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A good reference for the category O is the book [Hum08] of Humphreys.
In this section, all Lie algebras and representations are over an algebraically

closed field in characteristic zero, which for notational simplicity we take to be C.

1. Verma modules

We have seen 2.8 that finite-dimensional representations of semisimple Lie alge-
bras are completely reducible. We now want to construct those irreducible represen-
tations (in particular, to show that there is a unique one up to unique isomorphism
for each given weight), and to compute their characters.

In specific cases one can do that “by hand”, constructing first the irreducible
representations attached to fundamental weights, and then the rest by taking tensor
products of those, and removing copies of the representations already constructed.
For instance, for sln the n−1 fundamental representations are the first n−1 exterior
powers of the standard, n-dimensional represntation.

For a more systematic approach, it is better to move outside the realm of finite-
dimensional representations. The category to consider is motivated by the following
definition and lemma:

Definition 1.1. Let g be a semisimple (or reductive) Lie algebra, b a Borel sub-
algebra, and h its quotient by its commutator. Let V be a representation of g. A
heighest weight vector (for the given choice of Borel subgroup) is an eigenvector for
b, and the eigencharacter λ ∈ h∗ is called the weight of the highest weight vector.

Lemma 1.2. A finite-dimensional representation of a semisimple Lie algebra is
generated by its highest weight vectors.

Proof. Since the representation is semisimple by Theorem 2.8, it is enough to show
that any irreducible representation V contains a highest weight vector. This follows
from Lie’s theorem 1.12. �
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2 VERMA MODULES AND THE CATEGORY O.

Thus, we will attempt to construct all finite-dimensional representations by con-
structing the universal objects with highest weight.

More precisely, we consider the category of g-modules of arbitrary, possibly infi-
nite, dimension (no topology), and for λ ∈ h∗ (where h denotes a universal Cartan,
later to be identified with a Cartan subgroup of g) we let Mλ denote the module
defined by the following universal property:

Definition 1.3. Let g be a semisimple Lie algebra, b a Borel subalgebra, and h
its reductive quotient. Fix λ ∈ h∗. The Verma module of highest weight λ is a
g-module Mλ with the property

Homg(Mλ, V ) = Homb(Cλ, V ),

where Cλ is the one-dimensional module where b acts by the character λ.

Lemma 1.4. For every λ ∈ h∗, the Verma module Mλ exists and can be identified
as

Mλ = U(g)⊗U(b) Cλ.

Proof. Simply the universal property of tensor products. �

Let us now fix an opposite Borel b−, identifying h with b ∩ b−. We denote by
n, n− the nilpotent radicals of b, b−. Notice that, by the PBW theorem, as a
b−-module:

(1.4.1) Mλ = U(n−)⊗C Cλ,

where U(n−) acts by left multiplication on the first factor, and the h-action is the
tensor product of the adjoint representation and the representation on Cλ.

Therefore:

Lemma 1.5. (1) Mλ is h-locally finite and semisimple. The (h-)weights of
Mλ are of the form λ−

∑
i ciαi, where αi range over simple positive roots

(we will denote their set by ∆) and ci ∈ Z≥0. The weight spaces are finite-
dimensional, and the λ-weight space Mλ

λ is one-dimensional.
(2) Mλ is n-locally finite.

Proof. The first statement follows immediately from the presentation (1.4.1), and
the second from the first and the fact that the action of n raises weights. �

Proposition 1.6. Mλ has a unique irreducible quotient Lλ.

Proof. Any proper submodule is spanned by its h-eigenspaces (since the h-action
is locally finite), and if it is proper, it cannot meet Mλ

λ , since this generates Mλ.
Therefore, the sum of all proper submodules is proper. �

2. The category O.

Definition 2.1. The category O is the full subcategory of the category of g-modules
consisting of those objects which are:

• h-locally finite and semisimple;
• n-locally finite;
• finitely generated.

By Lemma 1.5, Verma modules belong to the category O.
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Lemma 2.2. A g-submodule or a quotient module of a module in O is in O. The
category O is a Noetherian abelian category.

Proof. For a g-submodule N ⊂ M , if M is h-locally finite and semisimple and
n-locally finite, so is N . Moreover, the universal enveloping algebra U(g) is Noe-
therian, by Proposition 3.8, hence if M is finitely generated, so is N . The same
properties for quotient modules are obvious.

The category being Noetherian means that the union of an increasing chain of
submodules has to stabilize. But the union is a submodule, hence finitely generated,
therefore stabilizes.

The category of g-modules is abelian, and it is clear that coproducts (direct
sums) of objects in O are also in O. Since submodules and quotient modules
(hence, kernels and cokernels) are also in O, the category is abelian. �

We will eventually see that it is also Artinian, i.e. every object is of finite length.

Lemma 2.3. Every object in O has a filtration whose quotients are surjective
images of Verma modules.

Proof. Let V be in O, and let W ⊂ V be a finite-dimensional, generating sub-
space. Without loss of generality, W is b-stable (for U(b)W is, in any case, finite-
dimensional). By Lie’s theorem 1.12, it has a filtration with one-dimensional quo-
tients. Therefore, V has a filtration with quotients generated by b-eigenvectors.
Each such representation is the surjective image of a Verma module. �

Definition 2.4. The character chV of an object V in the category O (or a sub-h-
module) is the formal sum ∑

λ∈h∗
dimVλ · eλ.

Lemma 2.5. For every V ∈ O, the character chV belongs to the ring C of formal
sums

∑
λ∈h∗ c(λ)eλ, where c• : h∗ → Z is supported in a finite number of translates

of the negative root monoid, and multiplication defined by eλ · eµ = eλ+µ.
The character map ch : O → C factors through the Grothendieck group Z[O] of

the category O; moreover, for any finite-dimensional g-module L, and any M ∈ O,
we have L⊗M ∈ O, and chL · chM = chL⊗M .

