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Riemann:
∫ ∞

0 y
s
2 ∑∞

n=1 e−n2πydx = π−
s
2 Γ( s

2 )ζ(s), and proof of
functional equation based on symmetry of the theta series:

θ(y) =
∞

∑
n=1

e−πn2y = y−
1
2 θ(y−1).

I am going to use the language of adeles.

For Q : A = (Ẑ⊗Z Q)×R =
′

∏
p

Qp ×R.

Φ =
⊗
p<∞

1Zp ⊗Φ∞, Φ∞ ∈ S(R), then

∑
q∈Q

Φ(q) = ∑
q∈Q

∀p<∞,qp∈Zp

Φ∞(q) = ∑
n∈Z

Φ∞(n)

but Φr = 1riZr
for a prime r would correspond to ∑n∈riZ Φ∞(n).
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θ(y) =
∞

∑
n=1

e−πn2y = y−
1
2 θ(y−1).

Iwasawa–Tate reformulation as (x ↔ √y, F = Q)∫
F×\A×

χ(x) ∑
γ∈F×

Φ(γx)d×x = L(χ, s) for suitable choice of Φ,

where the critical local calculation is that, for Φv = 1ov ,
χv : F×v /o×v → C,∫

k×v
χv(x)Φv(x)d×x =

∞

∑
i=0

χv(v
i) =

1
1− χv(v)

= Lv(χv, 0).

Very soon we will switch to function fields.

For a function field F = F(C) : A =
′

∏
v∈|C|

Fv,

F×\A×/ ∏
v
o×v = Pic(C)(F).
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Notation: For an algebraic group G over F, [G] = G(F)\G(A), and
K = ∏v G(ov).

E.g., for G = Gm = GL1, [G]/K = Pic(C).

In this case, with Φ = ∏v 1ov , the function
ΘΦ(L) = ∑γ∈F× Φ(γL) ∈ C∞([Gm]/K) has the meaning (thinking of
L as a line bundle on the curve C)

ΘΦ(L) = #H0(C, L)

Indeed, representing L by a divisor in A×/K, its sections are those
meromorphic functions γ ∈ F× such that valv(γL) ≥ 0 at all v.
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There is a universe of examples of “theta series” that pair with
automorphic forms to produce L-functions. Before we proceed, let us
remember that an L-function for an automorphic representation π

with (conjectural, in the number field case) Langlands parameter

φ :WF → LG

is determined by a finite-dimensional representation ρ of its
Langlands dual group

ρ : LG → GL(V)

gives
L(π, ρ, s) = ∏

v
Lv(πv, ρ, s) = ∏

v
Lv(ρ ◦ φv, s).

Moreover, the parameter s is a red herring: we can write
L(π, ρ, s) = L(π, ρ′, 0) by setting ρ′ = the product of ρ by

LG = Ǧ oWF →WF
|•|s−−→ C× ↪→ GL(V).

Therefore, we will often just write L(π, ρ) for L(π, ρ, 0), but
depending on ρ, this may actually correspond what one usually
considers as an L-function at a different s. 6/35
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Introducing a “philosophy” of where to find integrals representing
automorphic L-functions.

Quantization of suitable Hamiltonian G-spaces M.

“Suitable”:

• M is smooth and affine. One should be able to relax both
assumptions, but not the object of this work.

• M has symplectic structure, and a G-action by
symplectomorphisms.

• M is Hamiltonian, i.e., the g-action is by Hamiltonian vector

fields induced from a moment map M
µ−→ g∗.

Basic examples: M = T∗X for a G-space X, or M = a symplectic
representation of G.

• M has a multiplicity-free property, “coisotropic”: the Poisson
algebra F[M]G is commutative.
Example: If M = T∗X, then M is coisotropic ⇐⇒ X is spherical,
i.e., F[X] is a multiplicity-free sum of (highest weight)
G-modules.

• Some technical properties, to ensure that our space is sufficiently
“geometric”, i.e., we didn’t just extract an open subset from a
“geometric” space like T∗X:

• There is a Gm-action, commuting with G, compatible with the
square action on g∗.

• The image of the moment map contains nilpotent elements.
• No torsion in generic stabilizers.
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What is “quantization”?

