Hamiltonian spaces and periods of automorphic forms

Yiannis Sakellaridis, Johns Hopkins University. Joint with David Ben-Zvi (UT Austin) and Akshay Venkatesh (IAS). 45th KAST International Symposium, February 26, 2021.

Outline

1. Periods
2. Hamiltonian spaces
3. Examples
4. Summary and trailer
5. Geometrization/categorification

Riemann: $\int_{0}^{\infty} y^{\frac{s}{2}} \sum_{n=1}^{\infty} e^{-n^{2} \pi y} d x=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$, and proof of functional equation based on symmetry of the theta series:

$$
\theta(y)=\sum_{n=1}^{\infty} e^{-\pi n^{2} y}=y^{-\frac{1}{2}} \theta\left(y^{-1}\right) .
$$

I am going to use the language of adeles.

$$
\begin{gathered}
\text { For } \mathbb{Q}: \mathbb{A}=\left(\widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}\right) \times \mathbb{R}=\prod_{p}^{\prime} \mathbb{Q}_{p} \times \mathbb{R} . \\
\Phi=\bigotimes_{p<\infty} 1_{\mathbb{Z}_{p}} \otimes \Phi_{\infty}, \Phi_{\infty} \in \mathcal{S}(\mathbb{R}) \text {, then } \\
\sum_{q \in \mathbb{Q}} \Phi(q)=\sum_{\substack{q \in \mathbb{Q} \\
\forall p<\infty, q p \in \mathbb{Z}_{p}}} \Phi_{\infty}(q)=\sum_{n \in \mathbb{Z}} \Phi_{\infty}(n)
\end{gathered}
$$

but $\Phi_{r}=1_{r^{i} \mathbb{Z}_{r}}$ for a prime r would correspond to $\sum_{n \in r^{i} \mathbb{Z}} \Phi_{\infty}(n)$.

$$
\theta(y)=\sum_{n=1}^{\infty} e^{-\pi n^{2} y}=y^{-\frac{1}{2}} \theta\left(y^{-1}\right) .
$$

Iwasawa-Tate reformulation as ($x \leftrightarrow \sqrt{y}, F=\mathbf{Q}$)

$$
\int_{F^{\times} \backslash \mathbb{A}^{\times}} \chi(x) \sum_{\gamma \in F^{\times}} \Phi(\gamma x) d^{\times} x=L(\chi, s) \text { for suitable choice of } \Phi,
$$

where the critical local calculation is that, for $\Phi_{v}=1_{\mathfrak{o}_{v}}$, $\chi_{v}: F_{v}^{\times} / \mathfrak{o}_{v}^{\times} \rightarrow \mathbb{C}$,

$$
\int_{k_{v}^{\times}} \chi_{v}(x) \Phi_{v}(x) d^{\times} x=\sum_{i=0}^{\infty} \chi_{v}\left(\omega^{i}\right)=\frac{1}{1-\chi_{v}(\omega)}=L_{v}\left(\chi_{v}, 0\right) .
$$

Very soon we will switch to function fields.

$$
\begin{aligned}
& \text { For a function field } F=\mathbb{F}(C): \mathbb{A}=\prod_{v \in|C|}^{\prime} F_{v}, \\
& \qquad F^{\times} \backslash \mathbb{A}^{\times} / \prod_{v} \mathfrak{o}_{v}^{\times}=\operatorname{Pic}(C)(\mathbb{F}) .
\end{aligned}
$$

Notation: For an algebraic group G over $F,[G]=G(F) \backslash G(\mathbb{A})$, and $K=\prod_{v} G\left(\mathfrak{o}_{v}\right)$.
E.g., for $G=G_{m}=G L_{1},[G] / K=\operatorname{Pic}(C)$.

In this case, with $\Phi=\prod_{v} 1_{\mathfrak{o}_{v}}$, the function
$\Theta_{\Phi}(L)=\sum_{\gamma \in F^{\times}} \Phi(\gamma L) \in C^{\infty}\left(\left[\mathrm{G}_{m}\right] / K\right)$ has the meaning (thinking of L as a line bundle on the curve C)

$$
\Theta_{\Phi}(L)=\# H^{0}(C, L)
$$

Indeed, representing L by a divisor in \mathbb{A}^{\times} / K, its sections are those meromorphic functions $\gamma \in F^{\times}$such that $\operatorname{val}_{v}(\gamma L) \geq 0$ at all v.