Recall that the Grothendieck group of an abelian category C is the free group
on its objects, modulo the relation: [B] = [A] + [C] for every short exact sequence
0→ A→ B → C → 0. We will eventually see that the Grothendieck group of O is
generated by Verma modules, in fact: it is free on the set of Verma modules.

Proof. It is clear from the definition that the character factors through the Grothendieck
group. It follows from Lemma 2.3 that the support of the character of any object is
contained in the support of the character of a finite direct sum of Verma modules.
By Lemma 1.5, the support of the characters of those are translates of the negative
root monoid. �

3. The case of sl2, and application to general Lie algebras.

Let g = sl2. We identify h∗ ' C, by applying the positive root α̌. Under this,
the half-sum of positive roots ρ = α

2 corresponds to 1.
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Lemma 3.1. For g = sl2, Mλ−ρ is irreducible, unless λ ∈ Z>0, in which case there
is an exact sequence:

0→M−λ−ρ →Mλ−ρ → Lλ−ρ → 0.

Proof. Every submodule must have a highest weight vector, which must be of the
form Fnvλ−ρ. We compute that:

EFnvλ−ρ = n(λ− n)Fn−1vλ−ρ,

therefore for it to be zero, for some n > 0, we must have λ ∈ Z>0. �

We return to the case of a general semisimple g. Then:

Proposition 3.2. If α is a simple root such that 〈λ, α̌〉 ∈ Z>0 then there is an
embedding: Mwαλ−ρ ↪→ Mλ−ρ. The quotient V = Mλ−ρ/Mwαλ−ρ has the property
that it is locally (sl2)α-finite, where (sl2)α denotes the embedding of sl2 into g
determined by the root α. The character of any subquotient of V is wα-stable.

Proof. As in Lemma 3.1, we calculate that there is a highest weight vector with
weight wαλ, hence there is a non-trivial map: Mwαλ−ρ →Mλ−ρ. SinceMwαλ−ρ,Mλ−ρ '
U(n−) as U(n−)-modules, and U(n−) does not have zero divisors, such a map has
to be injective.

With notation (Hα, Eα, Fα) for the sl2-triple corresponding to α, we need to show
that the quotient is Fα-locally finite. (Finiteness under the other two is automatic
for the category O.) If V ′ is the set of Fα-finite vectors, then V ′ 3 vλ−ρ; we claim
that V ′ is g-stable. Indeed, we have a homomorphism of Fα-modules: g⊗V ′ → V ,
where Fα acts on g via the adjoint representation. But g is Fα-finite and V ′ is
Fα-locally finite, hence their tensor product is locally finite, therefore gV ′ ⊂ V ′.
Together with vλ−ρ ∈ V ′, this implies that V ′ = V .

The last assertion follows from the corresponding statement on finite-dimensional
sl2-modules, see 3.1. �

Because of the shift by ρ in the previous proposition, it is convenient to define a
modified action of the Weyl group on h∗.

Definition 3.3. The dot action of W on h∗ is defined by

w • λ = w(λ+ ρ)− ρ.

Hence, replacing λ− ρ by λ, the embedding of Proposition 3.2 reads: Mwα•λ ↪→
Mλ, when 〈λ, α̌〉 ∈ Z≥0.

Proposition 3.4. If V is a finite-dimensional g-module, its character is W -invariant.
Moreover, if V is irreducible, it is equal to the irreducible quotient Lλ, for some
weight λ that is integral (i.e. 〈α̌, λ〉 ∈ Z for all roots α) and dominant (i.e.
〈α̌, λ〉 ≥ 0 for all positive roots α).

Vice versa, assume that λ is integral and dominant. Then, the representation:

Mλ/
(∑

Mwα•λ

)
(sum over simple positive roots) is finite dimensional, and equal to the unique irre-
ducible quotient Lλ of Mλ.
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Proof. If V is finite-dimensional, by Weyl’s theorem 2.8 it is a direct sum of
irreducibles, hence a direct sum of Lλ’s, for various weights λ. Restricting to sl2,α,
the copy of sl2 corresponding to a simple root α, we see that, in order for Lλ to be
finite-dimensional, the highest weight λ must satisfy 〈λ, α̌〉 ∈ Z≥0. This holds for
every α, therefore λ must be integral and dominant.

In this case, by Proposition 3.2, the irreducible quotient of Mλ will have a wα-
stable set of weights, for every simple root α, therefore a W -stable set of weights.

On the other hand, all weights are ≤ λ and differ from λ by an element of
the root lattice, so there is a finite set of weights only. Finally, the weight spaces
are finite dimensional, so the quotient is finite-dimensional. If the quotient were
not irreducible, by complete reducibility it would be a direct sum of irreducibles,
contradicting the fact that Lλ is the unique irreducible quotient of Mλ. �

4. The Chevalley isomorphism

Let g be a reductive Lie algebra, h a Cartan subalgebra. The goal of this section
is to study the ring C[g]g of invariant polynomials on g under the adjoint repre-
sentation. If g is the Lie algebra of a connected complex group G, this is equal to
C[g]G.

Theorem 4.1 (Chevalley isomorphism). The restriction map under h ↪→ g gives
rise to an isomorphism

(4.1.1) res : C[g]g → C[h]W .

Proof. For injectivity, we need to use conjugacy of Cartan subalgebras, Theorem
5.4: If G is the group E(g) of inner automorphisms of Definition 5.1, we have
C[g]g = C[g]G and Ad(G)(h) is dense in g, so the restriction map of G-invariant
functions to h is injective.

