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Abstract. We study the structure of classifying spaces oftfdoody
groups from a homotopy theoretic point of view. They behave in many
respects as in the compact Lie group case. The pramhomology algebra

is noetherian and Lanne¥’ functor computes the maog cohomology of
classifying spaces of centralizers of elementary abelianbgroups. Also,
spaces of maps from classifying spaces of fipitgroups to classifying
spaces of K&Moody groups are described in terms of classifying spaces
of centralizers while the classifying space of ackdoody group itself can

be described as a homotopy colimit of classifying spaces of centralizers of
elementary abeliap-subgroups, up t@-completion. We show that these
properties are common to a larger class of groups, also including parabolic
subgroups of K&Moody groups, and centralizers of finjiesubgroups.

Mathematics Subject Classification (20085R35, 55R40, 22E65, 51E24

1. Introduction

The representation theory of compact Lie groups extends naturally to the
representation theory of a class of topological groups known as\W@ody
groups [11,10,22]. Apart from simply-connected compact Lie groups, this
class also contains KaMoody groups of affine type which are closely re-
lated to loop groups. In particular, Eavloody groups may be infinite di-
mensional in nature. The construction of&&loody groups is motivated

by the representation theory of infinite dimensional Lie algebras, and as
such there is little reason to believe thatdgloody groups are indeed a
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legitimate extension of the class of simply connected compact Lie groups
from the standpoint of topology. The object of this paper is to establish this
fact. Namely, we intend to prove that the topological properties df-Ka
Moody groups closely mimic those of compact Lie groups. For instance,
the p-primary cohomology of the classifying space of ackidoody group

will be shown to be finitely generated as an algebra. More precisely we have
the following

Theorem A[Theorem 4.8]For any K&-Moody group’, the modp coho-
mology ringH*(BG, F,) is finitely generated as &h,-algebra. Moreover,
if F'is a Kat-Moody subgroup a7, thenH* (BF, F)) is afinitely generated
H*(BG,F,)-module viatherestriction mafi*(BG, F,) — H*(BF, F,).

In fact we show that the Krull dimension éf*(BG, F,,) is the rank of
the maximal elementary abeliangroup inG (Corollary 4.2). The above
theorem has been verified for affine &cMoody groups by A. Kono and
K. Kozima [13-15] by a case-by-case analysis. Our approach is global and
proves this for a much larger class of groups we now describe.

Let X be a class of compactly generated Hausdorff topological groups
and letp be a fixed prime. Motivated by [16] define a new class of topo-
logical groups/C; X', by demanding that a compactly generated, Hausdorff
topological groupG belongs toK, X if and only if there exists a finite
G-CW-complexX with the following two properties:

(i) The isotropy subgroups of belong to the clasg’.
(i) For every finite p-subgroupr < G, the fixed point spac&™ is p-
acyclic.

If a finite G-CW-complexX satisfies the conditions listed above, we shall
call X aG-p-acyclic complex.

For the rest of this paper we fiX to be the class of compact Lie groups.
Our goal is to understand the algebraic and geometric nature of the groups
belonging to the clask;X'. Indeed, we show that groups in the clagsY
share many of the properties enjoyed by compact Lie groups. We show in
Sect. 5 that K&-Moody groups belong t&; X'

Among some of the other results for compact Lie groups that extend to
groups infC; X is the result of Lannes [17] for which we have the general-
ization

Theorem B [Theorem 3.1]For any groupG in the classiC; X' there is a
natural isomorphism

Ty (H*(BG,F,) — [[ H*(BCa(p),Fp)
pERep(V,G)
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whereTy, stands for the LannéB-functor corresponding to an elementary
abelianp-groupV’, andC¢ (p) denotes the centralizer of the representation
pinG.