There is a universe of examples of "theta series" that pair with automorphic forms to produce L-functions. Before we proceed, let us remember that an L-function for an automorphic representation π with (conjectural, in the number field case) Langlands parameter

$$
\phi: \mathcal{W}_{F} \rightarrow{ }^{L} G
$$

is determined by a finite-dimensional representation ρ of its Langlands dual group

$$
\rho:{ }^{L} G \rightarrow \mathrm{GL}(V)
$$

gives

$$
L(\pi, \rho, s)=\prod_{v} L_{v}\left(\pi_{v}, \rho, s\right)=\prod_{v} L_{v}\left(\rho \circ \phi_{v}, s\right) .
$$

Moreover, the parameter s is a red herring: we can write $L(\pi, \rho, s)=L\left(\pi, \rho^{\prime}, 0\right)$ by setting $\rho^{\prime}=$ the product of ρ by

$$
{ }^{L} G=\check{G} \rtimes \mathcal{W}_{F} \rightarrow \mathcal{W}_{F} \xrightarrow{|\bullet|^{s}} \mathbb{C}^{\times} \hookrightarrow \mathrm{GL}(V) .
$$

Therefore, we will often just write $L(\pi, \rho)$ for $L(\pi, \rho, 0)$, but depending on ρ, this may actually correspond what one usually considers as an L-function at a different s.

Outline

```
1. Periods
2. Hamiltonian spaces
```


3. Examples

```
4. Summary and trailer
```


5. Geometrization/categorification

Introducing a "philosophy" of where to find integrals representing automorphic L-functions.

Quantization of suitable Hamiltonian G-spaces M.

"Suitable":

- M is smooth and affine. One should be able to relax both assumptions, but not the object of this work.
- M has symplectic structure, and a G-action by symplectomorphisms.
- M is Hamiltonian, i.e., the \mathfrak{g}-action is by Hamiltonian vector fields induced from a moment map $M \xrightarrow{\mu} \mathfrak{g}^{*}$.
Basic examples: $M=T^{*} X$ for a G-space X, or $M=$ a symplectic representation of G.
- M has a multiplicity-free property, "coisotropic": the Poisson algebra $F[M]^{G}$ is commutative.
Example: If $M=T^{*} X$, then M is coisotropic $\Longleftrightarrow X$ is spherical, i.e., $F[X]$ is a multiplicity-free sum of (highest weight) G-modules.
- Some technical properties, to ensure that our space is sufficiently

What is "quantization"?

- Locally, produce a unitary representation ω_{v} of $G\left(F_{v}\right)$ out of M. Functions in $F[M]$ deform to operators on ω_{v}, and their Poisson bracket deforms to commutator of operators.
- A basic vector $\Phi_{v}^{0} \in \omega_{v}$ for almost all v.
- Globally, an automorphic realization $\omega:=\otimes_{v}^{\prime} \omega_{v}^{\infty} \rightarrow C^{\infty}([G])$.

Basic examples of quantization:

- $M=$ a symplectic representation, then $\omega_{v}=$ the Weil/oscillator representation. Schrödinger model (ignoring half-density twists throughout):

$$
X \subset M \text { a Lagrangian, } \omega_{v}=L^{2}\left(X\left(F_{v}\right)\right)
$$

with right translations by $G\left(F_{v}\right)$, if X is G-stable, otherwise involving Fourier transforms, and may need to switch from G to a metaplectic cover \tilde{G} (will ignore, mostly).
It is known that this comes with an automorphic realization

$$
\omega \rightarrow C^{\infty}([\widetilde{S p}]) \xrightarrow{\text { restr. }} C^{\infty}([G]),
$$

which on the Schrödinger model is just the theta series

$$
\mathcal{S}(X(\mathbb{A})) \ni \Phi \mapsto \Theta_{\Phi}(g)=\sum_{\gamma \in X(F)}(\omega(g) \Phi)(\gamma) \in C^{\infty}([G]) .
$$