For W -invariance, it is enough to show that the image is invariant under the
reflection wα corresponding to any simple root α. This simple root defines an
embedding m := sl2 ⊕ α⊥ ↪→ g, where α⊥ ⊂ h is the orthogonal complement of α
in h. The Lie algebra m contains h, and we have restriction maps

C[g]g → C[m]m → C[h].

This reduces us to the case of sl2 = 〈h, e, f〉.
Now, for a nilpotent elementX of a Lie algebra g, the automorphism exp(ad(X)) =∑
n≥0

1
n!ad(X)n of g makes sense, since ad(X) is nilpotent. In the case of sl2, with

w the nontrivial element of the Weyl group, we notice that the automorphism w of
h is induced by the automorphism

w̃ = exp(ad(e)) exp(ad(−f)) exp(ad(e))

of g. (This is simply conjugation by the element

(
1

−1

)
of SL2.) This proves

that the restriction of a g-invariant polynomial function on g to h is W -invariant.
We now pass to surjectivity, which is the deepest part of the theorem. Both C[g]g

and C[h]W are graded by the degree of a polynomial, which we will denote by an
index C[ ]d, and the map between them preserves the grading. (We will introduce
a filtration on these modules below.) Since W is a finite group, the symmetrization
map

C[h]d 3 f 7→ fW :=
1

|W |
∑
w∈W

w · f ∈ C[h]Wd
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is a W -equivariant projection, and certainly the elements of the form λd, λ ∈ h∗,
span C[h]d. We can even restrict to λ integral and dominant.

If λ is a dominant, integral weight, and (ρλ, Vλ) is the irreducible finite-dimensional
representation with heighest weight λ, the left hand side contains the trace function

fλ,d(X) = trρλ(X)d.

We define a filtration of C[g]g by dominant integral weights, where the filtered
piece FλC[g]g consists of the span of all fµ,d(X) with µ ≤ λ, where, by definition,
µ ≤ λ ⇐⇒ λ−µ ∈ R+, where R+ is the monoid spanned by positive roots. (This
is a standard partial ordering on the weight lattice; weights which do not differ by
an element in the root lattice do not have a common upper bound, but we won’t
worry about this since for this argument we can restrict λ further to be in any
lattice of finite index, such as the root lattice.)

Similarly, we define a filtration of C[h]Wd , with FλC[h]Wd spanned by the elements
(µd)W with µ ≤ λ. Since Vλ has a W -invariant set of weights, all ≤ λ, and with
dimV λλ = 1, we get that res maps FλC[g]g → FλC[h]Wd , with res(fλ,d) ≡ |W |(λd)W
in grλC[h]Wd . The element (λd)W spans grλC[h]Wd , thus we get by induction (the
base case λ = 0 being trivial) that the map (4.1.1) is surjective. �

There is a second part to Chevalley’s theorem, which asserts that the algebra of
invariant functions is a polynomial algebra.

Theorem 4.2. Let E be a complex vector space, and W ⊂ GL(E) a finite subgroup
of automorphisms, which is generated by pseudoreflections (i.e., elements that fix
a hyperplane). Then, the algebra C[E]W is a polynomial algebra in d = dim(E)
generators. In particular, for a semisimple Lie algebra g over C, the algebra of
invariants C[g]g is a polynomial algebra over C in rank(g) generators.

Proof. See [Ste09], for now. �

Example 4.3. For g = sln, the coefficients of the characteristic polynomial of an
element X:

χX(t) = tn + tr(−X;∧2Cn)tn−2 + · · ·+ tr(−X;∧n−1Cn)t+ det(−X)

generate the ring C[g]g freely.

Definition 4.4. The fundamental degrees of a finite reflection group W acting on
a Euclidean space E are the degrees of a set of homogeneous free generators of the
polynomial ring C[E]W . The fundamental degrees of a semisimple Lie algebra are
the fundamental degrees of its root system.

For example, for g = sln, the fundamental degrees are 2, . . . , n. These degrees
(di, i = 1, . . . ,dimE) are uniquely defined, and have some interesting properties,
for example:

(4.4.1)
∏
i

di = |W |,

(4.4.2)
∑
i

di =
|Φ|
2

+ dimE.

See [Hum90, §3].
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5. The Harish-Chandra homomorphism

Definition 5.1. The Harish-Chandra center of a Lie algebra g is the center Z(g)
of the universal enveloping algebra U(g).

Notice that, although we write Z(g), this is not the center of g itself (which is
trivial for semisimple algebras), but of its universal enveloping algebra.

What goes by the name of “Harish-Chandra homomorphism” is actually an
isomorphism, between Z(g) and the polynomial ring C[h∗]W,• = U(h)W,•, where •
denotes the dot action of W , see 3.3. To construct it, we consider the action of
Z(g) on a specific g-module with a commuting h-action.

Definition 5.2. The universal Verma module is the g-module M with the property
that

Homg(M,V ) = Homn(C, V ).

As with Verma modules, the universal Verma module M exists, and can be
identified with

M = U(g)⊗U(n) C = U(g)/U(g)n.

Writing

M = U(g)⊗U(n) C = U(g)⊗U(b) (U(b)⊗U(n) C) = U(g)⊗U(b) U(h),

we see that M is a g× h-module. The following lemma will give rise to the Harish-
Chandra homomorphism:

Proposition 5.3. For every X ∈ Z(g), there is a unique element φ(X) ∈ U(h)
such that the action of X on the universal Verma module M coincides with the
action of φ(X). The resulting map

φ : Z(g)→ U(h)

is a ring homomorphism.