More generally, we extend the result of Dwyer and Zabrodsky [5] on the
nature of the centralizers of finigesubgroups:

Theorem C|[Corollary 3.3].If G is a group inK; X and a finite p-group,
then there is a natural homotopy equivalence

[T BCa(p)y —~ Map(Br, BG)).
pERep(m,G)

Another resultthat extends to our contextis the centralizer decomposition
of Jacowski and McClure [9] for the classifying space at a given prime. We
prove

Theorem D [Theorem 3.4]For a groupG in the classkC; X assume that
there exists &-p-acyclic complex all of whose isotropy groups contain non-
trivial p-torsion, then there exists a naturadlocal homology equivalence

: hocolim EG xg G/Cq(E) — BG

m: hocolim a¢ G/Cq(E)

whereA, (G) denotes the Quillen category of (nontrivial) elementary abelian
subgroups of7 (refer Sect. 3.3).

In Sect. 5 we will show that the adjoint forms of & oody groups and
their parabolic subgroups, as well as the adjoint forms of the normalizers
of maximal tori admit acyclic complexes all of whose isotropy groups are
of maximal rank (c.f. Remark 5.4). In particular, the above theorem applies
for such groups.

It is worth pointing out that the construction of the cl&&sY resembles
the construction of P. Kropholler and G. Mislin in [16]. Also related to
the groups iNC; X' are the (discrete) groups studied by W. Luck in [18].
Consequently, all the results in this article are true for the groups considered
in [18].

We would like to point out to the reader that the groups in the dass
do not admit an a priori notion of a maximal torus. In this sense, they differ
from compact Lie groups. KaMoody groups, however, retain this notion.
One has a well defined maximal torus for addoody group. Moreover,
any two maximal tori within a K&Moody group are conjugate (c.f. [12]),
and the normalizer of a maximal torus fits into an extension of a discrete
(Weyl) group by the maximal torus. The Weyl group for a&kldoody group
is a Coxeter group which is infinite in general.

The authors would like to acknowledge their debt to Haynes Miller for
introducing them to K&Moody groups, and suggesting that they may be
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studied using the tools of homotopy theory. They would also like to thank
J. Agua@, W. Dwyer, H.-W. Henn, L. Saumell and A. Ruor their interest

and numerous useful discussions and observations on the subject. In addi-
tion, they would like to thank B. Oliver and R. Levi for their interest in the
project and their permission in letting us include their material in the second
appendix. And finally, the authors acknowledge the hospitality of Centre de
Recerca Mateatica (CRM) for providing the opportunity to conduct this
research.

2. Orbit decompositions

Let H be a subgroup of;. For a given non trivial finite subgroup of G
one may ask how many conjugatesrdfe in H and among those which are
conjugated withind . Generally one finds a collection of elemepise G,
suchthay, 'mg) < H and any twgy; 'mgy andg,,' mg,s are not conjugated
within H. This might be formalized in the following way.

Fix a finite group!/!. Induced by the inclusion off in G we have

i: Rep(II, H) — Rep(II,G).

Let p: I —— G be a representation far and letr = p(I7) be a finite
subgroup ofG. Now the set{g,} indexes the counterimage!(p). Each
g providing the representatior;fl op: I — H.

A

Next, we letr act on the orbitz/H. The centralize€;(7) acts on the
fix point spac€G/H)™. Notice thaty H is a fix pointin(G/H )™ provided
egH = gH for everye € 7;thatis, if and only ify~!7g is a subgroup off.

Onthe other hand, given two fix pointgf andg’ H, they are in the same
orbit by the action OCG(w) if and only if there exists a fixel € H that
conjugateglegto g’ ~ 6g "forall e € 7. Infact, if ¢ H = xgH, for some
x € Cq(m), thenh = g1z~ 14 is an element off that conjugateg’ ‘e’
to g~ leg for all e € 7. Reciprocally, ifh € H giveshg' ‘eg’h™! = g leg
forall e € 7, thenz = ghg' ' € Cq(r) andzg'H = gH.

We obtain therefore thatthe det, } indexes th&€’¢ (7)-orbits of G/ H)™.
The isotropy group of an orbit represented gy is C(7) N gAHgA‘l,
and then we obtain an orbit decomposition

1) HCG )/Ca(m) NgrHgy' = (G/H)"

of the fix point sef{ G/H)™. We are interested in cases whéfes a finite
p-group.

Theorem 2.1. Let G be a group in the clask; X and let/] be a finitep-
group. Thenthere are finitely many representationél — G. Moreover,
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given any such representation with= p(II) and a compact subgroup
H < @G, the decomposition (1) is a homeomorphisn’ef 7 )-spaces.