• Locally, produce a unitary representation ωv of G(Fv) out of M.
Functions in F[M] deform to operators on ωv, and their Poisson
bracket deforms to commutator of operators.

• A basic vector Φ0
v ∈ ωv for almost all v.

• Globally, an automorphic realization ω :=
⊗′

v ω∞
v → C∞([G]).
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Basic examples of quantization:
• M = a symplectic representation, then ωv = the Weil/oscillator

representation. Schrödinger model (ignoring half-density twists
throughout):

X ⊂ M a Lagrangian, ωv = L2(X(Fv)),

with right translations by G(Fv), if X is G-stable, otherwise
involving Fourier transforms, and may need to switch from G to
a metaplectic cover G̃ (will ignore, mostly).
It is known that this comes with an automorphic realization

ω → C∞([S̃p]) restr.−−→ C∞([G]),

which on the Schrödinger model is just the theta series

S(X(A)) 3 Φ 7→ ΘΦ(g) = ∑
γ∈X(F)

(ω(g)Φ)(γ) ∈ C∞([G]).

• M = T∗X for some G-space X, then ωv = L2(X(Fv)),
Φ0

v = 1X(ov), and ΘΦ = ∑γ∈X(F) Φ(γg) ∈ C∞([G]).

When Φ =
⊗

v Φ0
v, where Φ0

v = 1X(ov), for all v (function field case), we’ll
be writing ΘM or ΘX for ΘΦ. 10/35



Questions one can ask about theta series:

1. Evaluate the integral above against a suitably chosen
automorphic form f ∈ π:

〈ΘΦ, f 〉 =
∫
[G]

f (g)ΘΦ(g)dg.

2. Evaluate the L2-norm of the projection of ΘΦ to π〈
ΘΦ, ΘΦ

〉
π

.

This is the same as summing | 〈ΘΦ, f 〉 |2 over all f in an ON basis
of π.
The pairing

〈
ΘΦ, ΘΦ

〉
and its spectral decomposition are called

the relative trace formula (Jacquet).

We expect to see L-values!
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Themes to be explored:

• Examples of quantization. Which familiar constructions in the
theory of automorphic forms does it encode?

• The Euler factorization principle: Relations between global
periods and the local unitary structure (Plancherel formula).

• Relations with L-functions. (Mostly in the talk by A. Venkatesh.)

• Geometrization/categorification of periods/theta series.
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The linear paradigm: M = a symplectic G-space.

• Generalizing Tate, Godement–Jacquet used X = Matn under the
action of G = (GLn×GLn)/Gm (set [G] = G(F)\G(A)),
f1 ⊗ f2 ∈ τ̃ ⊗ τ a cusp form,

∫
[G]

f1(g1) f2(g2) ∑
γ∈Matn(F)

Φ(g−1
1 γg2)

∣∣∣∣det g2

det g1

∣∣∣∣ n
2

d(g1, g2) =

∫
GLn(A)

〈 f1, τ(x) f2〉Φ(x)|det x|
n
2 dx = L(τ, Std,

1− n
2

1
2
)

(for suitable Φ and f ).
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• The theta correspondence (Howe duality):
G = G1 × G2 ↪→ Sp(M) a dual pair (ignore metaplectic covers).
Weil representation ω = ⊗′vωv of Sp(M)(A),
Φ ∈ ω, theta series ΘΦ.
Rallis inner product formula, say for G1 = SO2n, G2 = Sp2n:
π = τ ⊗ θ(τ), Φ ∈ ω, then

〈ΘΦ, ΘΦ〉π = ∏
v
〈Φv, Φv〉πv

,

where
〈Φv, Φv〉ωv

=
∫
〈Φv, Φv〉πv

µ(τv)

is the Plancherel formula for ωv (with respect to the Plancherel

measure µ(πv) on ̂SO2n(Fv)).
Moreover

〈Φv, Φv〉πv
= Lv(τv, Std,

1
2
)

when Φv = Φ0
v, the basic vector. (Omitting factors that don’t

depend on the representation!)
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The period paradigm

•Hecke: X = GL2, G = GL1×GL2, χ⊗ π 3 χ⊗ f ,

∫
[Gm ]

χ(a) f

(
a

1

)
d×a = L(χ⊗ π, Std,

1
2
) for suitable choice of f .