Remark 5.4. Explicitly, Proposition 5.3 says that, under the identification M =
U(g)/U(g)n, the image of Z(g) in the quotient lies in the image of U(h); in other
words, Z(g) ⊂ U(h) + U(g)n.

Notice that U(h) = S(h) = C[h∗].

Proof. The action of Z(g) commutes with that of U(g), so it suffices to show that
the action of X on a generator of the module M coincides with the action of some
φ(X) ∈ U(h). Take this generator to be the element 1 := 1⊗ 1 ∈ U(g)⊗U(b) U(h).
This element is annihilated by the adjoint action of g, in particular, under the action
of h considered as a subalgebra of g. Using the Poincaré–Birkhoff–Witt theorem,
we compute that M , restricted to h ⊂ g, is isomorphic to

U(n−)⊗ U(h).

Since U(n−)h = C, we get that Mh = U(h), so X · 1 = φ(X) ∈ U(h).
But φ(X) is also the image of the element φ(X) ∈ U(h) acting on 1 via the

action of h that commutes with the action of g, which we will denote as a right
action:

φ(X) = 1 · φ(X).
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Since the action of U(g) commutes with the action of Z(g), the same holds when
we replace 1 by any element Z ∈M :

X ·M = M · φ(X).

Therefore φ(XY ) = 1 · φ(XY ) = XY · 1 = X(1 · φ(Y )) = (1 · φ(Y )) · φ(X) =
1 · φ(X)φ(Y ), and the map φ is a homomorphism. �

Definition 5.5. The homomorphism φ : Z(g) → U(h) of Proposition 5.3 is the
Harish-Chandra homomorphism.

Proposition 5.6. The center Z(g) of U(g) acts on each Verma module Mλ by a
character χλ : Z(g)→ C. If λ, µ are integral and conjugate by the dot action of the
Weyl group (Definition 3.3), then χλ = χµ.

Proof. The center preserves the eigenspaces for the h-action, and since Mλ
λ is one-

dimensional, it acts on it by a scalar. This generates Mλ under the U(g)-action, so
the center acts by the same scalar on all of Mλ.

If λ, µ are integral, λ is dominant, and w • µ = λ for some w ∈ W , we saw in
Proposition 3.2 that there is an embedding Mµ ↪→ Mλ, therefore χµ = χλ. Since
w is arbitrary, the same holds without the assumption that λ be dominant. �

Theorem 5.7. The Harish-Chandra homomorphism is injective, and gives rise to
an isomorphism

Z(g) ' C[h∗]W,•,

where the exponent on the right means invariants with respect to the dot action 3.3.

Of course, the map λ 7→ ρ + λ induces, by pullback, an isomorphism C[h∗]W '
C[h∗]W,•, but it is good to keep in mind that the most natural map gives rise to
invariants with respect to the dot action.

Proof. Any λ ∈ h∗ defines a morphism of b-modules U(h)→ Cλ, which by induc-
tion gives rise to a morphism M →Mλ. Therefore, the character χλ by which Z(g)
acts on Mλ is equal to λ ◦ φ, where φ is the Harish-Chandra homomorphism. For
every integral λ, and every w ∈W , we have, by Proposition 5.6, λ ◦φ = (w •λ) ◦φ,
and since those λ’s are Zariski dense in h∗, the image of the Harish-Chandra ho-
momorphism lies in the invariants for the dot action.

Having constructed the homomorphism Z(g)→ C[h∗]W,•, there remains to show
that it is a bijection. The argument to be used is quite general: once a homomor-
phism between filtered rings is constructed, to show that it is an isomorphism, it is
enough to show this for their associated graded rings.

Notice that the natural filtration of U(g) is g-stable, and therefore

Z(g) = lim
→

(F dU(g))g.

Thus, Z(g) is filtered by F dZ(g) = (F dU(g))g. The Harish-Chandra homomor-
phism respects this filtration, and induces a homomorphism of the associated
graded:

grφ : grZ(g)→ grU(h)W,•.

Also, notice that the shift by ρ in the definition of the dot action of W is not seen
at the graded level, so grU(h)W,• is canonically equal to S(h)W (invariants for the
standard action of W ).
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In what follows, we will use an invariant bilinear form to identify g ' g∗, h = h∗,
and apply the Chevalley isomorphism of Theorem 4.1. In doing so, we keep in
mind that the invariant bilinear form identifies n as the orthogonal complement of
b. Therefore, the restriction map S(g) = C[g∗] → C[h∗] = S(h) takes the ideal
S(g)n to zero.

By Remark 5.4, any element in Z(g) belongs to the subspace U(h) ⊕ U(g)n ⊂
U(g). Restricting to the d-th piece of the filtration, we obtain a commutative
diagram

[Look at pdf file if diagram does not appear.]

F dZ(g)

HC

��

� � // F d (U(h)⊕ U(g)n)

proj

ww
gr

��

� � // F dU(g)

gr

��
F dU(h)

gr

''

Sd(h)⊕ Sd−1(g)n

proj

��

� � // Sd(g)

res
ww

Sd(h).

The composition F dZ(g)→ Sd(h) is precisely the grading of the Harish-Chandra
homomorphism grdφ : grdZ(g) → grdU(h)W,•, as can be seen by following the
arrows on the left.

On the other hand, because of complete reducibility (Theorem 2.8), the associ-
ated graded of Z(g) is

grdZ(g) =
(
grdU(g)

)g
= Sd(g)g,

where we have used complete reducibility to say that the functor of g-invariants,
applied to the short exact sequence

0→ F d−1U(g)→ F dU(g)→ Sd(g)→ 0,

preserves exactness.
Thus, applying the functor of g-invariants on the right-most arrows in the dia-

gram, and the Chevalley isomorphism 4.1, we obtain that grdφ is an isomorphism:
grdZ(g)→ S(h)W . Thus, the Harish-Chandra homomorphism φ is an isomorphism
onto U(h)W,• = C[h∗]W,•.

