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In this chapter we begin studying representations of compact, and non-compact,
Lie and algebraic groups. The focus will be on the representation theory of reductive
algebraic groups over R, and over the p-adic numbers. All compact Lie groups are
reductive algebraic, and most of the interesting non-compact Lie groups are such.

The study of continuous representations of compact Lie groups goes in parallel
with the study of algebraic representations of their complexifications, and with
finite-dimensional representations of their Lie algebras. We will introduce these
topics a little more generally, in order to be able to use them later for non-compact
Lie (algebraic) groups and their infinite-dimensional representations.

1. Lie groups, group schemes, algebraic groups

Definition 1.1. A Lie group is a group in the category of differentiable manifolds.

Remark 1.2. As a corollary of the Baker–Campbell–Hausdorff formula that we
will prove later, any Lie group is automatically real-analytic. See Proposition 4.8.
In many references it is defined from the outset as a group in the category of analytic
manifolds.

Definition 1.3. A group scheme (over a base scheme S) is a group in the category
of (S-)schemes.

If S = Spec(k), where k is a field in characteristic zero, then a k-group scheme
is automatically smooth over k, see Theorem 6.7. This is not the case in positive
characteristic, as the following example shows:
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Example 1.4. Consider the (smooth) additive group scheme over k = Fp:

Ga = Speck[T ]

with the obvious group structure. For instance, addition Ga × Ga → Ga is given
by the morphism induced by:

k[T ] 3 f(T ) 7→ f(T1, T2) ∈ k[T ]⊗k k[T ] = k[T1, T2].

Now consider the “Frobenius” homomorphism:

Ga → Ga
k[T ] 3 f(T p) ← f(T ) ∈ k[T ].

The kernel K of this homomorphism is, as a scheme, isomorphic to k[T ]/(T p), with
the embedding K → Ga given by the quotient map:

k[T ]→ k[T ]/(T p)

and the inherited addition morphism:

k[T ]/(T p) 3 f(T ) 7→ f(T1, T2) ∈ k[T ]/(T p)⊗k k[T ]/(T p) = k[T1, T2]/(T p1 , T
p
2 ).

Notice that this is a k-group scheme with a unique closed point (the identity),
but it is not the trivial k-group scheme Spec(k), as it has non-trivial tangent space
(=Lie algebra), i.e. it is not reduced (hence not smooth).

Other examples of group schemes that are not smooth can be obtained, e.g. over
Zp, for instance by taking the subgroup of GL2 (defined over Z) which stabilizes
the quadratic form Q(x, y) = p(x2 + y2). The fiber of this over the generic point
SpecQ is an orthogonal group in two variables (hence of dimension 1), while the
fiber over the special point SpecFp is GL2 (of dimension 4) – in particular, this is
not a smooth group scheme.

Definition 1.5. An algebraic group over a field k is a smooth group scheme over
k. If an algebraic group is affine, it is called a linear algebraic group.

The following is a very basic theorem about quotients:

Theorem 1.6. Let G be a Lie or linear algebraic group over a field k, and H a
closed subgroup. In the first case, the quotient G/H exists as a smooth manifold.
In the second case, there is a linear representation G→ GL(V ) such that H is the
stabilizer of a line, and the quotient G/H is isomorphic to a locally closed subset
of P(V ), hence quasiprojective.

Proof. Omitted, together with the definitions of quotients. Notice that the quo-
tient in the case of algebraic groups is taken in the fpqc topology; i.e., the maps
G(R)/H(R) → (G/R)(R) are not surjective for any k-algebra R, but they are
surjective over some faithfully flat, quasi-compact cover. �

2. Lie algebras; the Lie algebra of a Lie or algebraic group

Definition 2.1. A Lie algebra over a ring k is a k-module g with a bilinear, anti-
symmetric operation

[•, •] : g ∧ g→ g,

satisfying the Jacobi identity:

(2.1.1) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
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A morphism of Lie algebras T : g → h over k is a k-linear map T from g to h,
which is compatible with the Lie bracket: [T (X), T (Y )] = T ([X,Y ]).

There is a functor from associative algebras to Lie algebras, mapping an asso-
ciative algebra A to the Lie algebra Lie(A), with the same underlying set and Lie
bracket [X,Y ] = XY − Y X. We will often write simply A for the Lie algebra
Lie(A).

Definition 2.2. A representation of a Lie algebra g on a vector space V is a
morphism of Lie algebas g→ End(V ).

Definition 2.3. The adjoint representation of a Lie algebra g is the homomorphism
ad : g→ End(g) given by ad(X)(Y ) = [X,Y ].

Remark 2.4. These notions explain the meaning of the Jacobi identity (2.1.1): It
simply says that the adjoint map is, indeed, a representation.

Example 2.5. Let A be an associative algebra, and consider the submodule
Der(A) ⊂ End(A) of derivations, i.e., endomorphisms D satisfying the Leibniz
rule D(fg) = fDg +D(f)g. It is a Lie subalgebra of End(A).

For a manifold or algebraic variety M , we will be denoting by Der(M) the
derivations on M , i.e., sections of the tangent bundle of M .

Given a Lie group G, or an algebraic group over a field k, its tangent space
g = T1G at the identity can be endowed with the structure of a Lie algebra. This
works as follows: First, evaluation of a vector field at the identity defines a linear
maps

Der(G)→ g.

Let Der(G)G-left and Der(G)G-right denote, respectively, the subspaces of left-
and right- invariant derivations. For example, a left-invariant vector field V has
the property that L(g)∗V = V for every g ∈ G, where L(g) is the left action of g
on G. Then

Lemma 2.6. Evaluation at the identity gives bijections

Der(G)G-left ∼−→ g,

Der(G)G-right ∼−→ g.

These bijections are mapped to each other under the inversion map g 7→ g−1 on G,
which acts by −1 on g.

Proof. This is clear from the definitions. �

Derivations satisfy the Jacobi identity (think of them, locally, as a subalgebra
of the Lie algebra associated to the endomorphism algebra of smooth/algebraic
functions), which gives rise to a Lie algebra structure on g:

Definition 2.7. The space g = T1G, endowed with the Lie bracket of its identi-
fication with left- invariant derivations according to Lemma 2.6, is the Lie algebra
of the group G.

Notice that the identification with right-invariant derivations would give the
opposite Lie bracket.