Proof. We pick some choiceX of a G-p-acyclic complex. SinceX™ is
nonempty, we notice that the representapdactors through some isotropy
group but since there are finitely many isotropy groups and the result is
known for compact Lie groups, there are finitely many choicespfdi
remains to show that for any compact subgrdiipthe decomposition (1)
is a homeomorphism af'; (7)-spaces. The left hand side of (1) consist of
a finite number of termg:[?_, C(7)/Cq(m) N g;Hg; ', hence it will be
enough to show tha; (1) /Cq () Ng; Hg; * is closed i G /H)™ in order
to see that it is both closed and open.

First, Cq(n) is closed inG because its closure still centralizesAlso,
by assumptionH is a compact subgroup of G. Hence it easily follows that
Cqa(m) - g;H is a closed subspace 6f. The result follows on projecting
toG/H. 0

Remark 2.2.Notice that the above proof strongly uses the compactness of
the isotropy subgroups of th@-action onX. The above theorem is the
only technical obstruction to extending the results of this paper to the class
KoX = K1(K1X).

Corollary 2.3. Let G be a group belonging té&C; X'. Then for any finite
p-groupr < G, the groupC () also belongs to the clags; X'

Proof. Let X be aG-p-acyclic complex. The groug’s(w) acts on the
p-acyclic spaceX™. Also, by 2.1, the spac¥™ is a finiteC (7)-CW-com-
plex. X™ will serve as oulC(7)-acyclic complex. It is trivial to verify the
required properties. O

3. Centralizers of finite p-subgroups

The geometric results in the previous section are used here in order to extend
arguments due to Henn [8, 7] that will lead to some important homotopy
theoretic structural theorems for groups in the cldsd’.

3.1. The LannesT functor

Let G be a group, and |8t be a finitep-group. LetX be anyG-space. For
every representatign: V. —— G, letC(p) denote the centralizer i@ of
the subgroup (V) and letX” denote the fixed point spacé”(V). Notice
that the space” has a natural action of the grodjy;(p) x V whereV
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acts trivially. The group homomorphis@y;(p) x V.—— G yields a map
of the homotopy orbit spaces

(ECG(p) Xcg(p) X7) x BV
= (ECG(p) x EV) Xcgpyxv XP — EG xg X.

On evaluating the above map in cohomology and looking at its adjoint we
get the following map for every representation

Ty (HG(X)) — Hey(,)(XP).

Theorem 3.1. Let G be an element of; X and V' an elementary abelian

p-group.

1. LetX be anyG-CW-complex of finite orbit type whose isotropy groups
are all elements aot’. Then the following natural map is an isomorphism.

~

Ty(HGEX)) — [ Hégpm(X?)-
pERep(V,G)

2. The following natural map is an isomorphism.

Tv(H*(BG) — [[  H"(BCa(p)).
pERep(V,G)

Proof. Proof will proceed by induction on the equivariant skeletonof
Notice that the theorem is true for compact Lie groups [8]. An easy induction
argument on the equivariant cells, reduces the proof of part 1 to the case of
a single orbitX = G/H, whereH < G is an element ofY. Let p €
Rep(V, G) be a representation in the image®ép(V, H). Fix elements
gi,...,gr € G such thatc -1 o p are the possible factorizations of the

representatiop throughH. By Theorem 2.1 one gets homeomorphisms
[[1EG X Cr(e, 10p) {pt} = [[ EG xcy(p) Ca(E)/Calp) NgiH g "
i=1 @ i=1

> BG Xy (G/H)

that provide the isomorphism

[ B (BCule,1,,) = Heyy(,) (G/H)).