�

6. Localization with respect to Z(g)

We return to the study of the category O.

Lemma 6.1. For every object V in O, the action of Z(g) on V is locally finite.

Proof. We have seen in Lemma 2.3 that every object can be filtered by surjective
images of Verma modules. By Proposition 5.6, Z(g) acts by a scalar on Verma
modules, hence also on their quotients. Therefore, it acts locally finitely on finite
extensions of such objects. �

Set h∗//•W = SpecC[h∗]W,•, so that the maximal ideals of Z(g) are the complex
points of the quotient h∗//•W , which are the points of the set-theoretic quotient
of h∗ by the dot action of W .

For χ ∈ h∗//•W , we let Oχ denote the full subcategory consisting of objects of
O which are generalized eigenspaces for Z(g) with generalized eigencharacter χ.
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Theorem 6.2. (1) The category O is a direct sum of categories Oχ, with χ
varying over the complex points of h∗//•W .

(2) If λ is such that λ−w•λ is not, for any element w ∈W , in the positive root
monoid R+ = {

∑
α∈Φ+ nαα|nα ∈ N} and nonzero, then Mλ is irreducible.

(3) Every object in O is of finite length.
(4) The classes of the Verma modules Mλ (or, equivalently, their irreducible

quotients Lλ) are a basis for the Grothendieck group Z[O].

Proof. (1) Since the action of the center is locally finite, we can decompose
every object into a direct sum of generalized Z(g)-eigenspaces. Any g-
morphism commutes with the action of Z(g), so there are no g-morphisms
between them.

(2) If Mλ is not irreducible, it contains a highest weight vector of weight µ < λ
(in the same partial ordering as previously, i.e., µ ≤ λ means that λ− µ ∈
R+, the positive root monoid), hence there is a nontrivial map from Mµ

to Mλ. By the decomposition of the category, on the other hand, such a
nontrivial map can exist only if µ = w • λ for some w ∈W .

(3) By Lemma 2.3, it suffices to show that Verma modules are of finite length.
Let Kλ be the kernel of the map Mλ → Lλ. If nonzero, then Kλ admits a
filtration as in Lemma 2.3, whose factors are surjective images of modules
Mµ with µ < λ. But by the decomposition of categories, µ has to be a
W -conjugate of λ (for the dot action), hence after a finite number of steps
the module Mµ will be irreducible, by the previous statement.

(4) By the same argument, every object can be filtered by successive quotients
of Verma modules, so they generate the Grothendieck group of the category.
There cannot be a nontrivial relation between them,∑

ni[Mλi ] = 0,

because for any λ = λi which is maximal among the λi’s in the partial or-
dering of weights, the λ-weight space of Mλ cannot be cancelled by another
term. The fact that the simple modules Lλ also form a basis follows from
the fact that the category is Artinian (every object is of finite length), and
they are the only irreducible objects (non-isomorphic to each other).

�

As before, let C be the ring of formal sums
∑
λ∈h∗ c(λ)eλ, where c• : h∗ → Z

is supported in a finite number of translates of the negative root monoid, and
multiplication defined by eλ · eµ = eλ+µ.

Definition 6.3. The Weyl denominator is the following element of C:

∆ =
∏
α>0

(
e
α
2 − e−α2

)
= eρ

∏
α>0

(
1− e−α

)
(the product over all positive roots), thought of as a power series in elements of
ρ−R+ (where R+ is the positive root monoid).

Notice that the weight ρ is integral because α = ρ − wαρ = 〈ρ, α̌〉α for every
simple root α. The name “Weyl denominator” is due to its appearance in the Weyl
character formula, Theorem 6.5.

Proposition 6.4. The character of the Verma module Mλ satisfies:

∆ · chMλ
= eλ+ρ.
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Proof. As an h-module, Mλ = U(n−) ⊗ Cλ, so ch(V ) = ch(U(n−)) · ch(Cλ) =
χ(U(n−)) · eλ. Therefore, it suffices to prove that the character of U(n−) is eρ/L,
understood as a power series in the negative weight monoid.

By the Poincaré–Birkhoff–Witt theorem 3.6, as h-modules we have: U(n−) =
⊗α>0S(g−α). The character of S(g−α) is 1 + eα + e2α + · · · = 1

1−e−α , and this
proves the proposition. �

Finally, we are ready to prove the Weyl character formula:

Theorem 6.5. The character of the irreducible representation with heighest weight
λ is given by the Schur polynomial:

chVλ =

∑
w∈W sgn(w)ew(λ+ρ)

∆

Proof. By Proposition 3.4 and Theorem 6.2, we have Vλ = Lλ, and an equality of
the form

[Vλ] = [Mλ] +
∑

w∈W,w 6=1

cw[Mw•λ]

in the Grothendieck group, for some integers cw. Indeed, Proposition 3.4 represents
Lλ as a quotient of Mλ by the image of a morphism⊕

w 6=1

Mw•λ →Mλ,

and by Theorem 6.2 the kernel of this morphism will have a finite composition series
in terms of the Mw•λ’s, necessarily with w 6= 1 as the weight λ does not appear in
the kernel.

Hence,

∆ · ch(Vλ) = eλ+ρ +
∑

w∈W,w 6=1

cwe
w(λ+ρ).