Definition 2.7 makes sense for an algebraic group over a field k, as well, producing
a Lie algebra over k. In positive characteristic, this Lie algebra has extra structure:
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Definition 2.8. Let k be a field of characteristic p > 0. A restricted Lie algebra
over k is a Lie algebra g together with an operation X 7→ X [p] such that:

(1) ad(X [p]) = ad(X)p;
(2) (tX)[p] = tpX [p] (for t ∈ k, X ∈ g);

(3) (X+Y )[p] = X [p]+Y [p]+
∑p−1
i=1 i

−1si(X,Y ), where si(X,Y ) is the coefficient

of ti in ad(tX + Y )p−1(X); in particular, if [X,Y ] = 0, (X + Y )[p] =
X [p] + Y [p].

Example 2.9. If A is an associative algebra over k, then Lie(A) is a restricted
Lie algebra, with A[p] = Ap. In particular, if G is an algebraic group over k, the
p-th power of a left-invariant vector field, viewed as a differential operator, is also
a left-invariant vector field, and endows the Lie algebra g with the structure of a
restricted Lie algebra.

3. The universal enveloping algebra and the Poincaré–Birkhoff–Witt
theorem

The functor A 7→ Lie(A) from associative to Lie algebras has a left adjoint.

Definition 3.1. Given a Lie algebra g, the initial object U(g) of the category of
associative algebras A with a homomorphism of Lie algebras: g → A is called the
(universal) enveloping algebra of g.

Equivalently, the association g→ U(g) is left adjoint to the natural functor from
associative to Lie algebras, i.e.

HomLie(g,Lie(A)) = HomAssoc(U(g), A)

for every associative algebra A.

In other words, U(g), together with the homomorphism g→ U(g) is defined by
the universal property that any other homomorphism of Lie algebras g→ A factors
uniquely through U(g).

Proposition 3.2. The universal enveloping algebra of any Lie algebra g exists.

Proof. One can construct it as the quotient of the tensor algebra of g,

Tg :=
⊕
n≥0

g⊗
n

,

by the two-sided ideal generated by all elements of the form:

X ⊗ Y − Y ⊗X − [X,Y ], X, Y ∈ g.

(The rest of the proof is left to the reader.)
�

Example 3.3. Let X be a smooth manifold, or an algebraic variety (over a field
k). Let g = Der(X) be the vector space of derivations, or vector fields on X: these
are sections of the tangent bundle of X.1 Then, g is a Lie algebra, and U(g) is, by
definition, the algebra of (smooth/algebraic) differential operators on X.

1In algebraic geometry, derivations are defined as certain endomorphisms of the structure sheaf,
and are used to define the tangent bundle.
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The universal enveloping algebra is (N-)filtered : We have F 0U(g) = k, F 1U(g) =
g ⊕ k, and FnU(g) = the subspace generated by n-fold products of elements of
F 1U(g).

Definition 3.4. Let A be an algebra with an increasing N-filtration, and write
F i simply for F iA: A =

∑
n≥0 F

nA, F i ⊂ F i+1, and F i · F j ⊂ F i+j . Set, by

convention, F−1 = 0.
The associated graded algebra of A is the N-graded algebra

grA =
⊕
i≥0

griA =
⊕
i≥0

F iA/F i−1A.

The Rees algebra of A is the N-graded algebra

A =
⊕
i≥0

F iA · ti ⊂ A⊗ k[t].

Lemma 3.5. In the setting of Definition 3.4, the Rees algebra A is a free k[t]-
module, its fiber over any t = a 6= 0 (i.e., the quotient A/(t − a)A) is canonically
isomorphic, through the evaluation map t 7→ a, to the original filtered algebra A,
and its fiber over t = 0 (i.e., the quotient A/tA) is canonically isomorphic to its
associated graded grA.

Proof. The fact that it is free over k[t] is obvious.
Away from t = 0, that is, if we tensor with k[t−1], we get an isomorphism

A⊗ k[t−1] = A⊗ k[t−1, t],

so the fiber at t = a 6= 0 is isomorphic to A through the evaluation map.
On the other hand, the element t is homogeneous, so the quotient A/(t) is also

a graded algebra, with i-th graded piece equal to F iA · ti/t · F i−1A · ti−1 = griA.
�

The structure of the universal enveloping algebra is described by the Poincaré–
Birkhoff–Witt theorem:

Theorem 3.6 (Poincaré-Birkhoff-Witt). Let g be a Lie algebra over a field k. Then
there is a canonical isomorphism

(3.6.1) grU(g) ' S(g),

where S(g) denotes the symmetric algebra in g.
In particular, if we choose a linearly ordered vector space basis (Xi)i∈I (possibly

with infinite indexing set I), then the monomials of the form Xr1
i1
Xr2
i2
· · ·Xrk

ik
, with

i1 < i2 < · · · < ik, form a vector space basis for U(g).

Proof. First, we construct a natural surjection:

S(g)→ grU(g).

The symmetric algebra S(g) is the homogeneous quadratic algebra T (g)/(R),
where Tg is the tensor algebra T =

⊕
T i with T i(g) = g⊗ · · · ⊗ g (i times), and R

the subspace of T 2(g) (hence “homogeneous quadratic”) generated by elements of
the form x⊗ y− y⊗ x. The notation (R) denotes the two-sided ideal generated by
R.

On the other hand, U(g) is the inhomogeneous quadratic algebra T (g)/(P ), where
P ⊂ T≤2(g) the subspace generated by elements of the form x⊗ y − y ⊗ x− [x, y].
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The image of P under the quotient T≤2(g) → T 2(g) is equal to R, and this
implies that the ideal (R) is in the kernel of the natural surjective map

S(g) = grT (g) =
⊕
i

T≤i(g)/T≤i−1(g)→ grU(g).

The hard part of the proof is to show that the resulting map S(g) = T (g)/(R)→
grU(g) is an isomorphism. The proof uses the Jacobi identity in an essential way:

The idea of the proof is to construct a representation ρ of g (equivalently: of
U(g)) on the free vector space V generated by the monomials Xr1

i1
Xr2
i2
· · ·Xrk

ik
.

This representation will have the property that Y = Xr1
i1
Xr2
i2
· · ·Xrk

ik
, considered

as an element of U(g), takes 1 ∈ V to Xr1
i1
Xr2
i2
· · ·Xrk

ik
(a posteriori, it is just left

multiplication on U(g)). In particular, the map U(g) 3 Y 7→ ρ(Y )(1) ∈ V is
injective, which proves the theorem.