=1
If we now bring into account all representatigng Rep(V, G) that are in
the image oRep(V, H), the collections:, “1op will exhaust all represen-
tationso € Rep(V, H). Notice that for representatlomse Rep(V, G) that
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are not in the image dkep(V, H), the spacéG/H)” is empty. Hence we
have an isomorphism

(2) II #BCue)= ][I Hiy,(G/H)).
oc€Rep(V,H) pERep(V,G)

Now, Ty (H:(G/H)) = Ty (H*(BH)). SinceH is a compact Lie group,

it satisfies the theorem. In particular

(3) Ty(H*(BH))= [[ H*(BCu(0)).
oc€Rep(V,H)
Combining the isomorphisms (2) and (3), we obtain tAaatisfies part 1
of the theorem. The proof is complete once we observe that part 2 of the

theorem is a special case of part 1 when we t&k® be anyG-p-acyclic
complex. 0

3.2. Mapping spaces

Let G be a group, and let be a finitep-group. LetX be anyG-space. For
every representation: m — G, letC(p) denote the centralizer i of
the subgroup(r) and letX* denote the fixed point spacé”(™). Notice
that the spac&’” has a natural action of the grodf;(p) x = wherer acts
trivially. The group homomorphisi@;(p) x 1 —— G yields a map of the
homotopy orbit spaces

(ECq(p) Xcg(p) X7) x Br
= (ECg(p) X ET) Xcg(pyxn XX — EG xg X.

On completing this map and then taking the adjoint, we get a map for pvery

(X hce(p))py — Map(Bm, (Xna),,) -

Theorem 3.2. Let G be a group in the clas&; X and « a finite p-group.
Let X be anyG-CW-complex of finite orbit type with isotropy subgroups in
X, then the following natural map is a homotopy equivalence.

(4) [T (X")noee)p — Map(Br, (Xua)p)-
pERep(m,G)
Taking X to be anyG-p-acyclic complex, we obtain
Corollary 3.3. If Gisagroupinthe clas&; X andr a finitep-group, then
the following natural map is a homotopy equivalence

(5) [T BCclp)y —+ Map(Bm, BGy).
pERep(m,G)
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We begin the proof of Theorem 3.2.

Proof. The above resultis known in the case wideis a compact Lie group
[5]. Now consider a&-CW-complex of finite orbit type. It is easy to verify
that the spac&(; satisfies the conditions of Definition 6.2 in the appendix.
Using the terminology of the appendiX; is a finite X-CW-complex,
where X is the class consisting of spacEsthat are equivalent to finite
disjoint unions of the classifying spaces of compact Lie groups.

The proof of the theorem for the case wh¥ns a single orbitG/H is
an easy consequence of Theorem 2.1 and previously known results about
compact Lie groups [5]. It now follows by induction on the equivariant cells
of X that the natural map

IT (XP)hce)y — M(Bm, Xna)p
pERep(m,G)

is an equivalence, where! (B, X ) was defined in the appendix (Defi-
nition 6.6) to be the finit&c!-CW-complex with celldMap (B, X,,), where
X, are the cells ofX;;. By the main Theorem 6.11 in the appendix, the
natural map

M(B, Xpa), — Map(B7, (Xna),)

is an equivalence. On composing the two equivalences, the proofis complete.
ad

3.3. The centralizers decomposition

For a groug, the Quillen category fofr, A(G), has all elementary abelian
p-subgroups o7 as objects. Morphisms between two objeEtand £’ are
group monomorphisma: E ~—— E’ for which there existg € G such
thata(e) = geg™! for all e € E. A.(G) is the full subcategory ofA(G)
consisting of all objects except for the trivial subgroup.

Now letG be an element of; X and X anyG-space. IfE is an elemen-
tary abelian subgroup @, C(FE) denotes the centralizer i of £ and
X the fixed point space by the action Bfrestricted fromG. Notice that
the spaceX” has a natural action of the grodj;(E) and we can define a
functor

Fx: A(G)? — G-Spaces

Fx(E) =G x¢cym X7

Here the orbits are taken for the left action@f(E) on G x X defined
ash - (g,z) = (zh™', hx), for h € Cg(E) and(g,r) € G x X¥. The left
action ofG onG x ¢, () X ¥ isinduced by the regular action 6fon itself.
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It is clear that the actiorix x X —— X induces mapsx X ¢ (k)

XE —+ X, that form a natural transformation frofiy to the constant
functor X hence a natural map

: hocolim FG xg Fx — EG x¢g X .
nx ﬁ(‘zg)l(gl GI'Xx G

Notice that if X and X ¥ are p-acyclic, 1x is equivalent to the usual
Jackowski-McClure map [9],

(- }}L?c((él)iglEG xq (G/Cq(E)) — EG xg {pt} = BG.

