, such
an identification for X is unique up to the G-automorphism group Z{2 of
X , which sends the quadratic form xy to the quadratic form ´xy (corre-
sponding to the standard coordinates p´y, xq). The variety XH can, then,
be identified with the variety of rank-one degenerate quadratic forms on
V , which is the same as V ˚ˆ{t˘1u (where V ˚ is the dual, and the exponent
ˆ denotes the complement of zero), since those quadratic forms, over the
algebraic closure, are squares of linear forms. Via the identification V » V ˚

afforded by the symplectic form, we can also identify XH with V ˆ{t˘1u.
Evaluation of the quadratic form:

ev : XH ˆ V Ñ Ga

on Ga gives rise to our “canonical” G-orbit XR
H, as the image of ev´1p1q

underXH ˆV ˆ Ñ XH ˆXH. Applying the automorphism xy ÞÑ ´xy toX
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also induces the analogous automorphism on XH, fixing the distinguished
orbit XR

H Ă X2
H.

With this distinguished orbit fixed, the scattering operator

Sw,χ : C8ppAX , χ
´1qzXHq Ñ C8ppAX , χqzXHq

was calculated in [Sak22a, Theorem 3.5.1]

Sw,χ “ γpχ,
α̌

2
,
1

2
, ψ´1qγpχ,

α̌

2
,
1

2
, ψqγpχ,´α̌, 0, ψq ¨ Rχ. (15)

Here, ψ is any nontrivial unitary character of the additive group F , and
the Radon transforms are computed with respect to a measure that is di-
rectly proportional to the self-dual Haar measure on F with respect to ψ.
Note that the change-of-character formula for γ-factors,

γpχ, s, ψpa‚qq “ χpaq|a|s´ 1
2γpχ, s, ψp‚qq (16)

(see [Del73, 3.3.3], taking into account that the self-dual measure for ψpa‚q

is |a|
1
2 the self-dual measure for ψ) implies that the factor

γpχ,
α̌

2
,
1

2
, ψ´1qγpχ,

α̌

2
,
1

2
, ψqγpχ,´α̌, 0, ψq

will get multiplied by |a|´
1
2 , which is the inverse of the factor by which the

measure defining Rχ will be multiplied, making the above expression for
Sw,χ independent of ψ.

2.3.8. In the case of X “ SL2 “ SLpV q, on the other hand, we can identify
XH with the space of endomorphisms of V of rank 1, i.e., operators of the
form τ : V {L Ñ L1, where L and L1 are lines in V . The distinguished
Gdiag-orbit, in that case, is the set of pairs pτ1, τ2q P XH ˆXH with τ1 ` τ2 P

SLpV q. With this distinguished orbit at hand, we define the spectral Radon
transforms Rχ, and a correction5 of [Sak22a, Theorem 3.5.1] in this case
gives the following formula for the scattering operator:

Sw,χ “ γpχ, α̌, 0, ψqγpχ,´α̌, 0, ψq ¨ Rχ. (17)

Again, the product of gamma factors would be multiplied by |a|´1, if we
changed ψ to ψpa‚q, which is exactly inverse the factor by which the mea-
sure defining Rχ would change. (Notice here that the intertwining operator
Rχ is given by an integral over a 2-dimensional unipotent subgroup.)

2.3.9. We will also need a twisted version of the scattering operator for
GmzPGL2 (§ 2.3.7), where instead of functions we consider the induction
of a character of GmpF q; equivalently, we can generalize the calculation of
scattering operators to the variety X “ GmzGL2, where Gm is embedded

as the subgroup
ˆ

a
1

˙

. This variety can be identified with SL2, with the

action of SO4 » SL2 ˆµ2 SL2 restricted to a Levi subgroup isomorphic to

5See the proof of Lemma 2.3.3.
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G “ SL2 ˆµ2Gm » GL2, but we prefer to think, again, of G as the general
linear group of a 2-dimensional symplectic vector space V , and of X as
the variety parametrizing standard bases pv1, v2q (i.e., ωpv1, v2q “ 1), with
G-action

pv1, v2q ¨ g “ ppdet gq´1v1g, v2gq.

In this case the torus AX is the full Cartan of GL2. The boundary degen-
erationXH can then be identified with the space of pairs pv1, v2q of nonzero
vectors with ωpv1, v2q “ 0 (i.e., colinear), with similar G-action, and there
is a map XH Ñ Gm taking such a pair to the constant c such that v1 “ cv2.
The fibers of this map can be identified with the nonzero vectors in V via
the projection to v2, and for simplicity we will fix a Haar measure on Gm

and fix the G-invariant measure on XH whose disintegration with respect
to that specializes to the measure corresponding to the symplectic form on
V ˆ
1 “ V ˆ, the fiber over 1 P Gm. (This choice will not affect the functional

equations.)
We fix the distinguished G-orbits6 XR Ă X ˆ XH and XR

H Ă XH ˆ XH

consisting of those quadruples ppv1, v2q, pw1, w2qq such that

ωpv1, w2q “ 1 “ ωpv2, w1q.

The distinguished G-orbit XR identifies XH with the generic horocycle
space Xh, taking the point y P XH to the horocycle tx P X|px, yq P XRu;
similarly, the G-orbit XR

H identifies XH with the generic horocycle space
Xh

H (intertwining the action of a P AX with that of wa, where w is the non-
trivial element of the Weyl group). TheseG-orbits correspond to each other,
in the sense that these identifications are “the same,” i.e., compatible with
the canonical identification Xh “ Xh

H.7

6Note that the distinguished G-orbit XR
H is not involutive in this case, and therefore it

matters for the formulas in this paragraph that we define Radon transform with respect to
the first, instead of the second projection. This will not matter, however, for the application
of this case to the proof of Theorem 2.4.2, since we will only apply the formula for the
scattering operator to even characters. Moreover, note that the intersection of XR

H with
V ˆ
1 ˆ V ˆ

1 coincides with the distinguished SLpV q-orbit on V ˆ V described in [Sak22a,
§ 3.3], hence equation (3.16) of op.cit., relating Fourier transforms and Radon transforms,
applies to this setting – up to a change due to our conventions, explained in Footnote 9.

7The reader who wishes to understand this should refer to the construction of the identi-
ficationXh

“ Xh
H in [SV17, § 2.8]. A way to reformulate that identification is the following:

On the affine degeneration X Ñ A1 recalled in § 2.1.4, which here we can take to be the
family of pairs pv1, v2q P V 2, with image ωpv1, v2q P A1, there is a G-commuting action of
AX which matches its action on the special fiber X0 “ XH. Here, if we identify AX “ G

2
m

as the diagonal torus with respect to the upper triangular Borel subgroup, the action on the
family is diagpa, bq ¨ pv1, v2q “ pb´1v1, av2q. The canonical isomorphism Xh „

ÝÑ Xh
H takes a

generic horocycle x ¨N on X to limtÑ0 e
α̌

ptq ¨ px ¨Nq ¨ e´α̌
ptq, where the action on the left is

the action ofAX on X , and the action on the right is the action ofAX onXh, or equivalently
the action of any section of the quotient B Ñ AX on X .
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Using these orbits to define Radon transforms, as before, we have the
following formula for the scattering operator Sw,χ.

Sw,χ “ γpχ, ϵ̌1,
1

2
, ψ´1qγpχ,´ϵ̌2,

1

2
, ψqγpχ,´α̌, 0, ψq ¨ Rχ, (18)

where ϵ̌1, ϵ̌2 are the standard coweights of GL2 (i.e., the weights of the stan-
dard representation of its dual). Note that, when the character is trivial on
the center, the formula specializes to (15).

I sketch the proof, which is essentially the same as the proof of the special
case (15) in [Sak22a]:

The adjoint of the operator Nχ of (6) is an operator

C8
c pXh

Hq Ñ C8pXq

which factors through the dual of the principal series representation

C8ppAX , χqzXh
Hq » IP pXqpχq.

I claim that, when composed with evaluation at pv1, v2q P X , this operator
is given by the meromorphic continuation of the integral against an AX -
eigenfunction, whose restriction to V ˆ

1 Ă Xh
H » XH is of the form

´a´1v1 ` bv2 ÞÑ χ1paqχ2pbq, (19)

for appropriate characters (to be described below) χ1, χ2. Indeed, it is easy
to see that this is the integral over the preimage tpw1, w2q|ωpv1, w2q “ 1 “

ωpv2, w1qu of pv1, v2q inXR, averaged against the appropriate character over
the AX -action.

The characters χ1, χ2 are computed by the equivariance properties of this
operator, taking into account that, when XH is thought of as Xh

H, the AX -
action is given by diagpa, bq ¨ pw1, w2q “ pa´1w1, bw2q (with the conventions
of Footnote 7). One computes that χ1pzq “ |z|

1
2χ ˝ eϵ̌1pzq and χ2pzq “

|z|´
1
2χ ˝ eϵ̌2pzq (Compare8 with the formula

ş

Φpy, zqχ̃pyzqdydz on p.47 of
[Sak22a], which is for the adjoint of the operator Nwχ, when the central
character is trivial.)

The integral against (19) is a product of two Tate integrals, and the argu-
ment of op.cit. generalizes to this case to show that, with F˚ denoting the
G-equivariant extension of the symplectic Fourier transform

F˚Φpvq “

ż

V
Φpwqψ´1pωpw, vqqdw,

8The minus sign in front of the coefficient a´1, which does not appear in the cited for-
mula, is because of the way that we have embedded V ˆ

1 into XH. When we mod out by
the center Z of G, we get XH{Z » the space of rank-one quadratic forms q on V , but here
an element v P V ˆ

1 will map to q “ ´pωpv, ‚qq
2, while in op.cit. it was mapping to the neg-

ative of that. In the notation of p.45 of op.cit., our space V1 corresponds to a twist V α of V
corresponding to the quadratic extension F p

?
´1q.
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on V1, we have

N˚
χ˝F˚ “ γpχ1, 0, ψ

´1qγpχ´1
2 , 0, ψqNwχ “ γpχ, ϵ̌1,

1

2
, ψqγpχ,´ϵ̌2,

1

2
, ψ´1qN˚

wχ,

which as in op.cit.9 implies (18).

2.3.10. The other cases of Table (1). The calculation of scattering operators for
the general case of a variety of Table (1) will be reduced to the basic cases by
means of the following lemma. For every subset I of the simple roots of G,
we denote by PI the corresponding class of parabolics (or a representative),
by UPI

its unipotent radical, and by LI its Levi quotient.

Lemma 2.3.11. Let Z Ă X be a closed B-orbit.
‚ For the cases of Table (1) with ǦX “ SL2, Z is of rank zero, and for every

simple root α such that Y :“ ZPα ‰ Z, Y2 :“ Y {UPα is L-isomorphic to
SO2zSL2 » GmzPGL2 under some morphism L Ñ PGL2.

‚ For the cases of Table (1) with ǦX “ PGL2, and for all simple roots α
we have ZPα “ Z, except for two orthogonal simple roots α, β for which,
setting Y :“ ZPαβ , Y2 :“ Y {UPαβ

is L-isomorphic to SO3zSO4 under
some homomorphism L Ñ SO4.

As a matter of notation, what we denote by Y {UP here is the geomet-
ric quotient of Y by the UP -action, not the stack quotient, which could be
different because of nontrivial stabilizers.

Proof. This is a combination of Lemmas 2.2.4 and 2.3.5 of [Sak21]. □

In the remainder of this subsection, we will describe a “canonical” G-
orbit XR

H Ă XH ˆ XH, living over the open Bruhat cell in BX ˆ BX . This
will give rise to a “canonical” Radon transform, which we will use in the
next section to describe the scattering operators.

As mentioned before, a G-orbit on XH ˆ XH over the open Bruhat cell
in BX ˆ BX is equivalent to a G-equivariant isomorphism ι : XH

„
ÝÑ Xh

H,
whereXh

H is the space of generic horocycles onXh
H, as above. Indeed, such

an isomorphism defines the distinguished G-orbit

XR
H “ tpx, yq P XH ˆXH|x P ιpyqu,

and, vice versa, can be recovered from it. Note, however, that this iso-
morphism intertwines the action of a P AX with the action of wa, where
w P WX is the longest element. Similarly, this is equivalent to describing a
distinguished G-orbit

XR,h
H

Ă Xh
H ˆXh

H,

9Since our convention for the definition of Radon transform in (11) is opposite to
the one of op.cit., in applying formula (3.16) of that reference one needs to change ψ
to ψ´1. We then apply the identity γpχ, ϵ̌1,

1
2
, ψqγpχ,´ϵ̌2,

1
2
, ψ´1

qγpχ,´α̌, 0, ψ´1
q “

γpχ, ϵ̌1,
1
2
, ψ´1

qγpχ,´ϵ̌2,
1
2
, ψqγpχ,´α̌, 0, ψq to obtain (11).
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which by the canonical isomorphism Xh
H » Xh of [SV17, Lemma 2.8.1],

can be understood as a distinguished G-orbit XR,h Ă Xh ˆ Xh. This is the
orbit that we will describe.

The orbit (and the Radon transform) will depend, a priori, on the choice
of a closed B-orbit Z, as in Lemma 2.3.11; a posteriori, by the calculation
of scattering operators, it doesn’t, a fact that can also be proved directly
(but we will not do). Hence, fix Z, let Y be as in Lemma 2.3.11, and let P
be the parabolic Pα, resp. Pαβ , appearing in the two cases of the lemma.
Let Y ˝ Ă Y be the open B-orbit; without fixing a Borel subgroup, we can
consider Y ˝ as a G-orbit on X ˆ B — denoted by Ỹ ˝ to avoid confusion.
Similarly to the definition of Xh, we can define

Xh,Y “ tpB,Mq|B P B, M is a UB-orbit with pm,Bq P Ỹ ˝ for any m P Mu.

Hence, these are not generic horocycles, but horocycles corresponding to
the B-orbit Y ˝.

Let X̃h be the base change Xh ˆBX
B of Xh to the full flag variety B.

Fixing a Borel subgroup B P B, we have noncanonical isomorphisms:

X̃h “ AX ˆB G, (20)

Xh,Y “ AY ˆB G, (21)

where AY is the torus quotient by which B acts on the geometric quotient
Y ˝{UB .

Let w1 be the Weyl group element wα or wαwβ , respectively (where wα,
wβ denote simple reflections), for each of the two cases of Lemma 2.3.11. A
result of Knop [Kno95, § 6] implies that there is an element w1 of the Weyl
group of G, such that

Y ˝ ˆNXw1Nw
´1
1 w̃1N

„
ÝÑ X˝ (22)

under the restriction of the action map to w̃1N Ă G; here, w̃1 is any lift of
w1, thought of as a double coset of BzG{B, to G. Note that this implies that
codimY ˝ “ lengthpw1q, and Aw1

Y “ AX .
Let w1 P W be such an element. It is known [Bri01], [Sak13, § 6.2] that

the nontrivial element w P WX is equal to w´1
1 w1w1.