Define the structure constants of the Lie algebra, ckij , by [Xi, Xj ] =
∑
k c

k
ijXk. We

write every monomial as above in the form YM , where M = (j1 ≤ j2 ≤ · · · ≤ jn) is
a finite ordered sequence of elements of the indexing set I (with repetitions). This
includes the element Y∅ = 1 ∈ k. Notice that we will be using the letter X for
elements of g, and the letter Y for elements of V , to distinguish them. We define
the representation as a filtered map

g× V → V,

with respect to the filtration of V by the subspaces Vn spanned by monomials of
length ≤ n (with the elements of g in degree 1, of course). First of all, we set

Xi · Y∅ = Y(i).

Assume now that we have defined a map g × Vn−1 → Vn, n ≥ 1, satisfying the
following three properties:

• Xi ·YM = Y(i,M) when i ≤ the smallest (first) element of M (which we will
denote by i ≤M ;

•

(3.6.2) Xi · Y(j1≤···≤jn) = Y(j1≤···≤i≤···jn) + lower order terms;

•

(3.6.3) Xi · (Xj · YM )−Xj · (Xi · YM ) = [Xi, Xj ] · YM .

We define the map on g × Vn, inductively on the basis elements (i.e., assuming it
has been defined for Xj with j < i) by

Xi · Y(j,M) =

{
Y(i,j,M), if i ≤ j
Xj · (Xi · YM ) +

∑
k c

k
ijXk · YM , otherwise.

Then, the first of the three properties above holds by definition. For (3.6.2), also
by the definition, if the ordering is j1 ≤ · · · ≤ jm < i ≤ . . . , also by the definition
we have

Xi · Y(j1≤···≤jn) = Xj1 · · ·Xjm ·Xi · Y(jm+1,... ) + lower order terms

= Y(j1≤···≤i≤···jn) + lower order terms.
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Finally, for (3.6.3), if i = j, both sides are zero. Also, since both sides are anti-
symmetric in i and j, we may assume that i > j. In j ≤ M , then the property
holds by definition. Assume now that M = (k,N) with j > k. Then, by definition,

Xj · Y(k,N) = Xj · (Xk · YN ) = Xk · (Xj · YN ) + [Xj , Xk] · YN ,
and similarly for Xi · Y(k,N). By (3.6.2), the element Xj · YN can be written as
Y(j,N)ord+ lower order terms, where (j,N)ord denotes the ordering of the multiset
obtained by appending j to N . Since k ≤ N and k < N , by the above and by the
induction hypothesis we have

Xi · (Xk · (Xj · YN )) = Xk · (Xi · (Xj · YN )) + [Xi, Xk] · (Xj · YN ).

Thus,

Xi · (Xj · YM )−Xj · (Xi · YM ) = Xi · (Xj · (Xk · YN ))−Xj · (Xi · (Xk · YN )) =

= Xk · (Xi · (Xj ·YN ))+ [Xi, Xk] · (Xj ·YN )+ [Xj , Xk] · (Xi ·YN )+ [Xi, [Xj , Xk]] ·YN
−Xk · (Xj · (Xi ·YN ))− [Xj , Xk] · (Xi ·YN )− [Xi, Xk] · (Xj ·YN )− [Xj , [Xi, Xk]] ·YN .

By the Jacobi identity, this is equal to

Xk · (Xi ·Xj −Xj ·Xi) · YN + [Xk, [Xi, Xj ]] · YN ,
and again by the induction hypothesis this is is

Xk · [Xi, Xj ] · YN + [Xk, [Xi, Xj ]] · YN ,
and once more by the induction hypothesis this is

[Xi, Xj ] ·Xk · YN = [Xi, Xj ] · YM ,
as desired.

�

Remark 3.7. A different and more general proof by Braverman and Gaitsgory
interprets the Jacobi identity in terms of Hochschild cohomology, see [BG96]. We
summarize the ideas: In this proof, instead of starting from U(g), we start from the
symmetric algebra S(g), and construct the Rees algebra of U(g) as a deformation
of that.

Let A = S(g), considered as a graded algebra. An i-th level graded deformation
of A will be a graded k[t]/k[t]ti+1-algebra Ai (where deg(t) = 1), which is free
as a k[t]/k[t]ti+1-module, together with an isomorhism of Ai/tAi ' A. A graded
deformation A of A will be a graded algebra over the polynomial ring k[t], which
is free as a module over this ring, together with an isomorphism A/tA ' A.

Suppose we are given a first-level deformation A1 → A, and choose a splitting
A→ A1 as a graded k[t]-module, so that A1 = A⊕ tA. Then, the multiplication on
A1 is described by a k-linear map f : A⊗A→ A, homogeneous of degree −1, such
that (a + t · 0) · (b + t · 0) = ab + tf(a, b). The associativity condition is rewritten
in terms of f as:

(3.7.1) f(a, b)c− f(ab, c) + f(a, bc)− af(b, c) = 0,

for any a, b, c ∈ A.
It turns out that this condition defines a Hochschild cocycle. The Hochschild

cohomology of A is the derived functor of HomA⊗Aop(A,A), the endomorphisms of
A as an A-bimodule. It can be computed using the bar resolution by free bimodules

Bi(A) = A⊗
i+2

, with the boundary map Bi(A)→ Bi−1(A) given as the alternating
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sum of replacements a⊗ b 7→ ab, over all identifications of A⊗A with the (j, j+ 1)-
st factor of Bi (where j = 0 . . . i). So, the derived functor ExtiA⊗Aop(A,A) can be
computed in terms of the complex consisting of

HomA⊗Aop(Bi(A), A),

which is the same as

Hom(A⊗
i

, A)

with appropriate boundary maps. For i = 2, the cocycle condition is precisely the
equation (3.7.1). One checks that the choice of splitting A → A1 changes the 2-
cocycle by a coboundary, so the first-level deformations of A correspond uniquely to
classes in H2(A) (second Hochschild cohomology group). In fact, since A is graded,
so is the Hochschild cohomology, and we get a bijection between isomorphism classes
of first-level deformations, and the −1-graded piece H2

−1(A).
There is a similar description of extensions of an i-th level deformation to an

(i + 1)-st level deformation by H2
−i−1(A), provided such deformations exist. The

obstruction to the existence of such a deformation is an element of H3
−i−1(A).