On the other hand, again by Proposition 3.4, the character is W -invariant.
Therefore the expression on the right should be (W, sgn)-equivariant. Therefore,
cw = sgn(w). �

7. Example: Irreducible representations of sln. Schur–Weyl duality.

Schur–Weyl duality refers to a correspondence between representations of sym-
metric groups and general linear groups (or their Lie algebras), which is realized

inside the tensor powers V ⊗
d

of a vector space. It is based on the following theorem
from linear algebra:

Theorem 7.1. If V is a finite-dimensional complex vector space, A ⊂ EndB(V ) is
a semisimple subalgebra of operators, and B = EndA(V ) is its commutant, then

(1) B is semisimple.
(2) A = EndB(V ).
(3) There is a bijection Mi ↔ Ni between isomorphism classes of simple A-

modules and isomorphism classes of simple B-modules, and an isomorphism
of A⊗B-modules

V =
⊕
i

Mi ⊗Ni.
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Proof. The proof uses the Artin–Wedderburn theorem which, in the case of the
complex numbers, says that a finite-dimensional complex semisimple algebra is the
direct sum of the endomorphism algebras of its simple modules.

Let Mi range over all isomorphism classes of simple A-modules. Since V is
A-semisimple,

(7.1.1) V =
⊕
i

Mi ⊗HomA(Mi, V ).

Set Ni = HomA(Mi, V ). Since the Mi’s are non-isomorphic, we have, by Schur’s
lemma,

B = EndA(V ) =
⊕
i

End(Ni).

The unique isomorphism class of simple End(Ni)-modules is Ni, hence B is semisim-
ple, with its simple modules being precisely the Ni’s, which are non-isomorphic.
Applying now the same reasoning to (7.1.1), we see that

EndB(V ) =
⊕
i

End(Mi).

ButA being semisimple means that it is isomorphic to
⊕

i End(Mi), thus EndB(V ) =
A and the map Mi 7→ Ni is a bijection of isomorphism classes of simple modules. �

Now we apply this to Sd and gl(V ):

Theorem 7.2 (Schur–Weyl duality). Consider the space V ⊗
d

under the commuting
actions of Sd and gl(V ), i.e., as a representation of the algebra A ⊗ B, where

A = C[Sd] and B = U(gl(V )). Then, the images Ā, B̄ of A and B in End(V ⊗
d

)
are each others’ commutants, that is,

Ā = EndB(V ⊗
d

), and

B̄ = EndA(V ⊗
d

).

We have a decomposition

(7.2.1) V ⊗
d

=
⊕
τ

τ ⊗ θ(τ),

where τ ranges all isomorphism classes of irreducible representations of Sd, and

the θ(τ) := HomSd(τ, V ⊗
d

) are either zero, or distinct irreducible representations
of gl(V ).

Notice that the action of gl(V ) on V ⊗
d

is defined as we define tensor products

of representations of Lie algebras, i.e., the image of e ∈ gl(V ) in End(V ⊗
d

) is the

element Sde :=
∑d
i=1 1⊗ · · · ⊗ e (i-th factor)⊗ · · · ⊗ 1.

Proof. Since both subalgebras are semisimple (complete reducibility), by Theorem
7.1 it is enough to prove the second claim.

We have EndA(V ⊗
d

) = End(V ⊗
d

)Sd = (End(V )⊗
d

)Sd = SdEnd(V ), and the
d-th symmetric power of any vector space E is spanned by the symmetric tensors
e⊗ · · · ⊗ e, for e ∈ E. In this case, E = End(V ) = B. By the theory of symmetric
polynomials, e⊗ · · · ⊗ e is a polynomial in the elements Sd(e

i), i = 1, . . . , d, which
are in the image of gl(V ). �

Finally, we notice
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Lemma 7.3. Every irreducible representation of gln restricts irreducibly to sln.

Proof. We have gln = z⊕sln, where z is the center, but the center acts by a scalar,
by Schur’s lemma, so any sln-invariant subspace is also gln-invariant. �

Therefore, the irreducible representations of gln constructed in Theorem 7.9 are
also irreducible for sln. We will now classify irreducible representations of the sym-
metric group, and make the correspondence explicit, observing, in particular, that
when d is large enough, the decomposition 7.2.1 contains all irreducible represen-
tations of sln.

We follow, and reformulate, [FH91], where we point the reader for more fun, to
describe irreducible representations of the symmetric group Sd.

For the Lie algebra gln with the standard Cartan of diagonal elements and the
standard Borel of upper triangular elements, the dominant, integral weights are of
the form

diag(z1, z2, . . . , zn) 7→ λ1z1 + · · ·+ λnzn,

with λ1 ≥ λ2 ≥ · · · ≥ λn some integers.
For the Lie algebra sln, the positive, integral weights are described similarly,

except that the λi’s are determined modulo the operation of adding the same con-
stant to all of them. To reduce ambiguity, we can always take λn = 0 (but won’t
be doing that yet).

On the other hand, if λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are integers, and d =
∑
i λi, the

λi’s describe a conjugacy class in the symmetric group Sd, namely, the conjugacy
class of elements which can are products of disjoint cycles of lengths λ1, λ2, . . . , λn.
Notice that λn has been taken to be ≥ 0 here, which is slightly restrictive for gln,
but not for sln; in fact, for sln, any integral, dominant weight defines a conjugacy
class in any Sd+kn, for the minimal d determined by λn = 0.

We consider G = Sd as the permutation group on the set Σ = {1, . . . , d}, and for
every λ : λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, a λ-partition of Σ will be a disjoint decomposition
Σ =

⊔
i Σi, with |Σi| = λi. We can think of λ as a Young diagram, that is, the

diagram consisting of a row of λ1 squares stacked over λ2 squares (aligned on the
left), etc,1 and we can also think of Young tableaux, which are ways to populate
the squares of a given Young diagram with the elements of Σ (without repetitions).
Then, the group G = Sd acts on the space of Young tableaux of a given shape λ
(we define this action as a right action), and the space Σλ of λ-partitions of Σ is
the homogeneous space P\G, where P = Gλ is the stabilizer of the rows of the
standard Young tableau (where the integers are placed in order).