Lemma 2.3.12. In the setting above, the decomposition w “ w´1
1 w1w1 is reduced,

i.e., we have lengthpwq “ 2 lengthpw1q ` lengthpw1q.

Proof. One can make an abstract argument for that (for example, in the
cases with ǦX “ SL2, γ is a root of G, and any reduced decomposition
of w “ wγ has to correspond to a “Brion path” by considerations related
to ranks of orbits), but it is also straightforward to see this by inspection of
Table (1):
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X “ HzG dimX dimZ lengthpwq

A1 GmzPGL2 2 1 1
An GLn zPGLn`1 2n n 2n´ 1
Bn SO2nzSO2n`1 2n n 2n´ 1
Cn Sp2n´2 ˆSp2 zSp2n 4n´ 4 2n´ 2 4n´ 5
F4 Spin9 zF4 16 8 15
G2 SL3 zG2 6 3 5

D2 SL2 “ SO3zSO4 3 2 2
Dn SO2n´1zSO2n 2n´ 1 n 2n´ 2
D2

4 Spin7 zSpin8 7 4 6
B2

3 G2zSpin7 7 4 6

Here, forX “ HzG, we computed dimZ, the dimension of a closed Borel
orbit, as dimBG´dimBH , where byB˚ we denote the corresponding Borel
subgroups. □

By Lemma 2.3.11, the P -variety Y2 :“ Y {UP is isomorphic either to
GmzPGL2 or to SL2 under the action of the Levi L of P . In each of the
two cases, a distinguished L-orbit on Y h

2 ˆ Y h
2 , living over the open Bruhat

cell, was described in § 2.3.5 above. This corresponds to a G-orbit on
Xh,Y ˆXh,Y , living over the Bruhat cell corresponding to w1. We denote by
XR,h,Y this G-orbit.

Now, the productXh,Y ˆX̃h lives over the product BˆB. It follows from
(22) that there is a distinguished G-orbit X 1h Ă Xh,Y ˆ X̃h that lives over the
Bruhat cell corresponding to w1, that is, over the G-orbit of a pairs pB,B1 “

w̃1Bw̃
´1
1 q, where, as above, w̃1 is any lift of w1 P BzG{B to G. The fiber of

this orbit over pB,B1q consists of all pairs of horocycles ppB,Mq, pB1, xN 1qq

with N 1 Ă B1 the unipotent radical and x P M . Equation (22) implies that
if the horocycle pB,Mq belongs to Xh,Y , the horocycle pB1, xN 1q is generic,
i.e., belongs to X̃h.

Consider the set of quadruples

px1, y1, y2, x2q

with x1, x2 P X̃h, py1, y2q P XR,h,Y Ă pXh,Y q2, and pyi, xiq P X 1h for i “ 1, 2.
It lives over the set of quadruples

pB, w̃´1
1 Bw̃1, w̃

´1
1 w̃1Bpw̃1q´1w̃1, w̃

´1
1 w̃1w̃1

1Bpw̃1
1q´1pw̃1q´1w̃1q

of Borel subgroups, where the tilde denotes, again, lifts to G, and w̃1, w̃1
1

are two possibly different lifts of w1. However, because of Lemma 2.3.12,
the element w̃ “ w̃´1

1 w̃1w̃1
1 is a lift of w P WX , and the quadruples of Borel

subgroups as above form a single G-orbit. The distinguished G-orbit XR,h Ă

XhˆXh, now, is the image of this set under the first and last projections, composed
with the projection X̃h Ñ Xh. The reader can immediately check that this is
indeed a G-orbit, using the noncanonical isomorphisms (20), (21).



20 YIANNIS SAKELLARIDIS

By the discussion above, this G-orbit corresponds to a distinguished G-
orbit XR

H Ă XH ˆ XH, that we use to define the Radon transform R :

C8
c pXHq Ñ C8pXHq by (8). The spectral Radon transforms Rχ descend

from it by Mellin transform. For the choice of measure used to define R,
see § 2.3.2.

2.4. Formula for the scattering operators.

2.4.1. The main result of this section is the following, where we fix a uni-
tary additive character ψ:

Theorem 2.4.2. For the cases of Table (1), in terms of the spectral Radon trans-
forms

Rχ : C8ppAX , χ
´1qzXHq Ñ C8ppAX , χqzXHq

that descend from the canonical Radon R described in § 2.3, the scattering operator
Sw,χ for the nontrivial element w P WX is given by

Sw,χ “ µXpχq ¨ Rχ, (23)

where µX is given by the following formulas:
‚ for the cases with ǦX “ SL2, with LX “ LpStd, s1qLpStd, s2q,

µXpχq “ γpχ,
γ̌

2
, 1 ´ s1, ψ

´1qγpχ,
γ̌

2
, 1 ´ s2, ψqγpχ,´γ̌, 0, ψq, (24)

‚ for the cases with ǦX “ PGL2, with LX “ LpAd, s0q,

µXpχq “ γpχ, γ̌, 1 ´ s0, ψqγpχ,´γ̌, 0, ψq. (25)

Here, γpχ, λ̌, s, ψq denotes the gamma factor (13) of the local functional
equation for the abelian L-function associated to the composition of χ with
the cocharacter λ̌ : Gm Ñ AX . Notice that, by (16), if we replace ψ by
ψpa‚q, for some a P Fˆ, the factor µXpχq changes by a factor of |a|´s, where
s “ s1 ` s2 ´ 1

2 , in the first case, and s “ s0, in the second case. It so
happens (see [Sak21, § 1.2]) that 2s “ dimX ´ 1 “ the dimension of the
unipotent radical of P pXq. Therefore, the measure used to define the Radon
transform R, which is proportional to the self-dual measure with respect to
ψ to the power dimUP pXq

, changes by |a|s, making the formula above for
Sw,χ independent of ψ.

2.4.3. The proof of the theorem will be given in a somewhat telegraphic
fashion, because the arguments are essentially the same as the ones used
to compute “functional equations” in [Sak13, Section 6]. The reader who
wishes to read a detailed and explicit account of the arguments that follow
is advised to look at that reference. The “added value” of the present work
consists in the following:

‚ We adopt the formalism of scattering operators, introduced in [SV17].
This adds an extra layer of complication; for example, [Sak13] only
considered the functional equations represented by the first verti-
cal (dotted) arrow of (6), while the scattering operators are given
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by the second vertical arrow. The benefit, however, is that the scat-
tering operators are directly related to the asymptotics (and other
constructions such as the “unitary asymptotics” of the Plancherel
formula), a fact that we will use in the next section.

‚ We allow for general principal series representations, not only un-
ramified ones. This is quite straightforward and does not change
any of the arguments of [Sak13], once the “basic cases” of § 2.3.5
have been computed.

‚ We “rigidify” certain constructions to eliminate ambiguities up to
automorphism groups. In the unramified case of [Sak13], integral
structures provided such rigidifications, but, to consider ramified
characters, this is not enough. Therefore, we replace various ex-
plicit integrals and principal series representations by (noncanoni-
cally) isomorphic constructions that live over the various horocycle
spaces already introduced. This necessitated the pedantic discus-
sion of the canonical Radon transforms of § 2.3, but is a more con-
ceptual description of these constructions.

Proof of Theorem 2.4.2. The proof will follow the argument of [Sak13, § 6.5].
Because of the isomorphism (22), the morphism Nχ of Diagram (6), given
by an integral over the open P pXq-orbit X˝, can be expressed in terms of
a similar integral over the smaller B-orbit Y ˝. Namely, choosing a lift w̃1

of w1, we get a bijection M ÞÑ Mw̃1Nw̃
´1
1 between horocycles in Y ˝ for

a given Borel subgroup B and generic horocycles for the Borel subgroup
B1 “ w̃1Bw̃

´1
1 . Then, for Φ P C8

c pXq, we can rewrite (7) as

NχΦpMw̃1Nw̃
´1
1 q “

ż

AX

ż

Mw̃1Nw̃
´1
1

Φpxaqdxχ´1δ
´ 1

2

P pXq
paqda “

ż

pNXw̃´1
1 Nw̃1qzN

ż

AY

ż

M
Φpyaw̃1nw̃

´1
1 qdy ¨

w1

ˆ

χ´1 ¨ δ
´ 1

2

P pXq

˙

¨ δ
pNXw̃´1

1 Nw̃1qzN paqda dn, (26)

where we have factored the invariant measure dx on the horocycleMw̃1Nw̃
´1
1

in terms of an invariant measure dy on the horocycle M and an invariant
measure on pN X w̃´1

1 Nw̃1qzN . (Recall that the choice of this measure is
not canonical, but is canceled by the compatible choice of measure for the
operator Mχ of Diagram (6).)

Remark 2.4.4. We use the “universal” CartanA and its quotientsAX andAY
in the notation above, with χ, δP pXq, etc. considered as characters of these
universal quotients, and with δ

pNXw̃´1
1 Nw̃1qzN considered as a character ofA

via the quotient B Ñ A. For example, in the first integral, when a P AX is
represented by an element t P B1, the character δP pXq really stands for the
modular character of the representative P pXq1 of the class of P pXq which
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contains B1. To prevent some natural confusion, I note here that the ele-
ments a of the two integrals above can be represented by the same element
t of a common torus T Ă BXB1, but the images of t in the “universal” Car-
tan quotients B Ñ A Ñ AY and B1 Ñ A Ñ AX differ by the right action
of w1 on A, hence the character T Ñ B1 Ñ AX Ñ Cˆ, where the last arrow
is χ´1δ

´ 1
2

P pXq
, is equal to the character T Ñ B Ñ AY Ñ Cˆ, where the last

arrow is w1

ˆ

χ´1 ¨ δ
´ 1

2

P pXq

˙

.

The inner two integrals of (26) represent a morphism that we can denote

NY
χ : C8

c pXq Ñ C8ppAY ,
w1χqzXh,Y q1.

There is some abuse of notation in the expressions above, due to the
fact that the characters w1χ, δ

pNXw̃´1
1 Nw̃1qzN are characters of the universal

Cartan A of G which do not, in general, factor through AY . Related to
this is that the measures on the horocycles corresponding to the points of
Xh,Y cannot, in general, be fixed in a G-equivariant way. The rigorous
interpretation is that the innermost integral of (26) is valued in a certain
equivariant sheaf over Xh,Y , whose fiber over the horocycle M is dual to
the invariant measures on this horocycle. The prime that appears in the
notation C8

c pXq Ñ C8ppAY ,
w1χqzXh,Y q1 is supposed to remind us that

the image of the map above is does not lie in scalar-valued functions, but
in sections of this sheaf. This sheaf is induced from a certain character of
kerpA Ñ AY q, explicated, e.g., in [Sak08, § 5.2], but we will not need to
recall this calculation here.

For clarity, we will explicate noncanonical isomorphisms with principal
series representations, as we did for the asymptotic cone in (5). First of
all, we can fix a “standard” split Cartan subgroup in a “standard” Borel
subgroup B, which will determine the choice of lifts of the Weyl group
elements, up to elements of that Cartan, so that it makes sense to write
w1Bw

´1
1 .

‚ For the horospherical space Xh “ Xh
H, we have C8ppAX , χqzXhq »

IGP pXq
pχq. Note that this is a subrepresentation of IGB pχδ

´ 1
2

LpXq
q, where

δLpXq is the modular character of the Borel of LpXq.
‚ For the Y -horospherical variety Xh,Y , what we denoted above by

C8ppAY ,
w1χqzXh,Y q1 is isomorphic to IGB pw1pχδ

´ 1
2

LpXq
qq.

‚ The outer integral of (26) represents a standard intertwining opera-
tor

IGB pw1pχδ
´ 1

2

LpXq
qq Ñ IGB pχδ

´ 1
2

LpXq
q,

that takes the image of NY
χ into the subspace IGP pXq

pχq.
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We can now expand the left-hand triangle of Diagram (6) to

C8ppAY ,
w1χ´1qzXh,Y q1

TY
χ´1

//

��

C8ppAX , χ
´1qzXh

Hq

��

C8
c pXq

NY
χ´1

44
Nχ´1

11

NY
χ **

Nχ

--
C8ppAY ,

w1χqzXh,Y q1

TY
χ

// C8ppAX , χqzXh
Hq,

(27)
where TYχ is the transform represented by the outer integral of the right
hand side of (26), and we used horizontal dotted arrows to signify that
the map is only defined in the image of the maps NY

χ´1 , resp. NY
χ .10 It is

also some kind of Radon transform/standard intertwining operator, but
between principal series representations realized on two different varieties.
Note that this Radon transform can be expressed in terms of the canonical
G-orbit in Xh,Y ˆ X̃h, described at the end of § 2.3, by a formula analogous
to (8).11

If we fix the isomorphisms (20), (21), this diagram becomes

IGB pw1pχ´1δ
´ 1

2

LpXq
qq

TY
χ´1

//

��

IGP pXq
pχ´1q

��

C8
c pXq

NY
χ´1

55
Nχ´1

22

NY
χ

)) Nχ

,,
IGB pw1pχδ

´ 1
2

LpXq
qq

TY
χ

// IGP pXq
pχq,

(28)

with the operators TYχ˘1 translating to the standard intertwining operators
(9) corresponding to a lift w̃´1

1 of the Weyl element w´1
1 (up to the choice

of measure, which however, will be made simultaneously for TYχ and TYχ´1 ,

10The reader is advised to remember the isomorphism of C8
ppAX , χ

˘1
qzXh

q with the
possibly degenerate principal series representation IGP pXqpχ˘1

q, and to think of these dotted

arrows as actual maps into the non-degenerate principal series IGB pχ˘1δ
´ 1

2
LpXq

q.
11Note that the recipe of § 2.3.2 for the choice of measure for this transform does not

apply (because the source and target varieties are different), but this ambiguity cancels out
with the ambiguity that forced us to denote the source of the map by p q

1: the two choices
of measures combine to a choice of measures for the horocycle Mw̃1Nw̃

´1
1 of the middle

expression of (26). The latter choice, we recall, can be performed G-equivariantly along
all such “generic” horocycles, and will be canceled by the corresponding choice for the
definition of Mχ in (6).
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and therefore will not affect the right dotted arrows of the commutative
diagram).