- $M=T^{*} X$ for some G-space X, then $\omega_{v}=L^{2}\left(X\left(F_{v}\right)\right)$,

$$
\Phi_{v}^{0}=1_{X\left(\mathfrak{o}_{v}\right)}, \text { and } \Theta_{\Phi}=\sum_{\gamma \in X(F)} \Phi(\gamma g) \in C^{\infty}([G])
$$

When $\Phi=\otimes_{v} \Phi_{v}^{0}$, where $\Phi_{v}^{0}=1_{X\left(\mathfrak{o}_{v}\right)}$, for all v (function field case), we'll be writing Θ_{M} or Θ_{X} for Θ_{Φ}.

Questions one can ask about theta series:

1. Evaluate the integral above against a suitably chosen automorphic form $f \in \pi$:

$$
\left\langle\Theta_{\Phi}, f\right\rangle=\int_{[G]} f(g) \Theta_{\Phi}(g) d g .
$$

2. Evaluate the L^{2}-norm of the projection of Θ_{Φ} to π

$$
\left\langle\Theta_{\Phi}, \overline{\Theta_{\Phi}}\right\rangle_{\pi}
$$

This is the same as summing $\left|\left\langle\Theta_{\Phi}, f\right\rangle\right|^{2}$ over all f in an ON basis of π.
The pairing $\left\langle\Theta_{\Phi}, \overline{\Theta_{\Phi}}\right\rangle$ and its spectral decomposition are called the relative trace formula (Jacquet).

We expect to see L-values!

Themes to be explored:

- Examples of quantization. Which familiar constructions in the theory of automorphic forms does it encode?
- The Euler factorization principle: Relations between global periods and the local unitary structure (Plancherel formula).
- Relations with L-functions. (Mostly in the talk by A. Venkatesh.)
- Geometrization/categorification of periods/theta series.

Outline

\author{

1. Periods
 2. Hamiltonian spaces
}
2. Examples
3. Summary and trailer
4. Geometrization/categorification

The linear paradigm: $M=$ a symplectic G-space.

- Generalizing Tate, Godement-Jacquet used $X=$ Mat $_{n}$ under the action of $G=\left(\mathrm{GL}_{n} \times \mathrm{GL}_{n}\right) / \mathrm{G}_{m}(\operatorname{set}[G]=G(F) \backslash G(\mathbb{A}))$, $f_{1} \otimes f_{2} \in \tilde{\tau} \otimes \tau$ a cusp form,

$$
\begin{aligned}
& \int_{[G]} f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right) \sum_{\gamma \in \mathrm{Mat}_{n}(F)} \Phi\left(g_{1}^{-1} \gamma g_{2}\right)\left|\frac{\operatorname{det} g_{2}}{\operatorname{det} g_{1}}\right|^{\frac{n}{2}} d\left(g_{1}, g_{2}\right)= \\
& \int_{\mathrm{GL}_{n}(\mathbb{A})}\left\langle f_{1}, \tau(x) f_{2}\right\rangle \Phi(x)|\operatorname{det} x|^{\frac{n}{2}} d x=L\left(\tau, \operatorname{Std}, \frac{1-n}{2} \frac{1}{2}\right)
\end{aligned}
$$

(for suitable Φ and f).

- The theta correspondence (Howe duality):
$G=G_{1} \times G_{2} \hookrightarrow \operatorname{Sp}(M)$ a dual pair (ignore metaplectic covers).
Weil representation $\omega=\otimes_{v}^{\prime} \omega_{v}$ of $\operatorname{Sp}(M)(\mathbb{A})$,
$\Phi \in \omega$, theta series Θ_{Φ}.
Rallis inner product formula, say for $G_{1}=\mathrm{SO}_{2 n}, G_{2}=\mathrm{Sp}_{2 n}$: $\pi=\tau \otimes \theta(\tau), \Phi \in \omega$, then

$$
\left\langle\Theta_{\Phi}, \Theta_{\Phi}\right\rangle_{\pi}=\prod_{v}\left\langle\Phi_{v}, \Phi_{v}\right\rangle_{\pi_{v}}
$$