Now, it so happens that A = S(g) is a Koszul algebra. One of the equivalent
definitions of this notion for N-graded algebras is that A0 = k, and A0 = A/A>0,
as a graded A-module, has a graded projective resolution

· · · → P (2) → P (1) → P (0) → A/A>0 → 0

where P (i) is generated by homogeneous elements in degree i. This turns out to
be equivalent, for a homogeneous quadratic algebra of the form Q(V,R), to the
statement that the bar resolution can be replaced by a resolution by the subspaces

K̃i = A⊗Ki ⊗ A, where Ki is the intersection of the spaces V ⊗
j ⊗ R ⊗ V ⊗i−j−2

,
0 ≤ j ≤ i − 2. Then, the following four conditions on the generator P of the
non-homogeneous quadratic ideal:

(1) P∩F 1(T (V )) = 0; hence, we can write every element of P as r+α(r)+β(r),
with r ∈ R, α(r) ∈ T 1(V ), β(r) ∈ T 0(V ) = k;

(2) Im(α⊗ I − I ⊗ α) ⊂ R; (this map is defined on K3 = R⊗ V ∩ V ⊗R);
(3) α ◦ (α⊗ I − I ⊗ α) = −(β ⊗ I − I ⊗ β);
(4) β ◦ (α⊗ I − I ⊗ α) = 0

(where the second, third, and fourth condition follow from the Jacobi identity, in
our case) have, correspondingly, the following cohomological interpretations:

(1) this is just saying, as remarked, that we can write every element of P as
r + α(r) + β(r);

(2) dα = 0; thus, α defines a cohomology class in H2(A), which can be checked
to belong to H2

−1(A), thus defining a first-degree deformation of A;
(3) the cocycle representing the obstruction to a second-level deformation is

trivial;
(4) the cocycle representing the obstruction to a third-level deformation is triv-

ial.

Then, it turns out that for Koszul algebras every third-level graded deformation
extends uniquely to a graded deformation A over k[t].

The PBW theorem has several corollaries:

Proposition 3.8. The universal enveloping algebra U(g) is Noetherian.
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Proof. This follows from the Noetherian property of grU(g) = S(g) by the follow-
ing standard argument: if J1 ⊂ J2 ⊂ · · · is an increasing sequence of ideals, then so
is grJ1 ⊂ grJ2 ⊂ · · · , where grJ = ⊕n(J ∩Fn/Fn−1). Notice that the map J 7→ grJ
is not injective on ideals: two different ideals of U(g) can have the same image in
its graded. However, the map is injective on chains, i.e. if J1 ⊂ J2 and their graded
ideals coincide, then J1 = J2. From the Noetherian property of S(g), the sequence
of graded ideals stabilizes, therefore so does the original sequence. �

Another corollary is the following:

Proposition 3.9. If h ⊂ g is a Lie subalgebra then U(g) is a free U(h)-module,
and hence the induction functor:

M 7→ U(g)⊗U(h) M

(where M is an h-module) is exact.

4. Exponential map and the Baker–Campbell–Hausdorff formula

Now we work differential-geometrically in the setting of a real Lie group, follow-
ing [Ste09].

Definition 4.1. A one parameter subgroup is a homomorphism of Lie groups:
γ : R→ G.

Lemma 4.2. The map γ 7→ γ′(0) is a bijection between one-parameter subgroups
and elements of the Lie algebra.

Proof. Locally around any point x, any vector field is uniquely integrable (this is
a basic result from ODEs), namely: if v is a vector field then there is an interval
(−ε, ε) and a curve γ : (−ε, ε) → G such that γ(0) = x and γ′(t) = v(γ(t)), and
any two such curves coincide in a neighborhood of 0.

For a left-invariant vector field, we can use left translations by the group to show
that this local existence and uniqueness statement becomes global. �

Definition 4.3. The exponential map

g→ G

is defined by
exp(X) = γX(1),

where γX is the unique one-parameter subgroup with γ′X(0) = X.

Lemma 4.4. The exponential map is a local diffeomorphism around 0 ∈ g.

Proof. Its differential, if well defined, is the identity on g = TeG, so we only need
to show that it is a smooth map. The flow on G × g associated to the smooth
vector field (g,X) 7→ (X(g), 0) is given by: R×G×g 3 (t, g,X) 7→ (g ·exp(tX), X),
and the flow of a smooth vector field is smooth. Therefore, the exponential map is
smooth. �

The exponential map is not a group homomorphism, except if G is abelian (but,
by definition, it is a group homomorphism when restricted to any one-dimensional
subspace of g). Its failure to be a homomorphism is addressed by the so-called
Baker–Campbell–Hausdorff formula (which goes back to Schur). Before we state
and prove the BCH formula, we prove an important formula that will be used in
the proof, the Maurer–Cartan equation.
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Theorem 4.5 (Maurer–Cartan equation). Let θ be the unique left-invariant, g-
valued differential 1-form on G which at the identity (e) is equal to the canonical
(“identity”) element of T ∗eG ⊗ g = g∗ ⊗ g = End(g). Then its differential is given
by

(4.5.1) dθ = −1

2
[θ, θ].

The convention here is that for two g-valued 1-forms θ0, θ1, and two vector fields
v0, v1, we have [θ0, θ1](v0, v1) = [θ0(v0), θ1(v1)]−[θ0(v1), θ1(v0)], hence 1

2 [θ, θ](v0, v1) =
[θ(v0), θ(v1)].

Proof. Since θ is left-invariant, so will be its differential dθ, which is a section of the
exterior square of the cotangent bundle of G, valued in g. Thus, dθ is determined
by its value at the identity, and it therefore suffices to verify the formula when dθ
is applied to a pair (v0, v1) of left-invariant vector fields (identified with elements
of g). By the definition of exterior derivative,

dθ(v0, v1) = v0θ(v1)− v1θ(v0)− θ([v0, v1]).

Since the vi’s are left-invariant, θ(vi) is the constant vi ∈ g, and therefore
vjθ(vi) = 0. Thus, dθ(v0, v1) = −θ([v0, v1]) = −[θ(v0), θ(v1)], as claimed. �

Theorem 4.6 (Baker–Campbell–Hausdorff formula). If G is a Lie group with Lie
algebra g, then for sufficiently small X,Y ∈ g we have
(4.6.1)

exp(X) exp(Y ) = exp(X+Y+
1

2
[X,Y ]+

1

12
([X, [X,Y ]]+[Y, [Y,X]])+P3(X,Y )+. . . ),

where Pi(X,Y ) is a Lie polynomial of order i, i.e., Pi(X,Y ) is a linear combination
of i− 1 nested commutators in the variables X,Y .