This can also be written as an integral against a theta series. E.g., over
function fields, f everywhere unramified, there is a canonical choice
Φ = ∏v 1X(ov). The associated theta series will be denoted by ΘX ,

ΘX(g) = ∑
γ∈X(F)

Φ(γg) ∈ C∞([G]),

where [G] = G(F)\G(A), and we have

∫
[Gm ]

χ(a) f

(
a

1

)
d×a =

∫
[G]

χ(a) f (g)ΘX(a, g)d(a, g).
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∫
[Gm ]

χ(a) f

(
a

1

)
d×a =

∫
[G]

χ(a) f (g)ΘX(a, g)d(a, g) = L(χ⊗π, Std,
1
2
).

In this case, [G]/K = Pic(C)× Bun2(C) = pairs (line bundle, rank 2
vector bundle) on C,
and ΘX(L, V) counts the number of morphisms L→ V.

Remark: For the formula above to hold, we need a normalization of f
with L2-norm

〈
f , f̄
〉
[G] = L(π, Ad, 1). When ‖ f ‖2 = 1, we get

∫
[Gm ]

χ(a) f

(
a

1

)
d×a =

L(χ⊗ π, Std, 1
2 )√

L(π, Ad, 1)

instead.
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•Generalizing this, Waldspurger proved (for
X = T\(T ×GL2) = SO2\SO2 ×GSO3, T ↪→ GL2 a non-split
1-dimensional torus, and much later Gross–Prasad conjectured (for
X = SOn\(SOn × SOn+1) = H\G), followed by much more general
conjectures by Gan–Gross–Prasad, that∣∣∣∣∫

[H]
f (h)dh

∣∣∣∣2 =
1
|Sφ|

L(π,⊗, 1
2 )

L(π, Ad, 1)
,

again for suitable f ∈ π.

The exact conjecture is actually due to Ichino–Ikeda: for arbitrary
f ∈ π = ⊗′vπv, writing f = ⊗v fv, the RHS is

1
|Sφ|

∗
∏

v

∫
H(kv)

〈π(h) fv, fv〉 dhv.
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Translation to theta series: Again, we can replace the above integrals
by pairings against theta series

ΘΦ(g) = ∑
γ∈X(F)

Φ(γg) ∈ C∞([G]),

where Φ ∈ S(X(A)). Over function fields, Φ = ∏v 1X(ov) (write
ΘΦ = ΘX for this specific Φ), f unramified,∫

[H]
f (h)dh =

∫
[G]

f (g)ΘX(g)dg.

The II conjecture states that

〈
ΘX , ΘX

〉
π
=

1
|Sφ|
×
∗

∏
v

Plancherel density Jπv(Φv),

where 〈
Φv, Φv

〉
L2(X(Fv))

=
∫

Jπv(Φv)µ(πv),

with µ(πv) the Plancherel measure of G.
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Combining the “period” and the “linear” paradigms:

M = T∗X, with X a G-variety or a (not necessarily G-stable)
Lagrangian in a symplectic vector space.

 unitary representations ωv = L2(X(Fv)) at every place v.

The Plancherel decomposition〈
Φv, Φv

〉
ωv

=
∫

Jπv(Φv)

involves the unitary dual of G or a different group. In the Langlands
philosophy, we should be thinking of subgroups of the Langlands
dual group of G, e.g.:

• G = GLn×GLn, X = Matn, then Ǧ = GLn×GLn, but only
π = τ̃ ⊗ τ appearing, corresponds to

ǦM := GLn ↪→ Ǧ,

embedded as g 7→ (gC, g), with gC the Chevalley involution (up
to conjugacy, tg−1).
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• G = SO2n × Sp2n, M = a symplectic vector space, ωv = the Weil
representation, then Ǧ = SO2n × SO2n+1, but only π = τ ⊗ θ(τ)

appears, so ǦM = SO2n ↪→ Ǧ, embedded “diagonally”.

• G = SO2n × SO2n+1, X = SO2n\G, then Ǧ = SO2n × Sp2n, and all
tempered representations of G appear (rather: all tempered
L-packets — local GGP conjecture proven by Waldspurger,
Moeglin). Hence, ǦM = Ǧ.