From now on we omit the character from the notation of these spectral
Radon transforms. If we could compute the left vertical arrow of (28) as
a scalar multiple cw1pχqRw̃1 of a Radon transform, then the right vertical
arrow would be equal to cw1pχqRw̃´1

1
˝ Rw̃1 ˝ R´1

w̃´1
1

, which we could then

express in terms of the transform Rw̃´1
1

˝ Rw̃1 ˝ Rw̃1

(10)
“ Rw̃ using12 the

Radon inversion formula (14).
Our next step is to relate the left vertical arrow of (27) to the calculation

of the “basic cases” of § 2.3.5. The relevant basic case is the variety Y2 :“
Y {UP , where P denotes the parabolic denoted by Pα, resp. Pαβ , in the two
cases of Lemma 2.3.11. The operator NY

χ of (27) can be further factored in
the form

NY
χΦpMq “

ż

AY

ż

M2

ż

UP,yzUP

Φpyuaqdu dy ¨

w1

ˆ

χ´1 ¨ δ
´ 1

2

P pXq

˙

¨ δ
pNXw̃´1

1 Nw̃1qzN paqda, (29)

where we have written M2 for the image of the horocycle M modulo UP .
The innermost integral represents a P -equivariant map to a certain sheaf
over Y2 – whose fiber over some point ȳ is dual to the space of UP -invariant
measures on the fiber of Y Ñ Y2 over ȳ. Again, by abuse of notation, we
will denote the innermost integral as a surjection

C8
c pXq ↠ C8

c pY2q1,

where the prime is supposed to remind us that these are not scalar-valued
functions, but valued in the sheaf described above. As we vary P over its
conjugacy class, these maps combine to produce sections over a “partial
horocycle space” associated to the pair pY, P q – the analog of Xh,Y , with B
replaced by P . These can be identified with the induction of C8

c pY2q1, that
is, we have a G-morphism

C8
c pXq Ñ IndGP pC8

c pY2q1q.

The two outer integrals of (29), now, represent the analog NY2
w1χ of the op-

erator Nχ for Y2, with χ replaced by w1pχ´1 ¨ δ
´ 1

2

P pXq
q as in (28) (but we omit

the modular character from the notation). We have a factorization of the

12The indexing of Radon transform by Weyl elements here is as in (9), but with the
integral taken over a quotient of N , not N´. It should be clear from the diagrams which of
the two conventions we are using, and hopefully this abuse of notation will make it easier to
follow the arguments, rather than conjugating Weyl elements by the longest Weyl element
every time we use the “standard” Borel B.
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morphisms NY
χ˘1 ,

IndGP pC8
c ppAY ,

w1χ´1qzY h
2 q1q “ C8ppAY ,

w1χ´1qzXh,Y q1

��

C8
c pXq //

NY
χ´1

11

NY
χ --

IndGP pC8
c pY2q1q

22

N
Y2
w1χ´1

22

N
Y2
w1χ

,,
IndGP pC8

c ppAY ,
w1χqzY h

2 q1q “ C8ppAY ,
w1χqzXh,Y q1.

(30)
The point is now that, from the discussion of the basic cases in § 2.3.5 we

essentially know the vertical arrow of the diagram above. However, both
the results of § 2.3.5 and the statement of the current theorem are about the
scattering operators, i.e., the right vertical arrow of (6), and to relate those,
we need to compose with the appropriate inverse intertwining operators
M´1

χ˘1 of (6). Adding those to the commutative square of Diagram (27), we
obtain

IndGP pC8
c ppAY ,

w1χ´1qzY2,Hq1q

S
Y2
w1,w1χ

''

OO
M´1

L,w1χ´1

? // C8ppAX , χ
´1qzXHq

Sw,χ

yy

OO

M´1

χ´1

IndGP pC8
c ppAY ,

w1χ´1qzY h
2 q1q

��

TY
χ´1

// C8ppAX , χ
´1qzXh

Hq

��
IndGP pC8

c ppAY ,
w1χqzY h

2 q1q

M´1
L,w1χ

��

TY
χ // C8ppAX , χqzXh

Hq

M´1
χ

��
IndGP pC8

c ppAY ,
w1χqzY2,Hq1q

? // C8ppAX , χqzXHq,

(31)
where M´1

L,χ˘1 are the corresponding inverse Radon transforms for the Levi
L of P .

The left curved arrow is the (induction from P to G) of the scattering
operator for Y2, which was computed in § 2.3.5.13 Thus, if we calculate
the arrows denoted by question marks, that will allow us to compute the
scattering operator Sw,χ, as well.

To calculate the arrows ?, we return to the diagram (28), and use the
“canonical” G-orbit on pXhq2 (where we have fixed the isomorphism (20)
for Xh, so that, as explained above, the canonical G-orbit is represented

13The twist by certain sheaves, denoted by 1 throughout, plays a role in this calculation,
as we will indicate in Example 2.4.5 below.
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by an involution w̃ P G) to identify Xh » XH (in such a way that the
canonical G-orbit corresponds to the distinguished “tautological” G-orbit
on Xh

H ˆ XH). We have now fixed an isomorphism between the bottom
square of (31), and the square

IGB pw1pχδ
´ 1

2

LpXq
qq

R´1
w̃1

��

R
w̃´1
1 // IGP pXq

pχq

R´1
w̃

��
IGB pw1pχ´1δ

´ 1
2

LpXq
qq

? // IGP pXq
pχ´1q,

(32)

(and similarly for the top square of (31)). By the standard property (10) of
Radon transforms, the arrow ? is the operator R´1

w̃1
.

To conclude, the scattering operator Sw,χ can be computed from the scat-
tering operator S Y2

w1,w1χ of the basic cases via the commutativity of the dia-
gram

IGB pw1pχδ
´ 1

2

LpXq
qq

S
Y2
w1,w1χ ��

R´1
w̃1 // IGP pXq

pχq,

Sw,χ

��
IGB pw1pχ´1δ

´ 1
2

LpXq
qq

R´1
w̃1 // IGP pXq

pχ´1q,

(33)

and the final result should be expressed in terms of the “canonical” Radon
transform IGP pXq

pχq Ñ IGP pXq
pχ´1q which, under the isomorphisms that we

fixed, is the standard Radon transform Rw̃. 14

The theorem now follows from the formula for S Y2
w1,w1χ recalled in § 2.3.5,

and formula (14) for the inverse of Radon transform. The details of how the
various gamma factors simplify to produce the final answer are essentially
the same as in the unramified case, therefore I point the reader to [Sak13,
§ 6.5]. In the three examples that follow, I will demonstrate the calculation
for the cases A2 and C3, that the reader can compare with [Sak13, § 6.6 and
6.17], as well as the case of F4, which was not included in op. cit.

□

Example 2.4.5. Let X “ GL2 zSL3. For the sake of calculations, let us pick
a point on X and identify its stabilizer, H “ GL2, with the subgroup of

matrices of the form
ˆ

det g´1

g

˙

, g P GL2. Letting B denote the upper

triangular Borel subgroup, and labeling the simple roots α, β from top to

14Note that we are using, here, labeling conventions for the Radon transforms that corre-
spond to induction from the “standard” Borel subgroupB, see Footnote 12; when applying
formulas from § 2.3, they will need to be adjusted accordingly.
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bottom (so that the spherical root is γ “ α ` β), the intersection H X Pα
is equal to the upper triangular Borel subgroup of H . The open B-orbit in
H X PαzPα will play the role of Y ˝ in the argument above. We identify the
Levi quotient Lα of Pα with GL2 through the top 2 ˆ 2 block of a matrix,
and then the variety Y2 is equal toG2

mzGL2 » GmzPGL2. .
The inner integral of (29), which corresponds to the map C8

c pXq Ñ

IndGP pC8
c pY2q1q of (30), is an integral over the p3, 3q entry of a matrix (a copy

of the additive group Ga). The Haar measure on this Ga is not invariant
under the stabilizer G2

m Ă GL2 of a point on Y2, but varies by the charac-
ter η : diagpa, bq ÞÑ |a2b|. Thus, what we denote by C8

c pY2q1 are sections
of a GL2-equivariant sheaf over Y2 – the compact induction of this charac-
ter. The restriction of this sheaf to (the action of) SL2 is induced from the
character diagpa, a´1q ÞÑ |a| ofGm Ă SL2.

We can now calculate the scattering operator S Y2
w1,w1χ based on the case of

the spherical varietyGmzGL2, discussed in § 2.3.9. This scattering operator
is a morphism between the Lα-representations

IndLα
Bα

pwβχδ
1
2 q “ ILα

B´
α

pwβχ´1q b | det |
3
2 Ñ ILα

B´
α

pwβχq b | det |
3
2

(taking into account that δ
´ 1

2

LpXq
is trivial here), where δ “ δB is the modular

character of the Borel ofG, and we have denoted byBα, B´
α the “standard”

Borel subgroup of Lα and its opposite.
Now, consider Lα » GL2 as a homogeneous space for L̃α :“ G2

m ˆGm

GL2, and its derived group SL2 as a homogeneous space forGm ˆµ2 SL2 »

GL2. The “standard cocharacters” ϵ̌1, ϵ̌2 with respect to the upper triangu-
lar Borel of GL2 can be written as µ̌`α̌

2 , µ̌´α̌
2 , respectively, in terms of the

presentation Gm ˆµ2 SL2, where µ̌ is the tautological cocharacter of Gm.
The character η b wβχ| det |

3
2 descends to a character of the Cartan of L̃α,

and restricts to a character χ1 of the Cartan of GL2; we compute:

eϵ̌1pχ1qpaq “ e
α̌
2 pwβχqpaq|a|

1
2 ,

eϵ̌2pχ1qpaq “ e´ α̌
2 pwβχqpaq|a|

1
2 ,

where we have used the fact that wαχ is trivial on the center of L1
α, hence it

makes sense to evaluate it on α̌
2 .

Plugging this χ1 into (18), and using the fact that wβα̌ “ γ̌, we obtain

S Y2
w1,w1χ “ γpχ,

γ̌

2
, 1, ψ´1qγpχ,

γ̌

2
, 0, ψqγpχ,´γ̌, 0, ψq ¨ Rwα ,

where Rwα is defined with respect to the “canonical” orbit introduced in
§ 2.3.9, therefore

Sw,χ “ R´1
wβ

˝S Y2
w1,

wβχ
˝Rwβ

(14)
ùùùù γpχ,

γ̌

2
, 1, ψ´1qγpχ,

γ̌

2
, 0, ψqγpχ,´γ̌, 0, ψq

¨ γpχ, β̌, 0, ψ´1qγpχ,´β̌, 0, ψqRw.
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Noting that in the cocharacter group of AX we have β̌ “
γ̌
2 , this is

γpχ,
γ̌

2
, 1, ψ´1qγpχ,

γ̌

2
, 0, ψqγpχ,´γ̌, 0, ψq

¨ γpχ,
γ̌

2
, 0, ψ´1qγpχ,´

γ̌

2
, 0, ψqRw

“ γpχ,
γ̌

2
, 0, ψ´1qγpχ,

γ̌

2
, 0, ψqγpχ,´γ̌, 0, ψqRw.

Example 2.4.6. LetX “ Sp2 ˆSp4 zSp6. The spherical root is γ “ α1 `2α2 `

α3, with α3 denoting the long simple root, while the Levi LpXq is the one
that contains the simple roots α1, α3 (isomorphic to SL2 ˆGm ˆ SL2). The
decomposition w “ w´1

1 w1w1 of the nontrivial element of WX , as above,
can be taken to be w1 “ wα1 with

w1 “ wα2wα3wα2 .

Thus, a “Brion path” for the action of the Weyl group on the Borel orbits
of maximal rank, defined by Knop [Kno95], is given by the following; I
point the reader to [Sak13, § 6] for details.

α2,U

α3,U

α1,U

α2,U

α1,U

α1,T

To calculate the right hand side of the equality Sw,χ “ R´1
w1

˝ S Y2
w1,w1χ ˝

Rw1 , in the notation of (33), we can invert the simple factors Rwαi
of Rw1

step-by-step, mimicking the inductive argument of [Sak13, § 6].
The two lower nodes correspond15 to the variety GL2 zPGL3, as in Ex-

ample 2.4.5 above. These nodes will contribute a factor as in the previ-
ous example, except that we have to take into account another twist. If
P “ L ˙ U denotes the Siegel parabolic of Sp6, we will identify its Levi
quotient L with the general linear group of the Lagrangian fixed by P un-
der the left standard representation of Sp6. We consider the closed P -orbit
on X 1 corresponding to the bottom two nodes of the diagram above; the
stabilizer of a point on that orbit is P1 :“ P X Sp2 ˆSp4 “ the product of
Siegel parabolics of Sp2 ˆSp4. The integral of a function in C8

c pX 1q over

15In the sense that there is a closed orbit for the corresponding parabolic, whose quotient
by the radical of the parabolic is isomorphic to this variety.
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U -orbits on P1zP lands in the induction, from GL1 ˆGL2 to L “ GL3, of
the character |µ|2 b | det |, where µ denotes the tautological character of
GL1. In particular, restricting the action to the derived group SL3 of L,
we are not inducing the trivial character of GL2, but the character | det |´1.
This requires a modification of the calculation in the previous example,
where C8

c pY2q1 will not be induced from the character diagpa, bq ÞÑ |a2b|
any more, but from the character diagpa, bq ÞÑ |a3b|. This changes the factor
contributed by the two lower nodes, which, following the argument of the
previous example, can be computed16 to be

γpχ,
γ̌

2
,
1

2
, ψ´1qγpχ,

γ̌

2
,´

1

2
, ψqγpχ,´γ̌, 0, ψq. (34)

The inversion of the Radon transform Rwα3
corresponding to the middle

edge contributes, by (14), a factor of

γpwα2 pχδ
´ 1

2

LpXq
q, α̌3, 0, ψ

´1qγpwα2 pχδ
´ 1

2

LpXq
q,´α̌3, 0, ψq

“ γpχ,
γ̌

2
,´

1

2
, ψ´1qγpχ,´

γ̌

2
,
1

2
, ψq,

while the inversion of Rwα2
corresponding to the top edge contributes

γppχδ
´ 1

2

LpXq
q, α̌2, 0, ψ

´1qγppχδ
´ 1

2

LpXq
q,´α̌2, 0, ψq

“ γpχ,
γ̌

2
,´

3

2
, ψ´1qγpχ,´

γ̌

2
,
3

2
, ψq.

Taken together, the factors above give the formula

Sw,χ “ γpχ,
γ̌

2
,´

3

2
, ψ´1qγpχ,

γ̌

2
,´

1

2
, ψqγpχ,´γ̌, 0, ψqRw.

for the scattering operator.