Remark 4.7. There is a precise formula for the Lie polynomials Pi:
(4.7.1)

Pi(X,Y ) =
∑
n

(−1)n−1

n

∑
r1+s1+r2+s2+···+rn+sn=i

rj,sj≥0, rj+sj>0

[X(r1)Y (s1)X(r2)Y (s2) · · ·X(rn)Y (sn)]∑n
j=1(rj + sj) ·

∏n
j=1 rj !sj !

,

where [X(a)Y (b)] denotes the Lie polynomial [X, [X, . . . , [X, [Y, [Y, . . . , Y ] · · · ], with
X appearing a times and Y appearing b times (and similarly for more “factors”).

This precise formula can be worked out inductively from the differential equation
(4.7.2) below. What is important (and difficult) is the existence of such a series.

Proof. We outline two proofs, following [Ste09], and point the reader to Sternberg’s
notes for details. The second proof, which is algebraic, assumes that the group is
analytic (as Lie groups are often defined to be, from the outset, e.g., in Bourbaki).
The first, which is analytic, proves the analyticity of Lie groups (defined in the
differentiable category; see Proposition 4.8 below).

For the first proof, the main idea is to express the product exp(X) exp(Y ) in
terms of the elements ad(X), ad(Y ) in the concrete associative (and Lie) algebra
of endomorphisms of g.

We consider the former power series ψ(1 +u) = (1 +u) log(u)
u = 1 + u

2 −
u2

6 + . . . ;
the BCH formula, with the precise terms (4.7.1), is equivalent to the statement
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that

(4.7.2) log(exp(X) exp(Y )) = X +

∫ 1

0

ψ(exp(ad(X)) exp(t · ad(Y )))(Y )dt

for sufficiently small elements X,Y . Notice, first of all, that the formal power series
defining the operator ψ(exp(t ·ad(X)) exp(ad(Y ))) ∈ End(g) on the right hand side
converges for small X,Y . The logarithm on the left hand side is, by definition, the
inverse of the exponential map on g, defined in a small neighborhood of the origin.

This, in turn, will be proven by proving the following formula about the “loga-
rithmic derivative” of any smooth curve C(t) on g:

(4.7.3) exp(C(t))−1
d

dt
exp(C(t)) = φ(−adC(t))C ′(t),

where φ(z) is the power series

ez − 1

z
=
∑
n≥0

1

(n+ 1)!
zn.

Both sides of the last equation are valued in g, identified with the tangent space at
the identity of G. Applying this relation to the curve C(t) = exp(X) exp(tY ), we
get

B = φ(− log(exp(ad(X)) · exp(t · ad(B))))C ′(t),

and, using the fact that

ψ(z)φ(− log(z)) = 1,

we get

C ′(t) = ψ(exp(ad(X)) · exp(t · ad(B)))(B),

which is equivalent to (4.7.2).
There remains to prove the formula (4.7.3), about the logarithic derivative of a

smooth curve.
Setting f(s, t) = exp(sC(t)), and with θ the Maurer–Cartan form, the left hand

side of (4.7.3) is equal to f∗θ( ∂∂t )(1, t), while it is immediate to compute

f∗θ(
∂

∂s
)(s, t) = exp(sC(t))−1

∂

∂s
exp(sC(t)) = C(t)

(for any s, t). We let κ(s, t) = f∗θ( ∂∂t )(s, t).
The differential of f∗θ, applied to these vector fields, is

df∗θ(
∂

∂s
,
∂

∂t
) =

∂

∂s
f∗θ(

∂

∂t
)− ∂

∂t
f∗θ(

∂

∂s
) =

=
∂

∂s
κ(s, t)− C ′(t).

Applying the Maurer–Cartan formula (4.5.1) to the pullback of θ, we get that
this is equal to

−[f∗θ(
∂

∂s
), f∗θ(

∂

∂t
)] = −[C(t), κ(s, t)].

Thus, fixing t, the g-valued function κ(s) = κ(s, t) satisfies the ordinary differ-
ential equation

κ′(s) = −ad(C(t))κ(s) + C ′(t),

with initial value κ(0) = 0.
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This is now easily seen to have the unique solution

κ(s) =
e−sad(C(t)) − 1

ad(C(t))
C ′(t),

where the fraction is a formal expression for the series∑
n≥0

1

(n+ 1)!
sn+1zn

in the operator −ad(C(t)).
Setting s = 1, the proof is now complete.
[TO ADD: ALGEBRAIC PROOF]

�

Immediate corollaries of the BCH theorem include:

Proposition 4.8. Every Lie group has a unique structure of a group in the category
of real analytic spaces with the property that the exponential map is an analytic
isomorphism in a neighborhood of the identity.

Proof. Fix a sufficiently small neighborhood U of zero in g, and use it to define
an analytic chart in the neighborhood g exp(U) of any element g ∈ G. The Baker–
Campbell–Hausdorff theorem 4.6 implies that the transition maps between these
charts are analytic, so we have a well-defined analytic structure. The same theorem
shows that multiplication is analytic. �

Proposition 4.9. Given a Lie group G and a sub-Lie algebra h ⊂ g, there is a
unique connected immersed Lie subgroup H ⊂ G whose Lie algebra is h.

By an immersed Lie subgroup we mean an immersed submanifold: H → G such
that H is a subgroup of G.

Proof. The left translations of h give rise to a distribution Dh, i.e. a subbundle of
TG. It is known from the theory of differential equations that a distribution D is
(uniquely) integrable if and only if for any two vector fields which lie in it, their
commutator also lies in it. This is easily seen to be the case for Dh, since h is a Lie
subalgebra. By the Baker–Campbell–Hausdorff Theorem 4.6, the leaf through zero
of the corresponding foliation is an immersed subgroup. �

Proposition 4.10. Let G1, G2 be Lie groups with G1 connected and simply con-
nected, then every morphism between their Lie algebras

f ′ : g1 → g2

lifts to a unique morphism

f : G1 → G2.