where

$$
\left\langle\Phi_{v}, \Phi_{v}\right\rangle_{\omega_{v}}=\int\left\langle\Phi_{v}, \Phi_{v}\right\rangle_{\pi_{v}} \mu\left(\tau_{v}\right)
$$

is the Plancherel formula for ω_{v} (with respect to the Plancherel measure $\mu\left(\pi_{v}\right)$ on $\left.\widehat{S_{2 n}\left(F_{v}\right)}\right)$.
Moreover

$$
\left\langle\Phi_{v}, \Phi_{v}\right\rangle_{\pi_{v}}=L_{v}\left(\tau_{v}, \operatorname{Std}, \frac{1}{2}\right)
$$

when $\Phi_{v}=\Phi_{v}^{0}$, the basic vector. (Omitting factors that don't depend on the representation!)

The period paradigm

- Hecke: $X=\mathrm{GL}_{2}, G=\mathrm{GL}_{1} \times \mathrm{GL}_{2}, \chi \otimes \pi \ni \chi \otimes f$,

$$
\int_{\left[\mathbf{G}_{m}\right]} \chi(a) f\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right) d^{\times} a=L\left(\chi \otimes \pi, \operatorname{Std}, \frac{1}{2}\right) \text { for suitable choice of } f .
$$

This can also be written as an integral against a theta series. E.g., over function fields, f everywhere unramified, there is a canonical choice $\Phi=\prod_{v} 1_{X\left(\mathfrak{o}_{v}\right)}$. The associated theta series will be denoted by Θ_{X},

$$
\Theta_{X}(g)=\sum_{\gamma \in X(F)} \Phi(\gamma g) \in C^{\infty}([G])
$$

where $[G]=G(F) \backslash G(\mathbb{A})$, and we have

$$
\int_{\left[\mathbf{G}_{m}\right]} \chi(a) f\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right) d^{\times} a=\int_{[G]} \chi(a) f(g) \Theta_{X}(a, g) d(a, g) .
$$

$$
\int_{\left[\mathbf{G}_{m}\right]} \chi(a) f\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right) d^{\times} a=\int_{[G]} \chi(a) f(g) \Theta_{X}(a, g) d(a, g)=L\left(\chi \otimes \pi, \text { Std, } \frac{1}{2}\right) .
$$

In this case, $[G] / K=\operatorname{Pic}(C) \times \operatorname{Bun}_{2}(C)=$ pairs (line bundle, rank 2 vector bundle) on C, and $\Theta_{X}(L, V)$ counts the number of morphisms $L \rightarrow V$.

Remark: For the formula above to hold, we need a normalization of f with L^{2}-norm $\langle f, \bar{f}\rangle_{[G]}=L(\pi, \operatorname{Ad}, 1)$. When $\|f\|^{2}=1$, we get

$$
\int_{\left[\mathbb{G}_{m}\right]} \chi(a) f\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right) d^{\times} a=\frac{L\left(\chi \otimes \pi, \operatorname{Std}, \frac{1}{2}\right)}{\sqrt{L(\pi, \operatorname{Ad}, 1)}}
$$

instead.
-Generalizing this, Waldspurger proved (for $\mathrm{X}=T \backslash\left(T \times \mathrm{GL}_{2}\right)=\mathrm{SO}_{2} \backslash \mathrm{SO}_{2} \times \mathrm{GSO}_{3}, T \hookrightarrow \mathrm{GL}_{2}$ a non-split 1-dimensional torus, and much later Gross-Prasad conjectured (for $\left.X=\mathrm{SO}_{n} \backslash\left(\mathrm{SO}_{n} \times \mathrm{SO}_{n+1}\right)=H \backslash G\right)$, followed by much more general conjectures by Gan-Gross-Prasad, that

$$
\left|\int_{[H]} f(h) d h\right|^{2}=\frac{1}{\left|S_{\phi}\right|} \frac{L\left(\pi, \otimes, \frac{1}{2}\right)}{L(\pi, \operatorname{Ad}, 1)},
$$

again for suitable $f \in \pi$.
The exact conjecture is actually due to Ichino-Ikeda: for arbitrary $f \in \pi=\otimes_{v}^{\prime} \pi_{v}$, writing $f=\otimes_{v} f_{v}$, the RHS is

$$
\frac{1}{\left|S_{\phi}\right|} \prod_{v}^{*} \int_{H\left(k_{v}\right)}\left\langle\pi(h) f_{v}, f_{v}\right\rangle d h_{v} .
$$