The relative trace formula and Ichino–Ikeda conjecture, in all cases:
For a (suitable) automorphic representation π,

〈
ΘΦ, ΘΦ

〉
π
=? ·∏

v

〈
Φv, Φv

〉
πv

.
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Other types of “periods”:

• The Whittaker case:
Let N ⊂ G the unipotent radical of a Borel subgroup, f : N → Ga

a generic additive character (e.g., for GLn, sum of entries just
above the diagonal), use the same letter for its differential, f ∈ n∗

or for a nilpotent lift f ∈ g∗, and let ψ be a composition
[N]→ [Ga]→ C×.

M = T∗G// f N = ( f + n⊥)×N G

quantizes to

ωv = L2(N(Fv)\G(Fv), ψv), the Whittaker model.

Its theta series ΘΦ = ∑γ∈N\G(F) Φ(γg) is the well-known
Poincaré series.
For Φ = the basic function at every place,

〈ΘΦ, ΘΦ〉π =
1
|Sφ|

1
L(π, Ad, 1)

(conjecturally, known for GLn and some other groups.) 22/35



The Whittaker case is a case where the minimal nilpotent orbit in the
image of the moment map M→ g∗ is not {0}, but the orbit of f ∈ g∗.
In general, our assumptions imply that Gm × G has a unique closed
orbit M0 ⊂ M with nilpotent image O = f G ⊂ g∗, and that (at least
up to equality of formal neighborhoods of M0),

M = S×HU
(h⊕u+)∗ T∗G,

where:

• H is a reductive subgroup (the stabilizer of a point on M0, with
nilpotent image f ∈ g∗);

• S is a symplectic H-representation;
• U is the positive unipotent radical (= h acts with weights ≥ 1) of

a parabolic attached to an sl2-triple (h, e, f ) containing f .
• U+ ⊂ U is the subgroup where h acts with weights ≥ 2, so f

defines a character U+ → Ga, and U/U+ is a symplectic vector
space; thus U ×U+ Ga is a Heisenberg group.

• S→ h∗ is the moment map, and S→ u∗+ has image f .
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M = S×HU
(h⊕u+)∗ T∗G,

Quantizations of such M comprise a mixture of the cases that we’ve
seen:

• the linear case H = G, M = S;
• the period/homogeneous case M = T∗(H\G);
• the Whittaker case, f 6= 0 and U = U+;

plus one more: when U+ 6= U, we need to include a Weil
representation of the Heisenberg group, e.g.

Fourier–Jacobi models (studied by Gan–Gross–Prasad):

IndS̃p(W ′)
S̃p(W)nU

ωψ,

where W is a symplectic space, W ′ = W ⊕ l ⊕ l′ is its sum with a
2-dimensional symplectic space, U = the unipotent radical of the
parabolic stabilizing the isotropic subspace (line) l, and ωψ the
oscillator representation associated to l∨ ⊗W.

24/35



Outline

1. Periods

2. Hamiltonian spaces

3. Examples

4. Summary and trailer

5. Geometrization/categorification

25/35



What we have seen:
• General multiplicity-free, smooth affine Hamiltonian spaces

M = S×HU
(h⊕u+)∗ T∗G,

admit quantizations covering a broad range of “periods” in the
theory of automorphic forms.

• Quantization consists of local unitary representations ωv and
global theta series ΘM ∈ C∞([G]).

• Conjecturally, the Plancherel decomposition of ωv entails
Langlands parameters from a different dual group ǦX ⊂ Ǧ:〈

Φv, Φv
〉
=
∫

ĜX

Jπv(Φv)µ(πv).

• Conjecturally, the components of the spectral decomposition of〈
ΘM, ΘM

〉
, (relative trace formula)

admit Euler products〈
ΘM, ΘM

〉
=? ·∏

v
Jπv(Φ

0
v).

• Somehow, the local factors Jπv(Φ
0
v) turn out to be local L-factors. 26/35



What we will see:

• On the “spectral side” (Langlands parameters) there is a similar
Hamiltonian space M̌ “explaining” these phenomena.

• The role of H is played by the dual group ǦX ⊂ Ǧ, so

M̌ = Š×ǦXǓ
ǧX⊕ǔ+ T∗Ǧ.