Proof. The pair (f ′, I) defines an embedding g1 → g := g1⊕g2 which, by Proposi-
tion 4.9, corresponds to a unique connected immersed Lie subgroup: H → G1×G2

whose Lie algebra is g1. Composing with projection to G1 we get: H → G1 which
is an isomorphism on tangent spaces, hence a covering map. Since G1 is simply
connected, H = G1. �
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Remark 4.11. In a following chapter, 7, we will discuss Ado’s theorem, which
states that every finite-dimensional Lie algebra over a field in characteristic zero
has a faithful representation; hence, Proposition 4.9 implies that, given a finite-
dimensional Lie algebra over R, it is the Lie algebra of a Lie group. We may assume
that this Lie group is connected and simply connected by passing to the universal
cover, in which case Proposition 4.10 implies that it is uniquely determined, up to
unique isomorphism, by the Lie algebra.

5. Open and closed subgroups of Lie groups

For any Lie group G we will be denoting by G0 the connected component of the
identity. It is a normal subgroup (exercise!).

Lemma 5.1. Any open subgroup of G contains G0.

Proof. Let H be an open subgroup. Its complement is a union of (left, let’s say)
H-cosets, and since right multiplication takes open sets to open sets, those cosets
are open. Hence, the complement of H is open, therefore H is both open and
closed, and therefore it contains the connected component of the identity. �

It is not true that every subgroup of a Lie group is closed. For instance, any
one-parameter subgroup in the torus (R/Z)2 with non-rational slope is dense, but
not closed.

On the other hand, every closed subgroup is a Lie subgroup:

Theorem 5.2 (Cartan). Every closed subgroup of a Lie group is a smooth manifold,
hence a Lie subgroup.

Proof. Let H ⊂ G be a closed subgroup of a Lie group. Let g denote the Lie
algebra of G, i.e. the tangent space at the identity. We will define a subspace of g
which will be the candidate for the tangent space of the identity for H. Then we
will show that it is indeed so.

Choose a Euclidean metric on g and let exp : g→ G be the exponential map. In
a neighborhood of the idenity in g, it is a diffeomorphism onto a neighborhood of
the identity in G, and let log denote its inverse in that neighborhood.

Let W ⊂ g be the set of all tX, where t ∈ R and X ∈ g is the limit of a sequence:
hn

|hn| with hn → 0 ∈ g and exp(hn) ∈ H. We claim:

(1) exp(W ) ⊂ H;
(2) W is a linear subspace of g.

For the first, if hn

|hn| → X and |hn| → 0 we can choose, for given t ∈ R, integers

mn ∈ Z such that mn|hn| → t, so exp(mn · hn)→ exp(tX) as n→∞.
Here we will use the following fact: for an one-dimensional subspace of g the ex-

ponential map is a homomorphism of groups. Therefore, exp(mn ·hn) = exp(hn)mn ,
therefore it belongs to H. Since H is closed, the limit exp(tX) is also in H.

For the second claim, if X,Y ∈ W set h(t) = log(exp(tX) exp(tY )). We
claim that limt→0 h(t)/t = X + Y . Indeed, the differential at the identity of
the multiplication map: G × G → G is g × g 3 (X,Y ) 7→ X + Y . Hence,
h(t)/|h(t)| = h(t)/t · t/|h(t)| → X+Y

|X+Y | as t→ 0, t > 0, therefore X + Y ∈W .

Having proven the two claims, and given that the exponential map is a diffeo-
morphism in a neighborhood of the identity, it now suffices to show that exp(W )
is a neighborhood of the identity in H. Let D be the orthogonal complement of W
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in g with respect to the above norm. For a sequence hn ∈ H with hn → e, we can
eventually write hn = exp(xn + yn) with xn ∈ W and yn ∈ D, (xn, yn) → 0. We
claim that

limn→∞
log(hn exp(−xn))

|yn|
= limn→∞

yn
|yn|

if one of the two limits exists.
Indeed, by the Baker–Campbell–Hausdorff formula (4.6.1), the left hand side can

be written as

limn→∞
yn + P2(xn + yn, yn) + P3(xn + yn, yn) + . . .

|yn|
,

where Pi is a homogeneous Lie polynomial of order i. When both xn and yn tend
to zero, the quotient

Pi(xn + yn, yn)

|yn|
tends to zero, for every i ≥ 2. This proves the claim.

But then, we must have yn = 0 for large n, for otherwise a subsequence of the
yn
|yn| ’s will have a limit point y ∈ D, |y| = 1, which should then belong to W , a

contradiction. This completes the proof of the theorem.
�

6. Algebraic groups in characteristic zero

6.1. The functor from schemes to topological spaces. If k is a topological
field (e.g., R, C), and X = Spec(A) is an affine k-scheme of finite type, the set

X(k) = Hom(A, k)

acquires a natural topology, the open compact topology when A is viewed as a
discrete ring, i.e., the restricted topology under the embedding

Hom(A, k) ↪→ kA.

There is a unique way to extend this definition to any scheme of finite type over
k, in such a way that open embeddings of schemes give rise to open embeddings of
topological spaces, and this gives rise to a functor

Top : Schemes of finite type over k → topological spaces.

For these facts, we point the reader to Brian Conrad’s expository article [Con12].

6.2. Smooth schemes and manifolds. A morphismX → S of algebraic schemes,
locally of finite presentation, is said to be smooth of relative dimension r if it is given,
locally on the source X, by equations which in differential geometry would satisfy
the conditions of the implicit funcion theorem, namely: restricting to sufficiently
small open neighborhoods, we have X = Spec(B), S = Spec(A), with A → B a
map of rings which can be presented as B = A[x1, . . . , xm+r]/(f1, . . . , fm), with the
Jacobian

det

(
∂fi
∂fj

)m
i,j=1

being invertible in A.
This condition on the Jacobian can be checked locally at every point of X. In

particular, if S = Spec(k) with k a field, it is a condition on the local rings Ox for
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every x ∈ X, and in this case it is known to be equivalent to regularity, see [Sta19,
Tag 00TV]: namely, to the condition that

(6.2.1) dimKrull(Ox) = dimOx/mx
mx/m

2
x.

When k is a topological field that is complete with respect to an absolute value,
we can upgrade the functor from schemes to topological spaces to a functor from
smooth k-schemes to analytic k-manifolds; those are, by definition, topological
spaces endowed with a complete k-analytic class of charts or, equivalently, locally
ringed spaces that are locally isomorphic to open subsets of kn with their sheaf of
k-analytic functions. We point the reader to [Ser65] for a more detailed discussion.

Proposition 6.3. If X is a smooth scheme over a topological field k, there is a
unique structure of analytic k-manifold on the topological space Top(X) = X(k),
such that for every open affine U = Spec(B) with presentation

B = k[x1, . . . , xm+r]/(f1, . . . , fm),

the open subset U(k) is an analytic submanifold of km+r.