Example 2.4.7. LetX “ Spin9 zF4. The spherical root is γ “ α1`2α2`3α3`

α4, with the roots labeled long first, short last, while the Levi LpXq is the
one that contains the simple roots α1, α2, α3 (isomorphic to Sp6 ˆGm). The

16More details on this computation: The induced representation Ind
Lβ

Bβ
p
w1χδ

1
2 q can be

computed to be equal to the normalized induction ILα
Bα

p
w1χ|eρ´α1´α2´α3 |q, and when we

plug this into (18), the scattering operator S Y2
wα1

,w1χ turns out to be

γpχ,
γ̌

2
,
3

2
, ψ´1

qγpχ,
γ̌

2
,´

1

2
, ψqγpχ,´γ̌, 0, ψq ¨ Rwα1

.

Similarly, the factor contributed by inverting the Radon transform Rwα2
is, now,

γp
wα3

wα2 pχδ
´ 1

2
LpXq

q, α̌2, 0, ψ
´1

qγp
wα3

wα2 pχδ
´ 1

2
LpXq

q,´α̌2, 0, ψq

“ γpχ,
γ̌

2
,
1

2
, ψ´1

qγpχ,´
γ̌

2
,´

1

2
, ψq,

and the product of the two simplifies to give the result.
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decomposition w “ w´1
1 w1w1 of the nontrivial element of WX , as above,

can be taken to be w1 “ wα4 with

w1 “ wα3wα2wα3wα1wα2wα3wα4 .

Thus, a “Brion path” for the action of the Weyl group on the Borel orbits
of maximal rank, defined by Knop [Kno95], is given by the following.

X̊
α4,U

α3,U

α2,U

α1,U

α3,U

α3,U

α2,U

α4,U

α3,U

α4,U

α4,T

Note that the three lower nodes correspond to the variety Sp4 ˆSp2 zSp6,
as in Example 2.4.6 above.

The reader can now use the calculation of the previous example (there
is no extra twist here, since the subgroup Sp4 ˆSp2 has no nontrivial char-
acters), together with the Radon inversion formula (14), to confirm the for-
mula

Sw,χ “ γpχ,
γ̌

2
,´

9

2
, ψ´1qγpχ,

γ̌

2
,´

3

2
, ψqγpχ,´γ̌, 0, ψqRw.

Remark 2.4.8. The analog of the inductive hypothesis used in the proof of
[Sak13, Proposition 6.5.1] for “type T spherical roots,” here, is, with α̌, w,
γ̌1 as in that proposition, that the contribution of the nodes below a certain
node in the diagram is the factor

γppχδ
1
2

LpXq
q1, α̌, 0, ψ´1qγppχδ

1
2

LpXq
q1,´wα̌, 2 ´ xρ̌, γ1y, ψqγpχ,´γ̌, 0, ψq,
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where by pχδ
1
2

LpXq
q1 we denote the conjugate of χδ

1
2

LpXq
by the sequence of

Weyl elements above the given node.
For example, for the second-lowest node in Example 2.4.6, we have α̌ “

α̌2, γ1 “ wα2α1 “ α1 ` α2, and w “ the reflection corresponding to the root

α1`α2, while the character χδ
1
2

LpXq
has to be translated by the Weyl element

wα3wα2 . We then compute

xα̌, wα3wα2ρLpXqy “
1

2
,

x´wα̌,wα3wα2ρLpXqy ` 2 ´ xρ̌, γ1y “ ´
1

2
,

resulting in the gamma factors of (34).
Note also that the Brion path that was used for the calculation of the F4-

case above does not satisfy the assumptions of Proposition 6.4.1 of op.cit.
(at the node with edges labeled α1 and α2), but nonetheless satisfies this
inductive hypothesis.

3. DEGENERATION OF TRANSFER OPERATORS

In the previous section, we saw how the L-value associated to the spher-
ical varieties of Table (1) controls, through its gamma factors, the scattering
operators associated to the theory of asymptotics.

On the other hand, in [Sak21] it was discovered that the L-value also has
a different function: It controls certain “transfer operators,” which translate
stable orbital integrals for the quotient X “ pX ˆ Xq{G to orbital integrals
for the associated Kuznetsov quotient Y “ pN,ψqzG˚{pN,ψq, where G˚ “

PGL2 or SL2, according as ǦX “ SL2 or PGL2, respectively.
In this section, we will see how the two results are related via the degen-

eration of the transfer operators to the asymptotic cone.

3.1. Transfer operators for rank-one spherical varieties. We keep assum-
ing that the field F is non-Archimedean. Here, we will need to work with
measures, rather than functions, so we will use SpXq to denote the space
of Schwartz measures (compactly supported, smooth) on the points of a
variety X over F . Note that the varieties of Table (1) all carry a G-invariant
measure, so the translation from functions to measures is quite innocuous
(up to the noncanonical choice of such a measure). But measures have natu-
ral pushforwards, and, using X as a symbol for the quotient ofXˆX by the
diagonal action ofG, we will denote by SpXq the image of the pushforward
map, from Schwartz measures on X ˆ X , to measures on the invariant-
theoretic quotient pX ˆ Xq � G :“ SpecF rX ˆ XsG, which in our cases is
just an affine line.

The meaning of SpYq for the Kuznetsov quotient of G˚ is similar, but
because of the twist by the Whittaker character ψ, we need to fix some
conventions, as in [Sak21, § 1.3]. The result is a space of measures on the
quotient NzG˚ �N , which is again isomorphic to the affine line.
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The main theorem of [Sak21] is the following.

Theorem 3.1.1 ([Sak21, Theorem 1.3.1]). For the varieties of Table (1), and for
appropriate identifications of the invariant-theoretic quotients pX ˆ Xq � G and
NzG˚ �N with the affine line (with coordinates that we denote by ξ or ζ, depend-
ing on whether G˚ “ PGL2 or SL2, respectively), the operator T described below
gives rise to an injection

T : SpYq Ñ SpXq. (35)

‚ When ǦX “ SL2 with LX “ LpStd, s1qLpStd, s2q, s1 ě s2,

T fpξq “ |ξ|s1´ 1
2

´

| ‚ |
1
2

´s1ψp‚qd‚

¯

‹

´

| ‚ |
1
2

´s2ψp‚qd‚

¯

‹ fpξq.

‚ When ǦX “ PGL2 with LX “ LpAd, s0q,

T fpζq “ |ζ|s0´1
`

| ‚ |1´s0ψp‚qd‚
˘

‹ fpζq.

Here, ‹ denotes multiplicative convolution onFˆ,D‹fpxq “
ş

aPFˆ Dpaqfpa´1xq.

The operator is bijective for a certain explicit enlargement of the space
SpYq of measures, that we will not recall here. Conjecturally, the transfer
operator also translates relative characters of one quotient to relative char-
acters of the other. This has been proven in several cases [GW21, Sak22a,
Sak22b]. We will recall the notion of relative characters below, noting that
in the case of SL2 “ SO3zSO4 they coincide with the usual stable characters,
while in the case of the Kuznetsov quotient Y they are often called “Bessel
distributions.”

3.2. Asymptotics of test measures. To relate transfer operators to the scat-
tering maps computed in the previous section, we recall [DHS21, Theorem
1.8] that the asymptotics map (3) restricts to a morphism

e˚
H : SpXq Ñ S`pXHq, (36)

where S`pXHq denotes a certain enlargement of SpXHq, namely, a space of
smooth measures on XH, whose support has compact closure in an affine
embedding (in this case, the “affine closure” SpecF rXHs). The “restriction”
of the asymptotics map (3) from smooth functions to Schwartz measures
makes sense, because by [SV17, § 4.2] an invariant measure on X canoni-
cally induces an invariant measure on XH.

The spectral scattering maps Sw,χ studied in the previous section are
actually the Mellin transforms of a scattering operator Sw, an involution
on S`pXHq which we think of as an action of the Weyl group WX » Z{2.
This involution is pAX , wγq-equivariant, that is, it intertwines the action of
a P AX with the action of wγa “ a´1, when this action is normalized to
be unitary. Since we are working with measures, here, the unitary action
analogous to (4) is

a ¨ fpSgq “ δ
´ 1

2

P pXq
paqfpSagq. (37)
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Because of the equivariance property of Sw, it descends to an operator
from the pAX , χ

´1q-coinvariants to the pAX , χq-coinvariants of S`pXHq; for
χ in general position, these can be identified with the corresponding coin-
variants of the standard Schwartz space:

Lemma 3.2.1. For an open dense set of χ P yAXC (the complex Lie group of char-
acters of AX ), the inclusion SpXHq ãÑ S`pXHq induces an isomorphism on
pAX , χq-coinvariants, hence identifying those with SppAX , χqzXHq, the space of
smooth measures on AXzXH, valued in the sheaf whose sections are pAX , χq-
equivariant functions (for the normalized action (4) on functions) on XH. More-
over, the “twisted pushforward maps”

S`pXHq Ñ SppAX , χqzXHq, (38)

are meromorphic in χ.

Proof. This follows directly from the description of S`pXHq as a “fractional
ideal” in the space of rational sections of χ ÞÑ SppAX , χqzXHq, in [DHS21,
(1.18)]. □

We will denote the map (38) by f ÞÑ f̌pχq, and think of it as a Mellin
transform.

The spectral scattering morphisms of the previous section are the mero-
morphic family of operators descending from Sw through this map:

Swγ ,χ : SppAX , χ
´1qzXHq Ñ SppAX , χqzXHq.

Note that, up to a choice of measure, SppAX , χqzXHq is what was denoted
before by C8ppAX , χqzXHq.

Similar maps exist for the Whittaker model SpN,ψzG˚q, with e˚
H there

mapping to a space S`pNzG˚q of measures on the space NzG˚ (the “de-
generate Whittaker model,” with the trivial character on N ). In what fol-
lows, we will also be denoting by Y the “quotient” pN,ψqzG˚ (i.e., the space
NzG˚ endowed with a sheaf defined by the nondegenerate character ψ),
and by YH its degeneration (the space NzG with the trivial sheaf). The im-
age of the Schwartz space SpY q :“ SpN,ψzG˚q under the asymptotics map
will be denoted by S`pNzG˚q:

e˚
H : SpN,ψzG˚q Ñ S`pNzG˚q.

Now, let us repeat the construction of test measures for the relative trace
formula, for the asymptotic cones of X and Y . Denote by S`pXH ˆXH{Gq

the pushforward of S`pXHq b S`pXHq to the invariant-theoretic quotient
pXH ˆXHq �G. We adopt the same convention for pNzG˚ ˆNzG˚q{G˚ “

NzG˚{N , letting S`pNzG˚{Nq be the image of the pushforward map from
S`pNzG˚q b S`pNzG˚q to NzG˚ �N “ pNzG˚q ˆ pNzG˚q �G˚.
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Composing the asymptotics maps with these pushforwards, we obtain
maps

SpN,ψzG˚q b SpN,ψ´1zG˚q
pe˚

H
be˚

H
qG˚

// S`pNzG˚{Nq

TH

��
SpX ˆXq

pe˚
H

be˚
H

qG
// S`pXH ˆXH{Gq

, (39)

with the map TH to be introduced. The main result of this section will
be a description of a canonical “transfer operator” TH, characterized by
compatibility with relative characters; therefore, let us first discuss those.

3.3. Relative characters.

3.3.1. Let π be an admissible representation of G, with π̃ its contragredi-
ent. A relative character on the quotient X “ pX ˆXq{G for π is a functional
that factors

Jπ : SpX ˆXq Ñ π b π̃ Ñ C,
with the first map G ˆ G-equivariant and the second the defining pairing
between π and π̃.

A source of relative characters is the Plancherel formula for L2pXq: Once
we choose a Plancherel measure µX , as well as a G-invariant measure dx in
order to embed SpXq ãÑ L2pXq, we have a decomposition of the bilinear
pairing ⟨f1, f2⟩ “

ş

X
f1f2
dx as

⟨f1, f2⟩ “

ż

Ĝ
Jπpf1 b f2qµXpπq,

uniquely determined by this formula for µX -almost every π in the unitary
dual Ĝ.

On the other hand, we can build relative characters by pullback via the
asymptotics maps. Of interest to us here will be the relative characters
that we can pull back from the space S`pXH ˆ XH{Gq. Namely, there is a
“canonical” open embedding AX ãÑ XH ˆXH �G, such that

‚ the identity maps to the image of the distinguished G-orbit XR
H Ă

XH ˆXH, described in § 2.3.
‚ the map is equivariant with respect to the AX -action descending

from the action on the first, or equivalently the second, copy of XH.
Consider the meromorphic family of functionals Iχ obtained as pull-

backs of the composition of maps

Iχ : SpX ˆXq
pe˚

H
be˚

H
qG
// S`pXH ˆXH{Gq

ş

χ´1δ
´ 1

2
P pXq // C,

where the last arrow denotes the integral against the pullback of the char-

acter χ´1δ
´ 1

2

P pXq
fromAX to (a dense open subset of)XH ˆXH. A priori, this
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arrow converges only on the subspace of such measures that are supported
on AX Ă pXH ˆ XHq � G, but it is not hard to make sense of it for almost
every χ:

Lemma 3.3.2. The functionals Iχ converge when |χpϖγ̌q| ! 1, and extend mero-
morphically to all χ P yAXC (the complex Lie group of characters of AX ). For
an open dense set of χ’s, the functional Iχ is a relative character for the normal-
ized principal series representation πχ “ IP pXqpχq, that is, it factors through a
morphism

SpX ˆXq Ñ πχ b Ăπχ
⟨ , ⟩
ÝÝÑ C.

Proof. The elements of S`pXH ˆ XHq are of moderate growth, and their
support has compact closure in the affine closure of XH ˆ XH. Therefore,
the elements of S`pXHˆXH{Gq are of moderate growth, and their support
has compact closure in A1pF q, when we identifyAX » Gm via the character
γ or γ

2 . Convergence for |χpϖγ̌q| ! 1 follows.
Before we sketch the proof of meromorphic continuation, let us explain

why they are relative characters. The composition

IH
χ : S`pXHq b S`pXHq // S`pXH ˆXH{Gq

ş

χ´1δ
´ 1

2
P pXq // C,

is, by construction, pAX , χ
´1q-equivariant with respect to the normalized

action ofAX on either S`pXHq-factor, and therefore the map factors through
the pAX , χq-coinvariants of each factor. By Lemma 3.2.1, for χ in general po-
sition, these coinvariants are equal to SppAX , χqzXHq, which is isomorphic
to IP pXq´pχq » πχ´1 . Hence, Iχ factors through πχ´1 b πχ´1 . Since χ is
w-conjugate to its inverse, for generic χ we have that πχ » πχ´1 “ Ăπχ.