Translation to theta series: Again, we can replace the above integrals by pairings against theta series

$$
\Theta_{\Phi}(g)=\sum_{\gamma \in X(F)} \Phi(\gamma g) \in C^{\infty}([G])
$$

where $\Phi \in \mathcal{S}(X(\mathbb{A}))$. Over function fields, $\Phi=\prod_{v} 1_{X\left(\mathfrak{o}_{v}\right)}$ (write $\Theta_{\Phi}=\Theta_{X}$ for this specific $\left.\Phi\right), f$ unramified,

$$
\int_{[H]} f(h) d h=\int_{[G]} f(g) \Theta_{X}(g) d g .
$$

The II conjecture states that

$$
\left\langle\Theta_{X}, \overline{\Theta_{X}}\right\rangle_{\pi}=\frac{1}{\left|S_{\phi}\right|} \times \prod_{v}^{*} \text { Plancherel density } J_{\pi_{v}}\left(\Phi_{v}\right)
$$

where

$$
\left\langle\Phi_{v}, \overline{\Phi_{v}}\right\rangle_{L^{2}\left(X\left(F_{v}\right)\right)}=\int J_{\pi_{v}}\left(\Phi_{v}\right) \mu\left(\pi_{v}\right),
$$

with $\mu\left(\pi_{v}\right)$ the Plancherel measure of G.

Combining the "period" and the "linear" paradigms:
$M=T^{*} X$, with X a G-variety or a (not necessarily G-stable)
Lagrangian in a symplectic vector space.
\rightsquigarrow unitary representations $\omega_{v}=L^{2}\left(X\left(F_{v}\right)\right)$ at every place v.
The Plancherel decomposition

$$
\left\langle\Phi_{v}, \overline{\Phi_{v}}\right\rangle_{\omega_{v}}=\int J_{\pi_{v}}\left(\Phi_{v}\right)
$$

involves the unitary dual of G or a different group. In the Langlands philosophy, we should be thinking of subgroups of the Langlands dual group of G, e.g.:

- $G=\mathrm{GL}_{n} \times \mathrm{GL}_{n}, X=$ Mat $_{n}$, then $\check{G}=\mathrm{GL}_{n} \times \mathrm{GL}_{n}$, but only $\pi=\tilde{\tau} \otimes \tau$ appearing, corresponds to

$$
\check{\mathrm{G}}_{M}:=\mathrm{GL}_{n} \hookrightarrow \check{\mathrm{G}},
$$

embedded as $g \mapsto\left(g^{C}, g\right)$, with g^{C} the Chevalley involution (up to conjugacy, ${ }^{t} g^{-1}$).

- $G=\mathrm{SO}_{2 n} \times \mathrm{Sp}_{2 n}, M=$ a symplectic vector space, $\omega_{v}=$ the Weil representation, then $\check{G}=\mathrm{SO}_{2 n} \times \mathrm{SO}_{2 n+1}$, but only $\pi=\tau \otimes \theta(\tau)$ appears, so $\breve{G}_{M}=\mathrm{SO}_{2 n} \hookrightarrow G$, embedded "diagonally".
- $G=\mathrm{SO}_{2 n} \times \mathrm{SO}_{2 n+1}, X=\mathrm{SO}_{2 n} \backslash G$, then $\check{G}=\mathrm{SO}_{2 n} \times \mathrm{Sp}_{2 n}$, and all tempered representations of G appear (rather: all tempered L-packets - local GGP conjecture proven by Waldspurger, Moeglin). Hence, $\breve{G}_{M}=$ Ǧ.