Proof. We may give ourselves such a presentation, with the Jacobian det
(
∂fi
∂fj

)m
i,j=1

being nonzero everywhere on U(k). Then, U(k) is the fiber over zero of a map
km+r → km which is submersive at every point of that fiber, and the impicit func-
tion theorem implies that this fiber is an analytic submanifold of km+r. The result-
ing analytic structure is independent of the choice of (smooth) presentation. �

6.4. Weil restriction of scalars. For every finite-type scheme X ′ over C, the set
of C-points X ′(C) can also be thought of as the set of R-points X(R) of a scheme
X over R.

More generally, let S′ → S be a morphism of schemes, and X ′ → S′ a scheme.
The Weil restriction of scalars

ResS′/S(X ′)

is a S-scheme X representing the functor which assigns to any S-scheme T the set

HomS′(T ×S S′, X ′)

of T ×S S′-points on X ′.
If such a scheme X exists, it is unique up to unique isomorphism, by Yoneda’s

lemma.

Theorem 6.5. Assume that S′ → S is finite and locally free, and X ′ is affine or,
more generally, has the property that for every s ∈ S, any finite set of points P
in the fiber of X ′ over s is contained in an affine open U ′ ⊂ X ′. Then, the Weil
restriction ResS′/S(X ′) exists.

Proof. See [BLR90, Theorem 7.6.4]. We just explain how to write down equations
when everything is affine, and S′ → S is free:

Let S = SpecR, S′ = SpecR′, where R′ is free and of finite type as an R-module.
Choose free generators:

R′ = Re1 ⊕ · · · ⊕Ren.
Assume thatX ′ = SpecR′[t]/(f1, . . . , fr). Here, t denotes anm-tuple (t1, . . . , tm),

but we won’t explicitly write the indices 1, . . . ,m, in order to avoid confusion, as

https://stacks.math.columbia.edu/tag/00TV
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we are about to clone the m-tuple. Namely, consider the linear combination

e1t1 + e2t2 + · · ·+ entn ∈ R′[t1, . . . tn],

where each tk denotes an m-tuple. For each j, write

fj(e1t1 + e2t2 + · · ·+ entn) =

n∑
k=1

cjk(t1, . . . tn)ek,

where the cjk ∈ R[t1, . . . tn].
Then, the restriction of scalars X can be presented as the spectrum of the ring

R[t1, . . . tn]/(cjk)1≤j≤r1≤k≤n.

�

6.6. Smoothness of group schemes in characteristic zero.

Theorem 6.7. If G is a group scheme of finite type over a field k of characteristic
zero, then G is smooth over k.

Proof. A summary of the proof: By homogeneity, and the fact that every alge-
braic variety contains a regular point, the reduced group scheme associated to G
is smooth. Thus, a group is smooth iff it is reduced, which again by homogeneity
reduces to the local ring at the identity.

LetR be the local ringO[G]m, where m = me is the maximal ideal of the structure
sheaf at the identity of G. We need to show that it contains no nilpotents. The
comultiplication

∆ : R→ R×R
induced by the multiplication map G × G → G sends any a ∈ m to 1 ⊗ a + a ⊗ 1
module m⊗m. (Exercise in Hopf algebras!) For a nilpotent element a with an = 0
and n minimal such, we will have

0 = ∆(an) = (∆(a))n ≡ nan−1 ⊗ a mod
(
an−1m⊗A+A⊗m2

)
,

and since nan−1 /∈ an−1m (characteristic zero plus minimality of n!), we must have
a ∈ m2.

But then, me/m
2
e coincides with the corresponding quotient for the reduction of

G, which by regularity has dimension equal to the dimension of the ring. Thus,
the local ring O[G]me

is regular. See [Mil12, §VI.9] for details on this proof, and
[Sta19, Tag 047N] for a more abstract thread of arguments, which boils down to
essentially the same calculation. �

7. Compact Lie groups are algebraic

An amazing fact is that the passage from real algebraic groups to Lie groups also
works the other way in the case of compact Lie groups: they can all be realized as
the points of a real algebraic group, as was proven by Weyl.

Proposition 7.1. Every compact Lie group has a faithful (i.e. trivial kernel), finite-
dimensional representation.

Proof. Let π1, π2, . . . be an enumeration of the irreducible representations of G.
We already know from the Peter–Weyl theorem that they are finite-dimensional.

https://stacks.math.columbia.edu/tag/047N
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For every n, let Gn be the kernel of the map: G → GL(π1 ⊕ · · · ⊕ πn). Hence, we
have a sequence of closed subgroups:

G = G0 ⊃ G1 ⊃ G2 ⊃ . . . .

We claim that every such sequence terminates. Indeed, by Cartan’s theorem 5.2,
we know that all Gn are Lie groups, therefore the dimension of Gn has to stabilize
after some n. But then, the induced map of Lie algebras gn+1 ↪→ gn will be an
isomorphism, which means that the identity components G0

n, G0
n+1 are eventually

equal, and since connected components in Lie groups are both open and closed, by
compactness each Gn has a finite number of connected components, so the sequence
has to terminate.

On the other hand, the intersection of the Gi’s is (again by Peter–Weyl) the
kernel of the left regular representation of G on L2(G), hence trivial. �

The second element is of invariant-theoretic nature. For this, let G → GL(V )
be a (complex), finite-dimensional representation of G and consider it as a real
representation by regarding V as a real vector space. (This is the baby case of
“restriction of scalars”.) Accordingly, GL(V ) is considered as an algebraic group
over R (by restriction of scalars). Notice that the Zariski closure2 of the image of
G is a real algebraic subgroup. We need to show that it coincides with G. One
thing that G and its Zariski closure have in common is the set of invariants on
the polynomial ring R[V ]. Recall that the polynomial ring R[V ] is (essentially, by
definition) the symmetric algebra on the dual space S•V ∗.

Proposition 7.2. For each orbit X of a compact group G on the space V of a
finite-dimensional real representation, there is a canonical real algebraic subset Y ,
defined as the fiber over the image of X under the map V → V//G := SpecR[V ]G,
such that X = Y (R).

The compact group in the proposition is not required to be a Lie group.

Proof. We consider the map V → V//G := SpecR[V ]G, and the induced map
on R-points: V (R) → V//G(R). Clearly, the preimage of any point is a union of
G-orbits. We claim:

The preimage of every R-point contains at most one G-orbit on
V (R).