Finally, for the claim of meromorphicity, it is not hard to express the map
IH
χ , on the tensor product SppAX , χqzXHq b SppAX , χqzXHq of these coin-

variant spaces, in terms of standard intertwining operators and the stan-
dard pairing between πχ and πχ´1 . More precisely, if we use the canonical
Radon transform introduced in § 2.3 (translated to measures, by multiply-
ing both sides by a G-invariant measure):

Rχ : SppAX , χ
´1qzXHq Ñ SppAX , χqzXHq,

then the map IH
χ factors through

SppAX , χqzXHq b SppAX , χqzXHq
IˆRχ´1

ÝÝÝÝÝÑ

SppAX , χqzXHq b SppAX , χ
´1qzXHq

⟨‚⟩
ÝÝÑ C, (40)

where the arrow labeled ⟨‚⟩ is the integral over the diagonal of AXzXH,
against an invariant measure that is prescribed by the measure used for the
Radon transform. (I leave the details of this measure to the reader.) □
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The factorization (40) will be very useful in what follows, so let us record
it as

IH
χ pf1 b f2q “

〈
f̌1pχq,Rχ´1 f̌2pχq

〉
. (41)

Of course, we could have applied Radon transform to the first, instead of
the second factor.

Similarly, consider the Kuznetsov quotient forG˚. Identifying the Cartan
A˚ of G˚ with the torus of diagonal elements through the upper triangular
Borel, the embedding

A˚ Ñ

ˆ

´1
1

˙

A˚ Ă G˚

descends to an embedding of A˚ in NzG˚ �N . We similarly have a relative
character Jχ on SpN,ψzG˚q b SpN,ψ´1zG˚q, obtained as the composition

SpN,ψzG˚q b SpN,ψ´1zG˚q
e˚

H
be˚

H // S`pNzG˚{Nq

ş

χ´1δ
´ 1

2
B˚ // C .

Notice that here we are integrating here against the character χ´1δ
´ 1

2
B˚ of

A˚ Ă NzG˚ � N , where B˚ Ă G˚ is the Borel subgroup of G˚; this makes
Jχ a relative character for the normalized principal series IG

˚

B˚ pχq. The anal-
ogous statements of Lemma 3.3.2 all hold in this setting.

We identifyA˚ with the CartanAX ofX via the identification of the dual
groups with SL2 or PGL2, i.e., so that the positive root of G˚ corresponds
to the spherical root γ.

3.3.3. We will now discuss the relation of the relative characters Iχ, Jχ
to the Plancherel formulas for L2pXq, resp. L2ppN,ψqzG˚q. Recall [SV17,
Theorem 7.3.1] that the spaces L2pXq, L2pY q have discrete and continu-
ous spectra, with the continuous spectra naturally parametrized by unitary
characters of AX , modulo inversion (i.e., modulo the action of WX ). More
precisely, using the index H for the orthogonal complement of the subspace
spanned by relative discrete series (the images of irreducible subrepresen-
tations π ãÑ L2pXq or L2pY q), there are Plancherel decompositions

L2pXqH or L2pY qH “

ż

yAX{WX

Hχdχ, (42)

where yAX denotes the unitary dual of AX , and the unitary representation
Hχ can be identified with “the” pAX , χq-equivariant (for the normalized
action) Hilbert space completion of SpXHq (resp. of SpYHq).

To be precise, L2pXq is not quite a completion of SpXq (it is, rather, a
completion of a space of half-densities), but, fixing a Haar measure on X
(and hence a Haar half-density), we can consider it to be so. We can sim-
ilarly fix a Haar measure on NzG˚, and take dχ, in the decompositions
above, to be such that it pulls back to a fixed Haar measure on yAX under
the finite map yAX Ñ yAX{WX . The Plancherel decompositions (42), then,
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give rise to relative characters JZχ (where Z “ X or Y ), which are the pull-
backs of the Hermitian forms of Hχ to SpZq – but our convention will be to
consider them as bilinear forms, i.e., as functionals on SpXq b SpXq, resp.
on SpN,ψzG˚q b SpN,ψ´1zG˚q.

Proposition 3.3.4. Let µpχq be the function introduced in Theorem 2.4.2.
The product IχµXpχq is a family of relative characters on X that is invariant

under the WX -action χ ÞÑ χ´1.
For suitable choices of invariant measures, the most continuous part of the

Plancherel decomposition ofL2pXq (corresponding to the canonical subspaceL2pXqH Ă

L2pXq) reads: 〈
f1, f2

〉
H

“

ż

yAX{WX

Iχpf1 b f2qµXpχqdχ, (43)

where dχ is such that it pulls back to a Haar measure on yAX .
Similarly, for the Whittaker space Y “ pN,ψqzG˚, the family of relative char-

acters γpχ,´γ̌, 0, ψqJχ is invariant under χ ÞÑ χ´1, and the Plancherel formula
for the most continuous part of L2pN,ψzG˚q reads:〈

f1, f2
〉

H
“

ż

yAX{WX

Jχpf1 b f2qγpχ,´γ̌, 0, ψqdχ. (44)

Proof. The proof, which is based on Theorem 2.4.2 and the Plancherel for-
mula of [SV17, Theorem 7.3.1], is identical to that of [Sak22a, Theorem
3.6.3]. The Whittaker case is already included in [Sak22a, Theorem 3.6.3]
(in the case of G˚ “ SL2, but the case of G˚ “ PGL2 is identical, since the
scattering operators only depend on the pullback to SL2). □

The relative characters Iχpf1 b f2qµXpχq and Jχpf1 b f2qγpχ,´γ̌, 0, ψq of
the proposition, which appear in the Plancherel formulas of two different
spaces with the same Plancherel measure, or any multiple of this pair by the
same scalar, will be called “matching” relative characters.

3.4. Asymptotic transfer operators. Putting everything together, we can
now prove the main result of this section, which is a generalization of the
results of [Sak22a, §4.3, 5] to all varieties of Table (1).

Let us first fix coordinates: We identify AX “ A˚ with Gm via the char-
acter γ, when ǦX “ SL2, resp. γ

2 , when ǦX “ PGL2. We previously
embedded AX Ă XH ˆ XH � G sending the identity to the image of the
distinguished G-orbit, but here we will work with the opposite embedding
Gm » AX ãÑ XH ˆXH �G, sending ´1 to the image of the distinguished
G-orbit.17

17Such a choice was also made in [Sak22a, § 5], and should also have been made in
§ 4.3 of op.cit., due to the correction noted in the proof of Lemma 2.3.3, and the subsequent
appearance of the character ψ in both factors of (25). Of course, these choices are only
made for compatibility of the final formulas with those of [Sak21], which also depend on
non-canonical choices of coordinates.
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Having identified an open subset of pXH ˆ XHq � G and of NzG˚ � N
with , we will use the following coordinate for this space:

‚ when ǦX “ SL2, an element of A˚ will be denoted
ˆ

ξ
1

˙

;

‚ when ǦX “ PGL2, an element of A˚ will be denoted
ˆ

ζ
ζ´1

˙

.

We will denote the smallest AX “ A˚-stable subspace of S`pNzG˚{Nq

(resp. of S`pXH ˆ XH{Gq) containing the image of the map e˚
H b e˚

H by
S`pNzG˚{Nq1, resp. S`pXH ˆXH{Gq1.

Theorem 3.4.1. There is a unique AX -equivariant operator

TH : S`pNzG˚{Nq1 Ñ S`pXH ˆXH{Gq1,

such that, for all almost all χ P yAX , the pullbacks of

SpN,ψzG˚q b SpN,ψ´1zG˚q
e˚

H
be˚

H // S`pNzG˚{Nq1

TH

��
SpX ˆXq

e˚
H

be˚
H // S`pXH ˆXH{Gq1

ş

χ´1δ
´ 1

2
P pXq // C,

(45)
are matching relative characters for X and pN,ψqzG˚.

Moreover, in the coordinates fixed above, the operator is given by the following
formula:

‚ When ǦX “ SL2 with LX “ LpStd, s1qLpStd, s2q, s1 ě s2,

THfpξq “ |ξ|s1´ 1
2

´

| ‚ |
1
2

´s1ψp‚qd‚

¯

‹

´

| ‚ |
1
2

´s2ψp‚qd‚

¯

‹ fpξq.

‚ When ǦX “ PGL2 with LX “ LpAd, s0q,

THfpζq “ |ζ|s0´1
`

| ‚ |1´s0ψp‚qd‚
˘

‹ fpζq.

The term “AX -equivariant”, here, refers to the normalized action of AX
on S`pXH ˆXH{Gq that descends from (37), and, similarly, its analogously
normalized action (but using the modular character δB˚ instead of δP pXq)
on S`pNzG˚{Nq. The factor |ξ|s1´ 1

2 , resp. |ζ|s0´1, in the formula for TH is

due to the difference between the characters δ
´ 1

2
B˚ and δ

´ 1
2

P pXq
in the definition

of the relative characters Iχ and Jχ; in terms of the torus AX , this factor can

be written |eρP pXq´
γ
2 | “ |eρP pXq´ρB˚ | “ δ

1
2

P pXq
δ

´ 1
2

B˚ .
It would have been more natural to work with half-densities instead

of measures, in order to avoid these factors; the downside would be that
the pushforward maps from half-densities on X ˆ X to half-densities on
X ˆ X � G are not completely canonical. However, there seems to be a
distinguished way to define such pushforwards, that was used in [Sak23]
to give a quantization interpretation of the transfer operators. Although
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we will discuss that picture in the next subsection, we will not dwell any
further, in this article, on the reformulation of these results using half-
densities.

Proof. Knowing the scattering operators by Theorem 2.4.2, the proof is then
identical to that of [Sak22a, Theorem 4.3.1]. □

The remarkable feature of the formulas of Theorem 3.4.1 is that the trans-
fer operators for the boundary are given by exactly the same formulas as for
the original spaces, Theorem 3.1.1.

I expect that (45) descends to a commutative diagram

SpN,ψzG˚{N,ψq
e˚

H
be˚

H //

T
��

S`pNzG˚{Nq

TH

��
SpX ˆX{Gq

e˚
H

be˚
H // S`pXH ˆXH{Gq

, (46)

where T is the transfer operator of Theorem 3.1.1. This would imply that
the relative characters under T satisfy:

T ˚pµXpχqIχq “ γpχ,´γ̌, 0, ψqJχ. (47)

This was proven for the basic cases A1 and D2 in [Sak22a].

4. HANKEL TRANSFORMS FOR THE STANDARD L-FUNCTION OF GLn

In this section, we change our setting, to discuss a close analog of trans-
fer operators, the Hankel transforms which realize the functional equation of
L-functions at the level of trace formulas. Our goal is to give an interpre-
tation of a theorem of Jacquet, and of its proof, from the point of view of
quantization.

Here, we will take F “ R, in order to use the language of geometric
quantization (which involves line bundles and connections). The results
can then be transferred formally to any local field, and indeed the theo-
rem of Jacquet holds over any local field.18 For example, the flat sections
of the connection ∇ “ ∇0 ´ iℏdx on the trivial (complex) line bundle over
R, where ∇0 is the usual connection, are the multiples of the exponential
eiℏx, and this can be replaced by an additive character when F is any other
local field. Similarly, Jacquet’s formula (see Theorem 4.1.2 below) has a
“natural” meaning (and is correct) over any local field. The reformulation
of Jacquet’s proof that we provide also makes sense over any such field,
due to the theory of the Weil representation. However, since we do not de-
velop a general theory for how to understand geometric quantization over
general local fields, there is little benefit to complicating the presentation

18In fact, Jacquet wrote [Jac03] for non-Archimedean fields, but Jacquet’s proof of the
Theorem 4.1.2 that we are discussing here holds over Archimedean fields, as well.
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by including other local fields F ; it should be straightforward for the in-
terested reader to fill in the translations and verify that every step makes
sense over any F .

Remark 4.0.1. An important note on proofs and notation: The arguments
that we present are mere reformulations of Jacquet’s arguments. There is
therefore no point in commenting again on convergence issues and other
technical details that have been dealt with in [Jac03]. For the same reason,
we will take the freedom to be a bit vague with some of our notation; in par-
ticular, we will often denote by DpXq an unspecified space of half-densities
on a variety X . The rigorous mathematical interpretation of these spaces is
that we start with well-defined spaces, such as the space DpV q of Schwartz
half-densities on a vector space, and then the other spaces DpXq are im-
ages of this space under various integral constructions that make sense, as
proven by Jacquet. Finally, we will sometimes write DpXq for a space of
half-densities defined on an open dense subset X‚ of X ; it will be clear
(and we will usually say) what this subset is.

4.1. The theorem of Jacquet. In this section, we denote by G the group
G “ GLn, and we will work with the Kuznetsov formula for G, with re-
spect to the standard character ψ : pxijqij ÞÑ ψp

řn´1
i“1 xi,i`1q of the upper

triangular unipotent subgroup N Ă G, where, again, we use ψ both for a
fixed nontrivial unitary character of F , and for this character of N . Since
F “ R, ψ has the form ψpxq “ eiℏx, for some nonzero constant ℏ; we will be
writing dx for the self-dual Haar measure with respect to ψ (or |dx|, when
we want to distinguish the measure from the differential form).

As in the case of G˚ in the previous section, we will identify the dense
subset NzGB{N Ă NzG �N , where GB denotes the open Bruhat cell, with
the Cartan A of diagonal matrices, but this time (for compatibility with
the literature), we will use the identification that descends from A Ñ wA,
where w is the antidiagonal permutation matrix (i.e., its entries are all 1,
rather than the antidiagonal of p1,´1q that we used previously in this pa-
per). Fortunately, these noncanonical choices will not play a role, once we
reformulate our theorem in terms of geometric quantization – our reformu-
lation of § 4.2 will not depend on choices of representatives for the orbits.

It is essential here to work with half-densities, so we let DpXq be the
space of Schwartz half-densities on the F -points of a smooth variety X .
Those are products of Schwartz functions by half-densities of the form |ω|

1
2 ,

where ω is a nowhere-vanishing polynomial volume form on X . (In the
examples at hand, one can always find such a form; in the general case, one
would have to be more careful with the definitions.)

We are particularly interested in the case where X “ Matn, the space
of n ˆ n-matrices, or Mat˚

n, its linear dual. In calculations that follow, we
will be identifying Mat˚

n, as a space, with Matn, via the (symmetric) trace
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pairing pA,Bq “ trpABq; note, however, that, defining the right G ˆ G-
action on Matn as

A ¨ pg1, g2q :“ g´1
1 Ag2, (48)

the dual action on Mat˚
n is

B ¨ pg1, g2q “ g´1
2 Bg1. (49)

The two natural embeddings G ãÑ Matn and G ãÑ Mat˚
n differ by g ÞÑ

g´1, once we apply the identification Mat˚
n “ Matn. These embeddings

allow us to restrict half-densities to G, and then we define twisted pushfor-
wards to the double quotient space NzG � N , or rather to its open subset
identified, as above, with the Cartan A: If φ “ Φpdgq

1
2 is a half-density

on G, where dg is a Haar measure on G and Φ is a function, its twisted
push-forward to A ãÑ NzG �N is defined as the product

δ
1
2 paqOapΦqpdaq

1
2 , (50)

where δ is the modular character of the Borel subgroupB Ą N , da is a Haar
measure on A, and Oa is the Kuznetsov orbital integral

OapΦq “

ż

NˆN
Φpn1wan2qψ´1pn1n2qdn1dn2, (51)

where, again, w is the antidiagonal permutation matrix. The choice of Haar
measures used here will not affect any of the results of this section.