The relative trace formula and Ichino-Ikeda conjecture, in all cases:
For a (suitable) automorphic representation π,

$$
\left\langle\Theta_{\Phi}, \overline{\Theta_{\Phi}}\right\rangle_{\pi}=? \cdot \prod_{v}\left\langle\Phi_{v}, \overline{\Phi_{v}}\right\rangle_{\pi_{v}}
$$

Other types of "periods":

- The Whittaker case:

Let $N \subset G$ the unipotent radical of a Borel subgroup, $f: N \rightarrow \mathbb{G}_{a}$ a generic additive character (e.g., for GL_{n}, sum of entries just above the diagonal), use the same letter for its differential, $f \in n^{*}$ or for a nilpotent lift $f \in \mathfrak{g}^{*}$, and let ψ be a composition $[N] \rightarrow\left[G_{a}\right] \rightarrow \mathbb{C}^{\times}$.

$$
M=T^{*} G / /{ }_{f} N=\left(f+\mathfrak{n}^{\perp}\right) \times{ }^{N} G
$$

quantizes to

$$
\omega_{v}=L^{2}\left(N\left(F_{v}\right) \backslash G\left(F_{v}\right), \psi_{v}\right) \text {, the Whittaker model. }
$$

Its theta series $\Theta_{\Phi}=\sum_{\gamma \in N \backslash G(F)} \Phi(\gamma g)$ is the well-known Poincaré series.
For $\Phi=$ the basic function at every place,

$$
\left\langle\Theta_{\Phi}, \Theta_{\Phi}\right\rangle_{\pi}=\frac{1}{\left|S_{\phi}\right|} \frac{1}{L(\pi, \mathrm{Ad}, 1)}
$$

(conjecturally, known for GL_{n} and some other groups.)

The Whittaker case is a case where the minimal nilpotent orbit in the image of the moment map $M \rightarrow \mathfrak{g}^{*}$ is not $\{0\}$, but the orbit of $f \in \mathfrak{g}^{*}$. In general, our assumptions imply that $\mathbb{G}_{m} \times G$ has a unique closed orbit $M_{0} \subset M$ with nilpotent image $\mathcal{O}=f G \subset \mathfrak{g}^{*}$, and that (at least up to equality of formal neighborhoods of M_{0}),

$$
M=S \times \underset{\left(\mathfrak{h} \oplus \mathfrak{u}_{+}\right)^{*}}{\mathrm{HU}} T^{*} G
$$

where:

- H is a reductive subgroup (the stabilizer of a point on M_{0}, with nilpotent image $f \in \mathfrak{g}^{*}$);
- S is a symplectic H-representation;
- U is the positive unipotent radical ($=h$ acts with weights ≥ 1) of a parabolic attached to an $\mathfrak{s l}_{2}$-triple (h, e, f) containing f.
- $U_{+} \subset U$ is the subgroup where h acts with weights ≥ 2, so f defines a character $U_{+} \rightarrow \mathbb{G}_{a}$, and U / U_{+}is a symplectic vector space; thus $U \times{ }^{U_{+}} G_{a}$ is a Heisenberg group.
- $S \rightarrow \mathfrak{h}^{*}$ is the moment map, and $S \rightarrow \mathfrak{u}_{+}^{*}$ has image f.

$$
M=S \times \underset{\left(\mathfrak{h} \oplus \mathfrak{u}_{+}\right)^{*}}{H U} T^{*} G
$$

Quantizations of such M comprise a mixture of the cases that we've seen:

- the linear case $H=G, M=S$;
- the period/homogeneous case $M=T^{*}(H \backslash G)$;
- the Whittaker case, $f \neq 0$ and $U=U_{+}$;
plus one more: when $U_{+} \neq U$, we need to include a Weil representation of the Heisenberg group, e.g.

Fourier-Jacobi models (studied by Gan-Gross-Prasad):

$$
\operatorname{Ind} \frac{\widetilde{\mathrm{Sp}}\left(W^{\prime}\right)}{\widetilde{\mathrm{p}}(W) \propto u} \omega_{\psi},
$$

where W is a symplectic space, $W^{\prime}=W \oplus l \oplus l^{\prime}$ is its sum with a 2-dimensional symplectic space, $U=$ the unipotent radical of the parabolic stabilizing the isotropic subspace (line) l, and ω_{ψ} the oscillator representation associated to $l^{\vee} \otimes W$.