This will be enough to prove the first claim: Since the preimage is an algebraic
variety over R, it means that G-orbits are the R-points of algebraic varieties (maybe
empty, because the preimage of an R-point does not need to contain any R-points
– for instance, consider the quotient of C× by the circle group).

To prove the claim we must show that if Y1, Y2 are two distinct G-orbits on V (R),
then there is a G-invariant polynomial which takes different values on Y1 and Y2
(i.e. the ring of invariant polynomials separates G-orbits).

Notice that R[V ] is a locally finite representation of G (this follows by its iden-
tification with S•V ∗), and therefore by the Peter–Weyl theorems it is completely

2It is important here that we have restricted scalars to R, because the Zariski closure depends

on whether we consider GL(V ) as a complex or as a real variety; for example, the Zariski closure
of the circle group S1 in C× is S1 or C×, according as C× is considered as a real or complex

variety.
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reducible. If we fix two points y1 ∈ Y1 and y2 ∈ Y2, then the integrals:∫
G

f(yi · g)dg

represent two G-invariant functionals `1, `2 on the space of continuous functions on
V . They obviously factor through restriction to the compact subset Y1∪Y2, and by
the Stone–Weierstrass theorem the restriction of polynomials is dense in the space
of continuous functions on Y1 ∪ Y2. Therefore, `1 and `2, when restricted to R[V ],
are linearly independent, i.e. `2 is non-zero on the kernel W of `1.

Hence, `2 defines a G-invariant functional: W → C, and by complete reducibility
this splits; in particular, there is a G-invariant element f ∈W with `2(f) 6= 0. That
is, there is a G-invariant polynomial on V whose integral over Y1 is zero and whose
integral over Y2 is non-zero. But this means that its value on Y1 is zero and its
value on Y2 is non-zero, which is what we wanted to prove. �

Remarks 7.3. (1) A similar argument works to establish the following im-
portant result: Let G be a reductive algebraic group over an algebraically
closed field k in characteristic zero. We have not defined “reductive”, but in
characteristic zero this is equivalent to the statement that every algebraic
representation of G is completely reducible. Let X be an affine variety
on which G acts. Then the closed points of X//G := Speck[X]G are in
bijection with (Zariski) closed orbits of G on X.

Here is the proof: Let Y1, Y2 be two closed orbits and consider the G-
stable ideal I ⊂ k[X] of regular functions vanishing on Y1. Restriction to
Y2 gives a map: I → k[Y2], and the image I ′ has to be non-zero because
otherwise Y2 would be in the Zariski closure of Y1. But since Y2 is a Zariski-
closed orbit, a non-zero ideal coincides with the whole ring, therefore the
image I ′ of I contains constant functions. By reductivity, there is a G-
invariant quotient of I ′, hence a G-invariant quotient of I. By reductivity,
again, I has a G-invariant element whose image in I ′ is non-zero. In other
words, Y1 and Y2 are separated by G-invariant regular functions.

(2) Proposition 7.2 is not true for non-compact groups. For instance, not only
is the subgroup:

 1
x t
y tα

 : x, y ∈ R, t ∈ R×+


of GL3(R) (where α is an irrational number) not an algebraic subgroup of
GL3, but it is not isomorphic to (the R-points of) any real algebraic group.3

Given, now, a compact group G, denote by R[G] the space of R-valued functions
which are finite under left (or, equivalently, right) translation by G.

Proposition 7.4. R[G] is a finitely generated, commutative Hopf algebra.

Recall that a Hopf algebra is an algebra A which also has structures which
correspond to the axioms of a group (if A were an algebra of functions on the
group): a comultiplication A → A ⊗ A, a counit A → R, and an antipode A → A
satisfying certain natural axioms.

3For details, cf.
http://terrytao.wordpress.com/2011/06/25/two-small-facts-about-lie-groups/.

http://terrytao.wordpress.com/2011/06/25/two-small-facts-about-lie-groups/
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Proof. The structure of a commutative algebra follows once we observe that left-
finiteness is preserved under tensor products, and the multiplication map C(G) ⊗
C(G)→ C(G) is left-equivariant, hence preserves finiteness.

The structure of a commutative Hopf algebra is obvious for the space C(G) of
continuous functions; moreover, since left- and right-finiteness are equivalent, the
comultiplication C(G) → C(G × G), which sends f to the function f(g1, g2) =
f(g1g2), preserves finiteness, and the finite vectors of C(G×G) are R[G]⊗ R[G].

There remains to argue about finite generation. Let G → GL(V ) be a faithful
representation. By the Stone–Weierstrass theorem, the restriction of polynomial
functions on GL(V ) (viewed here as a real algebraic variety, that is, as ResC/RGLV )
is dense in C(G). On the other hand, it is a G × G-invariant subspace of R[G].
The (real!) representation R[G] being semisimple, with its irreducible components
being orthogonal in the (real-valued) L2(G) the only way that the restriction of
polynomials on GL(V ) be dense is that it is equal to R[G]. Hence, R[G] is of finite
type. �

Let, now G = SpecR[G]. Evaluation at the points of G gives rise to a natural
map G→ G(R) = Hom(R[G],R). We have arrived at Weyl’s theorem:

Theorem 7.5. For every compact Lie group G, setting G = SpecR[G], the nat-
ural map G → G(R) is an isomorphism of Lie groups. Every continuous, finite-
dimensional (complex) representation G → GL(V ) factors through an algebraic
representation GC → GL(V ).

Proof. We start with the second claim: Polynomial functions on ResC/RGLV re-
strict to finite function on G, which gives rise to a morphism G → ResC/RGLV .
By the universal property of Weil restriction, this is the same as a morphism
GC → GLV .

For the first claim, choose a faithful, finite-dimensional representation G →
GL(V ). Replacing the space V of Proposition 7.2 with End(V ) = V ∗⊗V , and using
the embedding GLV ↪→ End(V ), there is a canonical real algebraic subvariety Y ⊂
V ∗⊗V , namely, the fiber of the image of G under the map V ∗⊗V → (V ∗⊗V )//G,
such that G = Y (R). On the other hand, the map to V ∗ ⊗ V factors through G,
which clearly has to belong to Y , therefore at the level of points G = G(R). The
map G→ G(R) is also a homomorphism of Lie groups, so it is an isomorphism. �

We will later see a strengthening of this theorem, due to Chevalley (Theorem
5.6).
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