Remark 4.1.1. We pause to emphasize the importance of the definition (50)
for the pushforward of a half-density. Canonically, only measures admit
pushforwards. The pushforward of a measure of the form Φdg is easily
computed to be equal to δpaqO0

apΦqpdaq (for compatible choices of Haar
measures), where now O0

a is the orbital integral (51), but with the trivial
character instead of ψ. (Or, better, use Oa and think of it as a twisted push-
forward.) Less canonically, the function a ÞÑ OapΦq can be thought of as
(twisted) “pushforward of functions” – it is the natural definition that we
obtain from fixing the same Haar measure |dn| onNˆN for all its orbits (in
the open Bruhat cell), and integrating; it is ambiguous up to a constant, that
depends on the choice of Haar measure. Similarly, the definition (50) corre-
sponds to fixing a Haar measure on N ˆ N , taking its square root |dn|

1
2 (a

Haar half-density), and multiplying φ. The product φ ¨ |dn|
1
2 is a “measure

along the fibers of the map to A, multiplied by a half-density in the trans-
verse direction,” and it makes sense to push it forward to a half-density on
A. We should note, however, that, although natural, it is not completely
clear why we should take the same Haar measure for every N ˆ N -orbit;
the full justification of this choice will come with the proof of the main the-
orem, see Proposition 4.3.6.

For reasons that have to do with the Godement–Jacquet method of rep-
resenting L-functions, we will adopt the notations of [Sak19], and denote
the images of DpMatnq, DpMat˚

nq under these pushforward maps by
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D´

LpStd, 1
2

q
pYq, D´

LpStd_, 1
2

q
pYq, respectively, where Y stands as a symbol for

the twisted Kuznetsov quotient pN,ψqzG{pN,ψq. These are understood as
spaces of half-densities on A, and they are genuinely different; for exam-
ple, when n “ 1, the embedding A ãÑ Mat1 attaches the point 0 to A » Fˆ,
while the embedding A ãÑ Mat˚

1 attaches the point 8.
The theorem that follows is due to Jacquet [Jac03, Theorem 1]; I present

it in the reformulation of [Sak19, Theorem 9.1]. Thinking of half-densities
for Y as half-densities on the torus A of diagonal element, we also identify
the latter with the “universal” Cartan of G, via the quotient B Ñ A of the
upper-triangular Borel subgroup. Thus, it makes sense to write eα : A Ñ

Gm for a root (where we use exponential notation for the character of A,
reserving the additive notation α for its differential), and we also denote
by eϵ̌i : Gm Ñ A the cocharacter into the i-th entry of the diagonal. The
Hankel transform of the theorem that follows will be expressed in terms of
operators of the form “multiplication by a function ψpeαq on A” as well as
multiplicative Fourier convolutions along the cocharacters e´ϵ̌i . Those will be
denoted by F´ϵ̌i,

1
2
, and are given, explicitly, by

F´ϵ̌i,
1
2
φpdiagpa1, . . . , anqq “

ż

Fˆ

φpdiagpa1, . . . , aix, . . . , anqq|x|
1
2ψ´1pxqdˆx.

(Caution: Compared to the notation of [Sak19], we have changed ψ to ψ´1 here,
and we will make some corresponding changes below.)

Theorem 4.1.2. Let G “ GLn. Consider the diagram

DpMatnq

��

F // DpMat˚
nq

��
D´

LpStd, 1
2

q
pYq

HStd // D´

LpStd_, 1
2

q
pYq

where F denotes the equivariant Fourier transform:

Fpφqpyq “

ˆ
ż

Matn

φpxqψp´ ⟨x, y⟩qdx
1
2

˙

dy
1
2

(for dual Haar measures dx, dy on Matn and Mat˚
n with respect to the character

ψ).
There is a linear isomorphism HStd as above, making the diagram commute.

Moreover, HStd is given by the following formula:

HStd “ F´ϵ̌1,
1
2

˝ ψpe´α1q ˝ F´ϵ̌2,
1
2

˝ ¨ ¨ ¨ ˝ ψpe´αn´1q ˝ F´ϵ̌n,
1
2
. (52)
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Explicitly, and denoting diagonal matrices simply as n-tuples, (52) reads:

HStdfpb1, . . . , bnq “

ż

fpb1p1, . . . , bnpnqψp´

n
ÿ

i“1

pi `

n´1
ÿ

i“1

bi`1

pibi
q|p1 ¨ ¨ ¨ pn|

1
2dˆp1 ¨ ¨ ¨ dˆpn. (53)

Remark 4.1.3. Opposite to the convention in [Sak19] and [Jac03] (where ψ
is denoted by θ´1), we have changed the convention of Fourier transform,
using the character ψ´1 instead of ψ. This resulted in some sign changes,
but will simplify some expressions in the rest of the section.

4.2. Cotangent reformulation of Jacquet’s theorem.

4.2.1. The reformulation of Jacquet’s theorem that we will present is di-
rectly analogous to the interpretation of transfer operators given in [Sak23]:
Namely, we will interpret both of the spaces D´

LpStd, 1
2

q
pN,ψzG{N,ψq and

D´

LpStd_, 1
2

q
pN,ψzG{N,ψq as geometric quantizations corresponding to two

different Lagrangian foliations on the same symplectic space, and then the
operator of Formula (52) represents integrals over the leaves of such a foli-
ation.

Let us start by introducing the notions of foliations and integrals over the
leaves; our definitions are more restrictive than usual, but good enough for
our purposes.

Definition. (1) We will call foliation a smooth morphism of smooth va-
rieties F : X Ñ Y , and leaves its fibers; we will also be denoting Y
by X{F . If X is symplectic, a foliation is Lagrangian if its leaves are
Lagrangian subvarieties.

(2) Given a foliation as above, let pL,∇q be a smooth vector bundle
on (the real points of) X , with a connection that is flat with triv-
ial monodromies along the leaves of F . The space of parallel half-
densities along F , DF pX,Lq, is defined as follows: Its elements are
half-densities on Y , valued in a line bundle LF , whose sections are
those sections of L that are ∇-flat along the leaves of Y .

(3) Suppose, now, that F1, F2 are two Lagrangian foliations on a sym-
plectic space X , and pL,∇q is a smooth vector bundle on X , with a
connection whose curvature is equal to iℏω – in particular, flat along
the leaves of Lagrangian foliations. Assume, also, that the restric-
tion of each foliation to the leaves of the other is also a foliation; in
particular, the intersections of two leaves are smooth, and their tan-
gent spaces coincide with the intersections of the tangent spaces of
the leaves. If Z is a leaf, say of F1, we will be writing Z{F2 Ă Y2
for its space of leaves for the restriction of the F2-foliation.

In this setting, the integral of an element φ P DF1pX,Lq along the
leaves of F2 is the element of DF2pX,Lq whose “value” at x P X is
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given by
ż

F2,x{F1

Tx,zφpzq|ω|
1
2
dimpF2,x{F1q, (54)

provided that the integral converges. Here, F2,x denotes the F2-
leaf containing x, and Tx,z denotes parallel transport from the point
z to the point x. The integral makes sense as a parallel half-density
along F2, exactly as in the linear case [Li08, § 3.4] (see Remark 4.2.2
below for an explanation). In particular, our convention is that, for a
volume form Ω on a smooth variety, |Ω| denotes the corresponding
positive measure on the R-points of the variety, that is induced from
the self-dual measure on F “ R with respect to the character x ÞÑ

eiℏx.

Remark 4.2.2. We explain why the outcome of integral (54) represents a half-
density on X{F2 (valued in the line bundle LF2):

Let x P X , set M “ TxX , and let ℓ1, ℓ2 Ă M be the tangent spaces of the
leaves of F1, F2 passing through x. The symplectic form ω restricts to a
symplectic form on the quotient pℓ1 ` ℓ2q{pℓ1 X ℓ2q, giving rise to a volume
form ω ^ ¨ ¨ ¨ ^ ω (12 dimpℓ1 ` ℓ2q{pℓ1 X ℓ2q times). We have a canonical
isomorphism of lines

detpM{ℓ1qbdetppℓ1 `ℓ2q{pℓ1 Xℓ2qq “ detpM{ℓ2qbdetpℓ2{pℓ1 Xℓ2qqb2. (55)

Taking the “square root of the absolute value” of the dual spaces, we
deduce that the product of a half-density alongX{F1 by |ω|

1
2
dimpF2,x{F1q :“

|ω ^ ¨ ¨ ¨ ^ ω|
1
2 can be canonically understood as a density (measure) on

F2,x{F1 times a half-density on X{F2. This is how the integral (54) gives
rise to a half-density on X{F2, valued in the appropriate line bundle. For
further discussion of these integrals along Lagrangians, see § 4.3.4 below.

4.2.3. For the case at hand, let us adopt a basis-independent point of view,
and write V for an n-dimensional vector space, V ˚ for its linear dual. The
role of Matn will be played by EndpV q » V ˚ b V , and we identify its linear
dual with EndpV ˚q » V b V ˚. The cotangent spaces of both are identified
with the space M :“ EndpV q ‘ EndpV ˚q, and the foliations M Ñ EndpV q

and M Ñ EndpV ˚q will be called the “vertical” and “horizontal” foliation,
respectively. Breaking the symmetry,19 we need to fix a sign for the sym-
plectic form on this vector space, and we choose it to be

ωM “
ÿ

j

dTj ^ dT ˚
j , (56)

where pTjqj , pT
˚
j qj are dual bases for EndpV q, EndpV ˚q.

19Only the product of the symplectic form by an chosen nonzero constant ℏ matters for
what follows; we are not really breaking the symmetry – just choosing opposite constants
for the two quotients.
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The group G “ GLpV q » GLpV ˚q admits an open embedding into both
EndpV q and EndpV ˚q, giving rise to two distinct embeddings of T ˚G into
M .

Now we will define a smooth line bundle L on (the real points of) M ,
equipped with a connection ∇, whose curvature is iℏωM , for some nonzero
constant ℏ. Let ψ be the additive character x ÞÑ eiℏx. In order not to privi-
lege one Lagrangian over the other, we will defineL in a symmetric fashion:
Smooth sections of L are pairs pΦ,Φ˚q consisting of Φ,Φ˚ P C8pMq, with
the property that

Φ˚pA,Bq “ ψp´xA,ByqΦpA,Bq. (57)

If ∇0 denotes the standard flat connection on the trivial line bundle on M ,
then the connection ∇ is defined as

∇ “ p∇0 ´ iℏ
ÿ

j

T ˚
j dTj ,∇0 ` iℏ

ÿ

j

TjdT
˚
j q, (58)

where again we have used a dual basis. In particular, a function f on
EndpV q pulls back to a section f̃ “ pΦ,Φ˚q of L on M , given by

ΦpA,Bq “ fpAq, Φ˚pA,Bq “ fpAqψp´ ⟨A,B⟩q,

with the property that ∇Z f̃ “ 0 for any vector field Z which is parallel to
the leaves of the “vertical” Lagrangian foliation M Ñ EndpV q. Similarly, a
function f on EndpV ˚q pulls back to

pΦpA,Bq “ fpBqψp⟨A,B⟩q, Φ˚pA,Bq “ fpBqq,

which is ∇-flat along the leaves of the “horizontal” foliationM Ñ EndpV ˚q.

4.2.4. We now introduce the Kuznetsov cotangent space T ˚Y. We first give
a rather clumsy presentation of the Whittaker model, by fixing a maximal
unipotent subgroup N Ă G, and a homomorphism f : N Ñ Ga which is
a generic (i.e., nonzero on every simple root space). The Whittaker “space”
Y is then the homogeneous space NzG, but we will think of every point
Ng of it as the set of triples pNg,N 1, f 1q, where N 1 is the maximal unipo-
tent subgroup g´1Ng, and f 1 is the homomorphism N 1 Ñ Ga obtained
from f via conjugation by g. There are nicer presentations of the Whittaker
model, which do not depend on the choice of a base point; for example, if
dimV “ 2, we can let Y “ the set of pairs pv, ωq, where v P V ˆ and ω is a
non-zero alternating form on V , and we can endow the stabilizer N Ă G
of such a point with the homomorphism f such that v˚ ´ n ¨ v˚ “ fpnqv,
for every v˚ P V with ωpv, v˚q “ 1. (Also, if the group were adjoint, the set
of pairs pN, fq consisting of a maximal unipotent subgroup and a generic
morphism toGa would constitute the Whittaker model.) However, for rea-
sons of conciseness, we will fix a base point.

We may, and will, identify f with its differential, as well, which is an
element of n˚. We will then symbolically write f ` nK for the preimage of
f under the restriction map g˚ Ñ n˚, and define the Whittaker cotangent
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space T ˚Y as the space T ˚Y “ pf ` nKq ˆN G. We define the opposite
Whittaker cotangent space as T ˚Y ´ “ p´f ` nKq ˆN G.

The inclusion pf`nKq ãÑ g˚ gives rise to aG-equivariant map T ˚Y Ñ g˚,
and T ˚Y is naturally a Hamiltonian space with this moment map; same for
T ˚Y ´.

Finally, the Kuznetsov cotangent space T ˚Y is defined as the Hamilton-
ian reduction of T ˚Y ´ ˆ T ˚Y with respect to the diagonal G-action:20

T ˚Y “ T ˚Y ´ ˆG
g˚,˘ T ˚Y “ N zzzf T

˚G {{{f N, (59)

where ˘ denotes that the images under the moment map should be opposite.
Of course, the map ´f ÞÑ f induces an equivariant map T ˚Y ´ Ñ T ˚Y
which inverts the moment map, so we could also present T ˚Y as T ˚Y ˆG

g˚

T ˚Y , but in order to avoid sign confusions in the calculations that follow,
it is better to think of the presentation (59).