• The sl2-triple (ȟ, ě, f̌ ) giving rise to Ǔ, Ǔ+ is one canonically
associated to the space M, as follows (up to now, swept under
the rug):
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• It is not Langlands parameters conjecturally entering the
Plancherel decomposition of ωv, but Arthur parameters,
associated to a unique conjugacy class of sl2 ⊂ ǧ, e.g.:
M = T∗(pt) = pt⇒ ωv = the trivial representation, ǦX = 1, but
the trivial representation has non-trivial Langlands parameter.
However, it has Arthur parameter with sl2 ↪→ ǧ principal.
For a principal sl2-triple (ȟ, ě, f̌ ), we obtain Ǔ = Ǔ+ = Ň (=
maximal unipotent in Ǧ), and

M̌ = ( f̌ + ň⊥)×N Ǧ

the cotangent space of the Whittaker model of Ǧ!
Hence, the dual of (trivial period for G) is (Whittaker period for
Ǧ).

• We’ll see that this duality is involutive, i.e.,

the dual of (trivial period for G) is (Whittaker period for Ǧ).

28/35



Outline

1. Periods

2. Hamiltonian spaces

3. Examples

4. Summary and trailer

5. Geometrization/categorification

29/35



To formulate conjectures about this duality, we need to switch to the
categorical setting of geometric Langlands.

Local story: Derived endomorphisms and the Plancherel formula

Now let F = Fq, F = F((t)) ⊃ o = F[[t]], and for an affine variety X
think of X(F) = LX(F), X(o) = L+(F), points of the loop and the arc
space.

Set Shv(LX/L+G) denote an appropriate — bounded DG – category
of L+G-equivariant “sheaves” on LX — should be l-adic for
translation to functions, but once we abstract from functions one can
also take F = C and work with D-modules. Let k: coefficient field,
characteristic 0.

Sheaf–function dictionary: In an l-adic setting, the inner product of
functions should be obtained as Frobenius trace of derived
homomorphisms (Ext) of sheaves:
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Given two l-adic sheaves F ,G on an Fq-variety Y, let f and g∨ be the trace
functions associated to respectively F and DG, with D the Verdier dual.
Then

∑
Y(Fq)

f (y)g∨(y) = tr(Frq, Hom(F ,G)∨).

The basic function corresponds to the (Verdier self-dual, for
appropriate normalization) constant sheaf kL+G.

Therefore, our goal will be to analyze End(kL+G), and relate it to
L-functions (in lecture of David Ben-Zvi).
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Global story: The period sheaf

(Ignoring half-twists.)

F = F(C).

Recall, Iwasawa–Tate case: X = A1, G = Gm.

Φ = ∏v 1ov  ΘX ∈ C∞(Pic(C)(F)),

with ΘX(L) = #H0(C, L).

Geometrically, Pic(C) = Maps(C, pt/G).

Let PicX(C) = Maps(C, A1/G), the stack classifying L ∈ Pic(C)
together with section C → L.

π : PicX(C)→ Pic(C) forgetful.

Then ΘX is the trace of Frobenius on PX = π!k.

This is the period sheaf.
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Similarly, for a G-space X, we have

π : BunX
G = Maps(C, X/G)→ BunG = Maps(C, pt/G).

And ΘX is the trace of Frobenius on PX = π!k.

(If X is not G-stable, but a Lagrangian in the symplectic G-space M,
the generalization of this construction has been explained in papers
of Lysenko.)
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Questions on the period sheaf (in lecture of Akshay Venkatesh):

1. Evaluate its pairing with Hecke eigensheaves F :

Hom(PX ,F ) (derived homomorphisms, i.e., Ext).

The Frobenius trace on this corresponds to〈
ΘX , f∨

〉
, f∨ :

the automorphic form associated to the Verdier dual of F .

2. Evaluate the (derived) endomorphisms of PX :

End(PX)

(corresponding, roughly, to the “relative trace formula” inner
product 〈ΘX , ΘX〉).
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In the lectures by Venkatesh and Ben-Zvi, you will see how to
conjecturaly answer these questions on the spectral side (using the
Hamiltonian Ǧ-space M̌), in a way that recovers the relevant
L-functions.

Thank you!감사합니다!
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