Outline

\author{

1. Periods
 2. Hamiltonian spaces
 3. Examples
 4. Summary and trailer
}

5. Geometrization/categorification

What we have seen:

- General multiplicity-free, smooth affine Hamiltonian spaces

$$
M=S \times \underset{\left(\mathfrak{h} \oplus \mathfrak{u}_{+}\right)^{*}}{\mathrm{HU}} T^{*} G,
$$

admit quantizations covering a broad range of "periods" in the theory of automorphic forms.

- Quantization consists of local unitary representations ω_{v} and global theta series $\Theta_{M} \in C^{\infty}([G])$.
- Conjecturally, the Plancherel decomposition of ω_{v} entails Langlands parameters from a different dual group $\check{G}_{X} \subset G \check{G}$:

$$
\left\langle\Phi_{v}, \overline{\Phi_{v}}\right\rangle=\int_{\widehat{G_{X}}} J_{\pi_{v}}\left(\Phi_{v}\right) \mu\left(\pi_{v}\right) .
$$

- Conjecturally, the components of the spectral decomposition of

$$
\left\langle\Theta_{M}, \overline{\Theta_{M}}\right\rangle, \quad \text { (relative trace formula) }
$$

admit Euler products

$$
\left\langle\Theta_{M}, \overline{\Theta_{M}}\right\rangle=? \cdot \prod_{v} J_{\pi_{v}}\left(\Phi_{v}^{0}\right) .
$$

- Somehow, the local factors $J_{\pi_{v}}\left(\Phi_{v}^{0}\right)$ turn out to be local L-factors. $26 / 35$

What we will see:

- On the "spectral side" (Langlands parameters) there is a similar Hamiltonian space \check{M} "explaining" these phenomena.
- The role of H is played by the dual group $\check{G}_{X} \subset \check{G}$, so

$$
\check{M}=\check{S} \times \times_{\mathfrak{g}_{X} \oplus \mathfrak{u}_{+}}^{\check{G}_{X} \check{L}} T^{*} \check{G} .
$$

- The $\mathfrak{s l}_{2}$-triple ($\left.\check{h}, \check{e}, \check{f}\right)$ giving rise to \breve{U}, \breve{U}_{+}is one canonically associated to the space M, as follows (up to now, swept under the rug):
- It is not Langlands parameters conjecturally entering the Plancherel decomposition of ω_{v}, but Arthur parameters, associated to a unique conjugacy class of $\mathfrak{s l}_{2} \subset \mathfrak{g}$, e.g.: $M=T^{*}(\mathrm{pt})=\mathrm{pt} \Rightarrow \omega_{v}=$ the trivial representation, $\check{G}_{X}=1$, but the trivial representation has non-trivial Langlands parameter. However, it has Arthur parameter with $\mathfrak{s l}_{2} \hookrightarrow \mathfrak{g}$ principal. For a principal $\mathfrak{s l}_{2}$-triple $(\check{h}, \check{e}, \check{f})$, we obtain $\check{U}=\breve{U}_{+}=\check{N}(=$ maximal unipotent in $\check{G})$, and

$$
\check{M}=\left(\check{f}+\check{\mathfrak{n}}^{\perp}\right) \times^{N} \check{G}
$$

the cotangent space of the Whittaker model of \check{G} !
Hence, the dual of (trivial period for G) is (Whittaker period for Ǧ).

- We'll see that this duality is involutive, i.e.,
the dual of (trivial period for G) is (Whittaker period for \check{G}).

Outline

\author{

1. Periods
 2. Hamiltonian spaces
 3. Examples
 4. Summary and trailer
}
2. Geometrization/categorification

To formulate conjectures about this duality, we need to switch to the categorical setting of geometric Langlands.

Local story: Derived endomorphisms and the Plancherel formula
Now let $\mathbb{F}=\overline{\mathbb{F}_{q}}, F=\mathbb{F}((t)) \supset \mathfrak{o}=\mathbb{F}[[t]]$, and for an affine variety X think of $X(F)=L X(\mathbb{F}), X(\mathfrak{o})=L^{+}(\mathbb{F})$, points of the loop and the arc space.