For completeness, we use the last presentation to provide a standard de-
scription of this space, although we will not use it further in this paper.
Recall the group scheme of regular centralizers JG Ñ c˚, where c˚ :“ g˚ �G; it
comes equipped with an isomorphism of its pullback to the regular locus
g˚,reg with the inertia group scheme for the adjoint action of G. A well-
known result of Kostant says that T ˚Y is a JG-torsor over g˚,reg. As a corol-
lary, T ˚Y is canonically isomorphic to JG, with the isomorphism induced
by the (action, projection) map JG ˆc˚ T ˚Y Ñ T ˚Y ˆg˚ T ˚Y .

4.2.5. Next, we study the double Hamiltonian reduction

M “ N zzzf M {{{f N “ M´f,f{pN ˆNq,

where M´f,f “ M ˆn˚ˆn˚ pt´fu ˆ tfuq (with respect to the right action of
N ˆ N ). The two embeddings of T ˚G into M induce two distinct embed-
dings of JG » T ˚Y into it.

The coordinate-dependent embedding A ãÑ NzG � N that we defined
when we identified G with GLn is more canonically an A-torsor A1 ãÑ

NzGLpV q � N , which further maps into the quotient N 
 EndpV q � N .
The coordinate ring of N 
 EndpV q � N is spanned by the semiinvariants
(highest weight vectors) for B ˆ B on F rEndpV qs, and similarly for the
other spaces, which shows that A1, the locus where these semiinvariants
are nonvanishing, is open in each of those spaces, and its preimage is the
open B ˆB-orbit (Bruhat cell), which we will denote by GB Ă G. We have
the analogous torsor A2 Ă N 
 EndpV ˚q � N . In particular, the restriction
of the maps

N zzzf M {{{f N Ñ N 
 EndpV q �N,

N zzzf M {{{f N Ñ N 
 EndpV ˚q �N,

20Our notation stands for Hamiltonian reduction at pf, fq with respect to a left and a
right action of N ; when we convert this to a right pN ˆ Nq-action, it will correspond to
Hamiltonian reduction at p´f, fq.
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to A1, resp. A2, coincides with the maps

N zzzf T
˚GB {{{f N Ñ A1 Ă N 
 EndpV q �N,

N zzzf T
˚GB {{{f N Ñ A2 Ă N 
 EndpV ˚q �N,

respectively, but note again that these two refer to two different embeddings
of T ˚GB into M . We will denote by M˝ the intersection of the two embed-
dings, which is an open subset of M . Explicitly, in coordinates identifying
M with pairs pA,Bq of nˆ n matrices,

M˝ “ NwAN ˆNAwN,

with this presentation corresponding to how we think of the GIT quotients
as A-torsors. From the freeness of the N ˆ N -action on GB it is imme-
diate that pT ˚GBq´f,f is an N ˆ N -torsor over T ˚A (for each of the two
embeddings above), and from this it is easy to deduce that M˝

´f,f is an
N ˆN -torsor over A1 ˆA2.

To summarize, we have an open,NˆN -equivariant subsetM˝ Ă M , and
the double Hamiltonian reduction J˝ :“ NzzzfM

˝{{{fN admits two Lagrangian
fibrations, J˝ Ñ A1 and J˝ Ñ A2, identifying J˝ with the product A1 ˆ

A2. The symplectic space J˝ can be identified as an open subset of the
Kuznetsov cotangent space JG “ T ˚Y, but this identification depends on
which of the two embeddings T ˚G ãÑ M we choose.

Lemma 4.2.6. The fibers of the composition M˝
´f,f Ñ J˝ Ñ A (A “ A1 or A2)

are Lagrangian subspaces. In particular, the connection ∇ on the line bundle L
restricts to a flat connection on those fibers. The monodromy of this flat connection
is trivial.

Proof. Both statements are true already for the map pT ˚GBq´f,f Ñ A. The
analog of the first statement is true for any Hamiltonian spaceX for a group
H , endowed with a Lagrangian fibration X Ñ Y with free H-action on
Y , and the Hamiltonian reduction at an H-fixed point of h˚. (Take, here,
X “ T ˚GB and Y “ GB .) Triviality of the monodromy follows from the
sequence21

pT ˚GBq´f,f Ñ T ˚A Ñ A,

with the first arrow being an N ˆ N -torsor and the second an a˚-torsor
(hence both contractible). □

Note, also that the fibers of M˝
´f,f Ñ J˝ are N ˆ N -torsors. The line

bundle, with its connection, descend to J˝, and will also be denoted by
pL,∇q. We will call the foliations G1 : J˝ Ñ A1 and G2 : J˝ Ñ A2 the
“vertical” and “horizontal” foliations, respectively, but I emphasize that
these are different foliations than the “vertical” and “horizontal” foliations
on M : their preimages in M˝

´f,f Ñ J˝ do not coincide with leaves of the
foliations on M .

21I thank the anonymous referee for pointing out a mistake in a previous version of this
proof and suggesting this argument.
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4.2.7. We are now ready to reformulate Jacquet’s Theorem 4.1.2. We will
think of DpEndpV qq and DpEndpV ˚qq as geometric quantizations ofM , given
by the data pL,∇q. This means that we consider functions on EndpV q (resp.
on EndpV ˚q) as sections of Lwhich are flat along the leaves of the “vertical”
(resp. “horizontal”) foliation, as explained before, and we will be writing
DpEndpV qq “ DhorpM,Lq (resp. DpEndpV ˚qq “ DverpM,Lq), thinking of
the elements as (Schwartz) half densities on the space of leaves for the cor-
responding foliation, valued in the line bundle of flat sections along the
leaves.

Fourier transform, then, becomes the isomorphism

F : DhorpM,Lq Ñ DverpM,Lq

given by the standard intertwiners of “integration along the leaves of Fhor,”
as in Definition 4.2.1. Note that the inverse Fourier transform is also given
by integration along the leaves, this time of Fver.

4.2.8. The pushforwards (50) of half-densities (restricted to M˝) can now
be seen as maps

DhorpM,Lq Ñ DhorpJ
˝, Lq,

DverpM,Lq Ñ DverpJ
˝, Lq.

(60)

We can understand these maps as integrals along the Lagrangian leaves
of the map M˝

´f,f Ñ A (where A “ A1, resp. A2), but some care is required
in understanding those integrals, since the expression (54) does not make
sense in the absence of a Lagrangian foliation on the entire space M .

Rather, what we should do is pick a Haar measure on N ˆ N , and use it
(or rather, its square root half-density) to integrate the given half-densities
along the fibers of the map M˝

´f,f Ñ J˝, which are N ˆN -orbits.
In more detail: Consider the Lagrangian leaves of the foliation Gver :

J˝ Ñ A1. By Lemma 4.2.6, these are quotients by the (free) N ˆN -action of
Lagrangian subvarieties ofM˝; we will denote by Gver,a the leaf of Gver over
a P A1, and by rGver,a its preimage in M˝. The intersection of every rGver,a

with the leaves of the “vertical” foliation Fver :M Ñ EndpV q is easily seen
to be of dimension n (“ dimA). The orbits of N ˆ N provide sections for
each quotient

rGver,a Ñ rGver,a{Fver.

The elements φ P DhorpM,Lq are half-densities in the transverse direc-
tion to Fver (valued in the line bundle Lver of vertically parallel sections of
L). The analog of (54), here, is an integral of φ over the quotient rGver,a{Fver.
For such an integral to make sense, we do not multiply φ by a power of |ω|,
as in (54), but by our fixed Haar half-density |dn|

1
2 along N ˆ N -orbits. Using

an isomorphism analogous to (55), the product φ ¨ |dn|
1
2 can be written as

the product of the Haar measure |dn| on rGver,a{Fver by a half-density along
J˝{Gver and by a section of L.
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The reader can check, using Remark 4.1.1, that this definition of the push-
forward (60) corresponds to the one that we gave in coordinates in (50).
The definition depends on the choice of Haar measure on N ˆ N , but this
choice applies to both sides of Theorem 4.1.2, and will not affect the Hankel
transforms. As we pointed out in that remark, although it is natural, this
definition of pushforward is not entirely justified yet – one could imagine
varying the N ˆN -Haar measure along the orbits. Its full justification will
appear in Proposition 4.3.6 below.

4.2.9. Jacquet’s theorem 4.1.2, now, admits the following simple reformu-
lation:

Theorem 4.2.10. The diagram

DhorpM,Lq

��

F // DverpM,Lq

��
DhorpJ

˝, Lq
HStd // DverpJ

˝, Lq

commutes, where the horizontal arrows are given by the integrals (54) along the
leaves of the foliations.

A pleasant feature of this reformulation is that it does not require any
arbitrary choices, such as the choice of the subset wA Ă G for representing
the orbital integrals (51) of the Kuznetsov quotient pN,ψqzG{pN,ψq.

4.3. The case of GL2. We will use the case n “ 2, both to explicitly verify
that the Hankel transforms HStd described by Theorems 4.1.2 and 4.2.10 co-
incide. The proof of the general case will only be sketched in the next sub-
section; it uses an inductive argument where every step is almost identical
to the case of GL2. The explicit verification that Theorem 4.2.10 amounts
to Jacquet’s formula (52) in higher rank is also similar to the case of GL2,
and will be left to the reader; the validity of both theorems proves that,
indirectly.

4.3.1. Verification of (52) for n “ 2. Taking the description of Theorem 4.2.10
for the operator HStd, let us see that it is given by (52).

First of all, let us calculate the set M˝
´f,f , and the (free) N ˆ N -action on

it. It is not hard to see that this set consists of all elements of the form
ˆ

w

ˆ

a1
a2

˙

,

ˆ

b1 ` a´2
1 b´1

2 a´1
1

a´1
1 b2

˙

w

˙

¨

ˆˆ

1 y
1

˙ ˆ

1 x
1

˙˙

“

ˆ

w

ˆ

a1 a1x
´a1y a2 ´ a1xy

˙

,

ˆ

b1 ` a´2
1 b´1

2 ´ a´1
1 px´ yq ´ b2xy a´1

1 ´ xb2
a´1
1 ` yb2 b2

˙

w

˙

,

(61)

with a1, a2, b1, b2 ‰ 0. The symplectic form (56) on M restricts to the form

ωJ “ db1 ^ da1 ` db2 ^ da2 ` a´2
1 b´2

2 db2 ^ da1 (62)
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on M˝
´f,f , which descends to a symplectic form on J . Note that

ωJ ^ ωJ “ ´db1 ^ db2 ^ da1 ^ da2.

Next, we describe the elements of DhorpJ
˝, Lq: Denoting, as before, by

Gver the “vertical” foliation J˝ Ñ A1, and by rGver the corresponding folia-
tion M˝

´f,f Ñ J˝ Ñ A of Lemma 4.2.6, we have the following description,
whose proof will be left to the reader.

Lemma 4.3.2. The Gver-parallel sections of L can be described as sections pΦ,Φ˚q

of L overM˝
´f,f , such that Φ depends only on the projection to EndpV q, and Φpm¨

pn1, n2qq “ ψpn´1
1 n2qΦpmq, for all m. (This completely determines Φ˚, by the

defining property (57) of the line bundle L.) Thus, the elements of DhorpJ
˝, Lq are

half-densities on A1 valued in this line bundle. Similarly, elements of DverpJ
˝, Lq

are half-densities on A2 valued in the line bundle whose sections are given by pairs
pΦ,Φ˚q on M˝

´f,f such that Φ˚ depends only on the projection to EndpV ˚q, and
Φ˚pm ¨ pn1, n2qq “ ψpn´1

1 n2qΦ˚pmq. (Again, this completely determines Φ.)

The elements of D´

LpStd, 1
2

q
pYq, D´

LpStd_, 1
2

q
pYq of Theorem 4.1.2 are ob-

tained from the elements of DhorpJ
˝, Lq, DverpJ

˝, Lq of Theorem 4.2.10 by
evaluating Φ, resp. Φ˚, at the elements of M˝

´f,f living over representatives
wA Ă G ãÑ EndpV q and wA Ă G ãÑ EndpV ˚q, respectively. Such represen-
tatives are given by the pairs

A Q pa1, a2q ÞÑ

ˆ

w

ˆ

a1
a2

˙

,

ˆ

b1 ` a´2
1 b´1

1 a´1
1

a´1
1 b2

˙

w

˙

P M˝
´f,f (63)

(with arbitrary b1, b2 P Fˆ), and

A Q pb1, b2q ÞÑ

ˆ

w

ˆ

a1 b´1
2

b´1
2 a2 ` a´1

1 b´2
2

˙

,

ˆ

b1
b2

˙

w

˙

P M˝
´f,f (64)

(with arbitrary a1, a2 P Fˆ).
Now we compute the Hankel tranform of such an elementφ P DhorpJ

˝, Lq,
according to Theorem 4.2.10.

Writing pa, bq “ pa1, a2, b1, b2q andφpa, bq “ pΦ,Φ˚q|db|
1
2 , we have HStdφ “

pΨ,Ψ˚q|da|
1
2 , with

Ψ˚

ˆ

w

ˆ

˚ b´1
2

b´1
2 ˚

˙

,

ˆ

b1
b2

˙

w

˙

“

ż

Φ˚

ˆ

w

ˆ

a1 b´1
2

b´1
2 a2 ` a´1

1 b´2
2

˙

,

ˆ

b1
b2

˙

w

˙

|da1 da2| “

ż

Φ

ˆ

w

ˆ

a1 b´1
2

b´1
2 a2 ` a´1

1 b´2
2

˙

,

ˆ

b1
b2

˙

w

˙

ψp´a1b1´a2b2´a´1
1 b´1

2 q|da1 da2| “

ż

Φ

ˆ

w

ˆ

a1
a2

˙

,

ˆ

˚ a´1
1

a´1
1 ˚

˙

w

˙

ψp´a1b1 ´ a2b2 ` a´1
1 b´1

2 q|da1 da2|.
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This is (53), taking into account that the embedding GLn ãÑ Mat˚
n

„
ÝÑ

Matn takes
ˆ

b1
b2

˙

w to w
ˆ

b´1
1

b´1
2

˙

.

4.3.3. Proof for n “ 2. The proof of Theorem 4.2.10 for GL2 will occupy the
rest of § 4.3. Let us rephrase what needs to be proven: We have Lagrangian
foliations Fver, Fhor on M , and also two Lagrangian foliations rGver, rGhor on
its subspace M˝

´f,f . Our goal is to show that, starting from a “horizontal”
half-densityφ (i.e., parallel along Fver), we obtain the same half-density that
is parallel along rGhor, either by integrating φ directly22 over the leaves of
rGhor, or by first integrating it over the leaves of Fhor (= Fourier transform),
and then integrating it over the leaves of rGhor.