The dual partition to λ is partition λ∗ : λ∗1 ≥ λ∗2 ≥ . . . λ∗m > 0 of d counting the
sizes of the columns of the Young diagram of λ. The space Σλ∗ of λ∗-partitions of
Σ is the homogeneous space Q\G, where Q = Gλ∗ is the stabilizer of the columns
of the standard Young tableau.

We will construct the irreducible representations of G by inducing the trivial
and sign representation from the groups P and Q. None of them is irreducible, but
they share a unique irreducible component.

The double quotient space P\G/Q can be identified with (Σλ ×Σµ)/Gdiag, i.e.,
with the set of pairs (σ, τ), where σ is a λ-partition of Σ and τ is a µ-partition of
Σ, up to relabeling the elements of Σ.

1Since we allow some λi’s to be zero, the Young diagram does not determine λ, unless n is
known, but this will not play a role in what follows.
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The classification of irreducible representations of Sd rests upon the following
fundamental lemma:

Lemma 7.4. If λ, µ are two partitions of d, and (σ, τ) is a pair consisting of a
λ-partition σ of Σ and a µ∗-partition τ of Σ with no pair (k, l) of elements of Σ in
the same subset of σ and of τ , then τ is the refinement of a λ∗-partition of Σ; in
particular, µ ≥ λ in the lexicographic ordering, i.e., µ = λ or at the first index i
where µi 6= λi we have µi > λi.

If µ = λ then the only pairs (σ, τ) without a pair (k, l) in the same subset of σ
and of τ are those where σ, τ are the rows, resp. columns, of a single Young tableau.

Proof. Exercise. �

Now, we let Mλ, resp. Aλ, be the G-equivariant line bundles over the space
Σλ which are induced, respectively, from the trivial, resp. sign character, of P .
Explicitly, sections of Mλ are left-P -invariant functions on G, i.e., left-P -invariant
elements of C[G], while sections of Aλ are functions on G which vary by the sign
character under left translation by P . For notational simplicity, we will identify
the bundles with their space of sections.

Proposition 7.5. We have dim HomG(Mλ, Aλ∗) = 1.
If λ > µ, we have dim HomG(Mλ, Aµ∗) = 0.

Proof. The space ofG-morphisms HomG(Mλ, Aµ∗) can naturally be identified with
the space of Gdiag-invariant sections of L := Mλ ⊗ Aµ∗ over Σλ × Σµ∗ , considered
as kernel functions, i.e., the morphism TK corresponding to a section K is

TK(f)(y) =
∑
x∈Σλ

f(x)K(x, y).

By Lemma 7.4, if λ ≥ µ, for a pair (σ, τ) ∈ Σλ × Σµ∗ there is a transposition
t = (k, l) which stabilizes both σ and τ , unless λ = µ and the pair (σ, τ) corresponds
to the rows and columns of a Young tableau. But then, t will act by −1 on the fiber
of L over (σ, τ), which means that its orbit cannot support a G-invariant section of
L. �

Theorem 7.6. The image of a nonzero G-morphism Mλ → Aλ∗ is an irreducible
representation Vλ. For λ, µ different partitions, Vλ, Vµ are non-isomorphic, and
these are all the irreducible representations of G = Sd.

Proof. The image of a nonzero G-morphism Mλ → Aλ∗ has to be an irreducible
representation Vλ, because otherwise, the space Hom(Mλ, Aλ∗) would have dimen-
sion > 1, by scaling the irreducible summands in the image by different scalars.
This would contradict Proposition 7.5.

Let λ 6= µ. Without loss of generality, assume that λ > µ in the lexicographic
order. Then, again by Proposition 7.5, there are no G-morphisms from Mλ to Aµ∗ .
Therefore, Vλ cannot embed in Aµ∗ , and is non-isomorphic to Vµ.

The number of partitions λ of d is equal to the number of conjugacy classes of Sd,
so we have constructed all the isomorphism classes of irreducible Sd-representations.

�

Explicitly, by the bijection between P\G/Q and (Σλ ×Σ∗λ)/Gdiag, we can think
of a G-invariant section of L as an element of C[G] which is left-P -invariant and
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varies by the sign character under right multiplication by Q. Then, a basis element
for the space of invariant sections is the element

cλ = aλbλ,

where
aλ =

∑
g∈P

g,

bλ =
∑
g∈Q

sgn(g) · g.

Lemma 7.7. Let aλ, bλ, cλ ∈ C[Sd] be as above. Then, the irreducible representa-
tion Vλ of Sd is isomorphic to the module C[Sd]cλ, or equivalently to the module
c∗λC[Sd], where c∗λ = bλaλ.

For any vector space V , the action of aλ induces a surjective map onto the tensor
product of symmetric powers

V ⊗
d

→ Sλ1V ⊗ · · · ⊗ SλnV,
while the action of bλ induces a surjective map onto the tensor product of exterior
powers

V ⊗
d

→
λ∗1∧
V ⊗ · · · ⊗

λ∗m∧
V.

Moreover:

(1) aλ · x · bν = 0 whenever ν : ν1 ≥ . . . νr ≥ 0 is a partition of d which is
smaller than λ in the lexicographic ordering, i.e., νi = λi for some j and
all i < j, while λj > νj.