Set $\operatorname{Shv}\left(L X / L^{+} G\right)$ denote an appropriate - bounded DG - category of $L^{+} G$-equivariant "sheaves" on $L X$ - should be l-adic for translation to functions, but once we abstract from functions one can also take $\mathbb{F}=\mathbb{C}$ and work with D-modules. Let k : coefficient field, characteristic 0 .

Sheaf-function dictionary: In an l-adic setting, the inner product of functions should be obtained as Frobenius trace of derived homomorphisms (Ext) of sheaves:

Given two l-adic sheaves \mathcal{F}, \mathcal{G} on an \mathbb{F}_{q}-variety Y, let f and $g \vee$ be the trace functions associated to respectively \mathcal{F} and $D \mathcal{G}$, with D the Verdier dual. Then

$$
\sum_{Y\left(\mathbb{F}_{q}\right)} f(y) g^{\vee}(y)=\operatorname{tr}\left(\operatorname{Fr}_{q}, \operatorname{Hom}(\mathcal{F}, \mathcal{G})^{\vee}\right)
$$

The basic function corresponds to the (Verdier self-dual, for appropriate normalization) constant sheaf $\underline{k}_{L^{+}}$.

Therefore, our goal will be to analyze $\operatorname{End}\left(\underline{k}_{L^{+} G}\right)$, and relate it to L-functions (in lecture of David Ben-Zvi).

Global story: The period sheaf
(Ignoring half-twists.)
$F=\mathbb{F}(C)$.
Recall, Iwasawa-Tate case: $X=\mathbb{A}^{1}, G=\mathbb{G}_{m}$.
$\Phi=\prod_{v} 1_{\mathfrak{o}_{v}} \rightsquigarrow \Theta_{X} \in C^{\infty}(\operatorname{Pic}(C)(\mathbb{F}))$,
with $\Theta_{X}(L)=\# H^{0}(C, L)$.
$\operatorname{Geometrically}, \operatorname{Pic}(C)=\operatorname{Maps}(C, \mathrm{pt} / G)$.
Let $\operatorname{Pic}^{X}(C)=\operatorname{Maps}\left(C, \mathbb{A}^{1} / G\right)$, the stack classifying $L \in \operatorname{Pic}(C)$ together with section $C \rightarrow L$.
$\pi: \operatorname{Pic}^{X}(C) \rightarrow \operatorname{Pic}(C)$ forgetful.
Then Θ_{X} is the trace of Frobenius on $\mathcal{P}_{X}=\pi!k$.
This is the period sheaf.

Similarly, for a G-space X, we have

$$
\pi: \operatorname{Bun}_{G}^{X}=\operatorname{Maps}(C, X / G) \rightarrow \operatorname{Bun}_{G}=\operatorname{Maps}(C, p t / G) .
$$

And Θ_{X} is the trace of Frobenius on $\mathcal{P}_{X}=\pi_{!} \underline{k}$.
(If X is not G-stable, but a Lagrangian in the symplectic G-space M, the generalization of this construction has been explained in papers of Lysenko.)

Questions on the period sheaf (in lecture of Akshay Venkatesh):

1. Evaluate its pairing with Hecke eigensheaves \mathcal{F} :

$$
\operatorname{Hom}\left(\mathcal{P}_{X}, \mathcal{F}\right) \quad \text { (derived homomorphisms, i.e., Ext). }
$$

The Frobenius trace on this corresponds to

$$
\left\langle\Theta_{X}, f^{\vee}\right\rangle, f^{\vee}:
$$

the automorphic form associated to the Verdier dual of \mathcal{F}.
2. Evaluate the (derived) endomorphisms of \mathcal{P}_{X} :

$$
\operatorname{End}\left(\mathcal{P}_{\mathrm{X}}\right)
$$

(corresponding, roughly, to the "relative trace formula" inner product $\left.\left\langle\Theta_{X}, \Theta_{X}\right\rangle\right)$.

In the lectures by Venkatesh and Ben-Zvi, you will see how to conjecturaly answer these questions on the spectral side (using the Hamiltonian \check{G}-space \check{M}), in a way that recovers the relevant L-functions.

Thank you! 감사합니다!