Such relations would be immediate, by the theory of the Weil representa-
tion (up to a certain factor that has to do with the 8-fold metaplectic cover),
if the foliations denoted by rG were linear, by which we mean each fiber to
be open dense in an affine subspace of M . The fact that it remains true
for the nonlinear foliations of the theorem is remarkable, but the proof will
take advantage of such statements (“Weil’s formula”) in the linear case. The
main observation behind the proof is that there is another, linear Lagrangian
foliation rG of M˝

´f,f , that will serve as an intermediary between rGver and
rGhor.

Let us recall once more that the fibers of M˝
´f,f Ñ J˝ » A1 ˆ A2 are

N ˆN -orbits. We will write pa, bq for an element of A1 ˆA2 (the underline
because we will sometimes explain things in coordinates, and think of a as
the pair pa1, a2q, and similarly for b), and Oa,b for its fiber. Using « for two
sets whose intersection is open dense in both, we have, in coordinates,

ď

a2,b1

Oa,b « Ma1,b2 ,

where Ma1,b2 denotes the affine subspace
"ˆ

w

ˆ

a1 a1x
´a1y a2

˙

,

ˆ

b1 a´1
1 ´ xb2

a´1
1 ` yb2 b2

˙

w

˙

, pa2, b1, x, yq P F 4

*

.

(65)
Coordinate-independently, we have made a choice of unipotent sub-

group N , hence of the line L “ V N Ă V , and these affine subspaces are
the fibers of the composition

M˝
´f,f ãÑ EndpV q ˆ EndpV ˚q Ñ HompL, V {Lq ˆ HompLK, V ˚{LKq,

over pairs of nonzero morphisms in codomain. In what follows, we also
use pa1, b2q to denote such a pair in HompL, V {LqˆHompLK, V ˚{LKq. These
spaces Ma1,b2 (or rather, their open intersections M˝

a1,b2
with M˝

´f,f ), as the

22It is immediate to see that the composition èin the diagram of Theorem 4.2.10 is the
same as directly integrating over the leaves of rGhor.
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pair pa1, b2q varies, form a Lagrangian foliation G̃ of M˝
´f,f . We will write

G for the corresponding foliation of the quotient J˝ “ M˝
´f,f{pN ˆNq.

4.3.4. Integrals over Lagrangians. We now come to one of the finest, albeit
elementary, parts of the argument, which will also answer the question that
we posed in Remark 4.1.1: why is the chosen way to define pushforward of
half-densities the “correct” one? We start by asking the question: If F is a
Lagrangian foliation onM , what does it mean to average an element of DF pM,Lq

over a Lagrangian subspace L ?
In the context where L is part of another Lagrangian foliation, the an-

swer is given by formula (54) and Remark 4.2.2. It is important to observe that
these do not make sense with knowledge of a single Lagrangian subspace L , with-
out the foliation. Indeed, the foliation allows the identification of all conor-
mal spaces to points of L with the cotangent fiber of their image in M{F
(here, F1 “ F ), giving a canonical, up to scalar, trivialization of the deter-
minant of the conormal bundle over any leaf of F .

However, in our context, we need to integrate over Lagrangians which
are not part of a foliation of the entire space M , but just of its subspace
M˝

´f,f . Let us call such a foliation of a (non-dense) subspace a “partial”
foliation. In this context, as we have seen, the integrals only make sense after
we pick a Haar half-density on each N ˆN -orbit, in order to first push forward
to the symplectic variety M˝

´f,f{pN ˆ Nq “ J˝, where our Lagrangians
do form a foliation. The choice of Haar half-densities on the N ˆ N -orbits
affects the answer; understanding which choice is right is the question we
posed in Remark 4.1.1. That remark gave an interpretation to our choice,
but it remains to be seen why this is the correct choice.

For the proof of Theorem 4.2.10, it is particularly important to compare
our integrals over the fibers Ma1,b2 of the partial foliation rG with the cor-
responding integrals for the linear foliations containing them. Note that
these affine subspaces are not parallel to each other – they belong to dif-
ferent linear foliations. But if we fix a pair pa1, b2q, we can consider the
linear foliation F “ Fa1,b2 of parallel Lagrangians to it. We then have two
versions of the “integral over Ma1,b2” of an element of DhorpM,Lq (or of
DverpM,Lq – but we present the former):

(a) The integral corresponding to the foliation F . Since dimMa1,b2{Fver “

3, this is given by (54), with the exponent of |ω| being 3
2 . It produces a

section of the line bundle multiplied by a half-density on the 4-dimen-
sional quotient space M{F .

(b) The integral arising as the pushforward to DhorpJ
˝, Lq (“integration

over N ˆ N -orbits,” depending on our choices of Haar half-densities
on those), followed by the integral (54) along the fibers of the foliation
G . Here, since Gx{Gver has dimension 1, the exponent of |ω| is 1

2 . It pro-
duces a section of the line bundle multiplied by a half-density on the
quotient J˝{G .
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How can we compare the outcomes of the two integrals? It clearly does
not make sense to say that their restrictions on Ma1,b2 are “equal,” since
the meaning of these restrictions is different: Both have a factor that can be
intepreted as a parallel section of L along this Lagrangian, but in the first
case this is multiplied by a “transverse” half-density for the quotient M{F
(which is 4-dimensional), while the latter is multiplied by a “transverse”
half-density for the quotient J˝{G (which is 2-dimensional). These half-
densities, restricted to Ma1,b2 , live in the line bundle |detN ˚|

1
2 , where N ˚

denotes the conormal bundle in each case.
The quotient of the normal bundle of M˝

a1,b2
in M by its normal bundle

in M˝
´f,f is identified with the tangent space of pf, fq in n˚ ˆ n˚ via the

moment map, hence the cokernel of the map of normal bundles can be
identified with n˚ ˆ n˚, hence:

Lemma 4.3.5. We have a canonical isomorphism of line bundles over M˝
a1,b2

,

detN ˚
M{F “ detN ˚

J˝{G b pdet nqb2
, (66)

where the indices specify in which manifold the conormal bundles are taken.

Let DM{F be the line bundle of half-densities on M{F , pulled back to
M˝
a1,b2

. Let DJ˝{G be the line bundle of half-densities on J˝{G , pulled back
to the same leaf. Then, (66) implies that we have a canonical isomorphism
of line bundles:

DM{F “ DJ˝{G b | det n|. (67)
It follows that it makes sense to compare the restriction of an element of DF pM,Lq

to Ma1,b2 with the restriction of an element of DG pJ˝, Lq multiplied by a section
of | detpn ˆ nq|

1
2 “ |det n|.

Now, the canonical, up to scalar, trivializations of detN ˚ (for either of
the foliations) along M˝

a1,b2
can be thought of as flat connections with triv-

ial monodromy on these line bundles. The line bundle with fiber pdet nqb2

also has such a connection, of course (whose parallel sections are the con-
stant ones). The answer to the question posed in Remark 4.1.1 lies in the
following.

Proposition 4.3.6. The canonical isomorphism (66) of line bundles on M˝
a,b is an

isomorphism of local systems, i.e., it preserves the canonical lines of sections.

Proof. After this abstract discussion, the reader will probably appreciate an

explicit calculation. In coordinates w
ˆ

A B
C D

˙

ˆ

ˆ

A1 B1

C 1 D1

˙

w for M , coor-

dinates for the linear quotient M{F are given by pA,D1, D1B`AB1, D1C`

AC 1q, hence detN ˚
M{F is trivialized, on M˝

a1,b2
, by the section

ηF :“ dA^ dD1 ^ dpD1B `AB1q ^ dpD1C `AC 1q

“ dA^ dD1 ^ dpb2B ` a1B
1q ^ dpb2C ` a1C

1q.
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Coordinates for J˝{G are given by pA,D1q (recall that now we are restrict-
ing to the subset M´f,f ), hence detN ˚

J˝{G is trivialized, up to scalar, by the
section

ηG :“ dA^ dD1.

We could express ηF as the wedge of ηG with differentials factoring
through the moment map to n˚ ˆ n˚, but equivalently we can also use the
symplectic duality to translate these sections to sections of the determinant
of the cotangent bundle of M˝

a1,b2
: Using the symplectic form (56), the dual

of ηF is (up to scalar) the form dD ^ dA1 ^ dpb2B ´ a1B
1q ^ dpb2C ´ a1C

1q

on M˝
a1,b2

, which in coordinates (65) translates (up to scalar) to the form

η˚
F :“ db1 ^ da2 ^ dx^ dy.

Using the symplectic form (62) on J˝, the dual of ηG is (up to sign) the form

η˚
G :“ db1 ^ da2.

Hence, we see that η˚
F is the product of η˚

G by a fixed Haar volume form
on N ˆN , which proves the claim. □

4.3.7. Completion of the proof of Theorem 4.2.10 for n “ 2. We keep fixing a
pair pa1, b2q, and denoting by F the corresponding “linear” foliation of M .

Proposition 4.3.8. The integrals (54) along the leaves of the following Lagrangian
foliations give rise to a commutative diagram

DhorpM,Lq

''

F // DverpM,Lq

ww
DF pM,Lq.

Proof. In the theory of the Weil representation, such diagrams of integrals
along “linear” foliations commute up to an 8-th root of unity, see [Li08,
§ 3.5]. For the case at hand, this root of unity is trivial; this is “Weil’s for-
mula,” whose (very simple) proof is recalled in [Jac03, Proposition 2], and
we leave the verification to the reader. □

We can now complete the proof of Theorem 4.2.10 for the case of GL2.
Using a fixed Haar measure on N ˆN to define the pushforwards (60), we
have a diagram

DhorpM,Lq

�� ''

F // DverpM,Lq

ww ��
DhorpJ

˝, Lq
α // DG pJ˝, Lq DverpJ

˝, Lq,
βoo

(68)

where all the arrows are given by integrals along the Lagrangian leaves of
each foliation. In particular, the maps to DG pJ˝, Lq are given by the inte-
grals over the leaves of the foliation rG on M˝

´f,f . We discussed in § 4.3.4
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how to make sense of these integrals. Proposition 4.3.6 implies that the
evaluations of those on each leaf Ma1,b2 are equal, up to a fixed half-density
on |n˚ ˆ n˚| which can be taken to be the one corresponding to the chosen
Haar half-density on N ˆ N , to the “linear” integral along Ma1,b2 corre-
sponding to the linear foliation F “ Fa1,b2 . Proposition 4.3.8, now, implies
that the upper triangle commutes. The two lower triangles also commute,
by construction; i.e., the diagram (68) is commutative.

Finally, the inverse of the arrow labeled by β is also the “integral (54)
over Lagrangians.” This can be reduced to a usual, linear Fourier transform
in dual a and b variables, using representatives as in (63), (64), and the
symplectic form (62). Therefore, the composition β´1 ˝ α is the map HStd

of Theorem 4.2.10.

4.4. Sketch of the proof in the general case. If one understands how the
argument of Jacquet translates to the argument we presented in § 4.3 for
the case of n “ 2, it is straightforward to adapt it for general n. The only
additional idea needed, already present in [Jac03], is to apply induction in
n. I will give a vague and impressionistic summary of the argument; most
of the details remain to be filled in by the interested reader, who will also
need to consult Jacquet’s paper. This summary is not meant as a stand-
alone account of the argument; its goal is simply to convince the reader
that a translation to the setting of Theorem 4.2.10 is possible, even straight-
forward, given the argument for n “ 2.

The inductive step needed corresponds to the following factorization of
the Kuznetsov orbital integrals (51)

OapΦq “

ż

U 1
nˆUn

ż

N 1
n´1ˆNn´1

Φpu1n1wan2u2qψ´1pu1n1n2u2qdpn1, n2qdpu1, u2q,

(69)
where, if N is the unipotent subgroup of the Borel stabilizing a flag V1 Ă

V2 Ă ¨ ¨ ¨ Ă Vn “ V (which, in coordinates, to take to be the standard flag of
Fn, with N upper triangular), Un is the unipotent radical of the stabilizer
of V1, and Nn´1 is the corresponding group for the pn ´ 1q-dimensional
space V {V1, identified with a subgroup of N by choosing a splitting of the
quotient (which, in coordinates, we will do using the standard basis of Fn.
The groupsU 1

n andN 1
n´1 are defined similarly, in terms of the dual filtration

on the dual space.
The inner integral of (69) is then the Kuznetsov orbital integral for a func-

tion Φ1 on GLn´1, defined as

Φ1pgq “

ż

U 1
nˆUn

Φ

ˆ

u1wn

ˆ

a1
g

˙

u2

˙

ψ´1pu1u2qdpu1, u2q,

where wn is the permutation matrix
ˆ

In´1

1

˙

. An inductive application

of the theorem, then, relates the Kuznetsov orbital integrals of Φ1 (appro-
priately normalized – i.e., we need to work with half-densities again) to
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those of its Fourier transform, and applies the same argument, using Weil’s
formula (a direct generalization of Proposition 4.3.8) to relate the Fourier
transform of Φ1 to the Fourier transform of Φ.

It is clear that this argument directly translates to prove our reformula-
tion 4.2.10 of Jacquet’s theorem. I will only make a few comments on the
inductive step: Starting with the same foliations Fver : M Ñ EndpV q and
Fhor : M Ñ EndpV q as before, we can interpret the definition of Φ1 as
an integral of an element of DhorpM,Lq over appropriate Lagrangians cor-
responding to a foliation G1 of the symplectic reduction U 1

n zzzf M {{{f Un (or
rather, of its “open Bruhat cell”). These Lagrangians are parametrized by
pairs pa1, gq as above, which, coordinate-independently, can be thought of
as invertible elements a1 P HompV1, Vn{Vn´1q and g P HompV {V1, Vn´1q.
Moreover, fixing a1, these Lagrangians map to a similar to Fver linear folia-
tion of (an open dense subset of) T ˚ HompV {V1, Vn´1q, in a way that allows
for an inductive application of the theorem to compute the Kuznetsov or-
bital integrals of the original function in terms of the Kuznetsov orbital
integrals of the Fourier transform of Φ1. Finally, the relation between the
Fourier transform of Φ1 and the Fourier transform of Φ (and its proof) can
be thought of as the statement that a diagram of the form

DhorpM,Lq

�� **

F // DverpM,Lq

tt ��
DG1pU 1

n zzzf M {{{f Un, Lq
α // DG pU 1

n zzzf M {{{f Un, Lq DG2pU 1
n zzzf M {{{f Un, Lq

βoo

(70)
commutes. This diagram is the analog of (68), with G2 a foliation parametrized
by pairs pb1, g

1q, with b1, g1 in the duals HompVn{Vn´1, V1q, HompVn´1, V {V1q

of HompV1, Vn{Vn´1q, HompV {V1, Vn´1q, respectively. The argument for the
proof of this remains essentially the same, with an intermediate “linear”
foliation G , parametrized by pairs pa1, g

1q (notation as before), where one
can apply Weil’s formula.
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