(2) cλ is the only element c ∈ C[Sd], up to scalar, with the property that pcq =
sgn(q)c for all p ∈ P , q ∈ Q.

(3) cλxcλ is a multiple of cλ, for every x ∈ C[Sd]. In particular, cλ is an
idempotent up to a scalar, i.e., c2λ = nλcλ for some nλ ∈ C. This scalar is

nλ = d!
dimVλ

.

Proof. We can consider C[G]cλ as a submodule of Aλ∗ = IndGQ(sgn). The module

Mλ = IndGP (1) is generated by the characteristic function of P1, and its image in
Aλ∗ under cλ, understood as a kernel function as in the proof of Proposition 7.5,
is 1cλ ∈ C[G]cλ ⊂ Aλ∗ . Equivalently, we can realize Vλ as the image of Aλ∗ in
Mλ under the adjoint operator (given by the same kernel), and then we obtain the
submodule C[G]c∗λ ⊂Mλ.

The actions of aλ, bλ on V ⊗
d

are easy to describe from the definitions.
To prove aλ · x · bν = 0, it is enough to consider the basis elements x = g ∈ Sd,

and then by renaming the elements it is enough to consider g = 1. If λ > ν
(lexicographically), there are two elements k, l which belong to the same row in the
Young diagram for λ and in the same column for ν. If t = (k, l) then aλ · t = aλ,
t · bν = −bν , hence aλbν = aλt · tbν = −aλbν , hence is zero.

The uniqueness (up to scalar) of cλ with this property is a reformulation of
Proposition 7.5, considering such elements, as in the proof of that proposition, as
Gdiag-invariant kernels.

Clearly, cλxcλ has this property, therefore is a multiple of cλ. To determine the
scalar nλ, consider the operator of right multiplication by cλ, as an endomorphism
of C[Sd]. It acts by nλ on its image C[Sd]cλ, which is isomorphic to Vλ, hence its
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trace is nλ dim[Vλ]. On the other hand, the coefficient of the identity element in cλ
is 1, so its trace is equal to dimC[Sd] = d!. �

Definition 7.8. The element cλ of the group algebra C[Sd] defined above is called
the Young symmetrizer attached to the partition λ.

Theorem 7.9. Let V be the standard representation of sln, and consider V ⊗
d

as
a representation of Sd × sln. Denote by Πn, Π′d the sets of isomorphism classes of
irreducible representations of sln, resp. Sd. There is a map σ : Π′d → Πn ∪ {0},
where 0 denotes the zero-dimensional representation, such that

V ⊗
d

=
⊕
π∈Π′d

π ⊗ σ(π)

as Sd × sln-modules.

The map σ is induced by the Schur functor, sending a vector space V to cλV
⊗d

(or, equivalently, to c∗λV
⊗d), where cλ is the Young symmetrizer of Definition 7.8

(and c∗λ = bλaλ its adjoint). If λ : λ1 ≥ · · · ≥ λm is a partition, and λ∗ : λ∗1 ≥
· · · ≥ λ∗r its dual, the space cλV

⊗d is the image of the subspace

λ∗1∧
V ⊗ · · · ⊗

λ∗m∧
V

of V ⊗
d

under the symmetrization map:

V ⊗
d

→ Sλ1V ⊗ · · · ⊗ SλmV
(and, respectively, the space c∗λV

⊗d is the image of the above product of symmetric
powers in the above produce of alternating powers, under the antisymmetrization
map). Here, we think of the factors of V as labelled by the boxes of a Young diagram
of shape λ, with symmetric powers taken among the factors in the same row, and
exterior powers taken among the factors in the same column.

The map σ takes the irreducible representation of Sd parametrized by the partition
λ to the irreducible sln-module of heighest weight λ1 ≥ · · · ≥ λm ≥ 0 ≥ · · · ≥ 0, if
m ≤ n, or to zero, otherwise.

Consequently, the map σ is injective away from the fiber of zero, does not have
zero in the image if n ≥ d, and the resulting map tdΠ′d → Πn ∪ {0} is surjective.

Proof. The existence of the map σ follows from the double centralizer theorem 7.1

and Theorem 7.2. Under this theorem, σ(Vλ) = HomSd(Vλ, V
⊗d). Realizing Vλ as

C[Sd]cλ, by the idempotence of cλ the space HomSd(Vλ, V
⊗d) can be identified with

cλV
⊗d , by the map that assigns to a morphism the image of 1cλ. Equivalently, we

can realize Vλ as C[Sd]cλ, and the same argument holds.

The description of cλV
⊗d , c∗λV

⊗d follows from Lemma 7.7. We determine the

highest weight, using the realization σVλ = c∗λV
⊗d . Let x1, . . . , xn be a basis for

V , and consider the vector

⊗λ1x1 ⊗⊗λ2x2 · · · ⊗ ⊗λnxn ∈ Sλ1V ⊗ · · · ⊗ SλmV.

Its image in
∧λ∗1 V ⊗ · · · ⊗∧λ∗m V (where, recall, we are labeling the factors of V

according to the boxes in a Young diagram, and antisymmetrize along the columns)
is the vector

A(x1 ⊗ x2 ⊗ · · · ⊗ xλ∗1 )⊗ · · · ⊗ A(x1 ⊗ x2 ⊗ · · · ⊗ xλ∗r ),
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where A denotes the antisymmetrization map.
Evidently, this is an eigenvector for the parabolic subgroup of GLn (and, a

fortiori, of SLn) that stabilizes the flag

span(x1, x2, xλ∗1 ) ⊃ span(x1, x2, xλ∗2 ) ⊃ · · · ⊃ span(x1, x2, xλ∗r ),

and its weight is (λ1, λ2, . . . , λn).
�
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