Theorem 3.4. Let G be a group in the familyC; X

1. LetX be anyG-CW-complex with a finite number of equivariant orbits
and such that all isotropy groups are elementstofThen the following
natural map is g-local homology equivalence.

: hocolim EG xg Fx, — EG xg X
Hx ﬁ%%)lgl G I'x, G As
where X ; denotes the-singular locus ofX, i.e. the set of all points in
X which are fixed by some element of orger
2. Assume that there existS@&p-acyclic complexX such thatX = X,
then the following natural map is@local homology equivalence.

7: hocolim EG x¢ G/Cq(E) — BG.
A, (G)op

Proof. It is easy to see thaX; C X is a subG-CW-complex. The proof
now proceeds by induction on the equivariant skeletors oNotice again
that the Theorem is true in the case of compact Lie groups [8, 0.1].

The induction step follows the arguments of [8, 2.6] that we just sketch.
Firstly the proof is reduced to the case of a single akhit= G/H, where
H < G is an element oft that contains nontrivigh-torsion. Then we use
Theorem 2.1 in order to obtain

. E . E
Ehecf&lg)ngp EGxq (G xcgm) (G/H) )Sg&gcggl)fg EGxcgr) (G/H)
~ hocolim BG xcy(p) {pt}

the last equality following from Theorem 2.1. Now the final space in the
sequence of equivalences above-squivalent toBH ~ EG xqg G/H
sinceH is a compact Lie group.
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It remains to show that (1) implies (2). This is achieved by takih¢p be
any G-p-acyclic complex with the property thaf, = X. O

4. Cohomology rings
4.1.

Once we have established Theorem 3.1 and the fact that the Quillen category
of a groupG in the clasgCy X is equivalent to a finite category, we can use
arguments due to Henn, Lannes and Schwartz [6,7] in order to proof our
structure theorems for mgdcohomology rings of groups in the classt’.

Theorem 4.1. For a groupG in the classC; X' the Quillen map

(6) go: H*(BG) —~ lim H*(BE)
EcA(G)

is an F-isomorphism.

Proof. Classically anf-isomorphism is a homomorphism of algebras for
which both the kernel and the cokernel are nilpotent algebras. In our context
of unstable algebras over the Steenrod algebra, an algebra is nilpotent if
it is nilpotent as an object in the categdyof unstable modules over the
Steenrod algebra. Recall that an unstablieoduleN is nilpotentif and only

if Homy, (M, H*V') = 0 for any elementary abeligmgroupV (c.f. [23]).

It turns out that we only need to show that the induced map

(7)

gf: Homy | lim H*(BE),H'V | — Homy(H"(BG), H'V)
EEA(G)
is an isomorphism for any elementary abeliagroupV’. And according to
the linearization principle (c.f. [23, 3.8.6]) it will be enough to chqékfor

Hom functors in the categori of unstableA-algebras.
Now, according to Theorem 3.1 we can write the isomorphisms

(8) Homy (H*(BG), H*V) = Homy (Ty H*(BG), F,)

=~ Homy ( H H*(BCg(p), Fp)) >~ Rep(V,G).
pERep(V,G)

On the other handiep(V, G) = colimpge 4y £(V, E) is the colimit over
the Quillen category of all linear maps fromto elementary abelian sub-
groupsE of G. Furthermore, the functdl’ —— Homy (K, H*V) trans-
forms finite limits into colimits, hence using the fact that the Quillen cate-
gory A(G) for the groupG is equivalent to a finite category, we can state
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isomorphisms

Rep(V, G) = L(V,E)

colim
E€A(G)
>~ colim H H*(BE),H*'V
colim, omg(H"(BE),H"V)
9 =~ Homy( Jim H*(BE),H*V).
EcA(G)
with which we finish the proof. a

Corollary 4.2. ForagroupGin KX, the transcendence degreddf(BG)
coincides with the maximal rank of its elementary abefissubgroups.

We have written the proof of Theorem 4.1 in a way that emphasizes the
relevance of the functok —— Homy (K, H*V'), K an object ofC, in
the investigation of the cohomology rings*(BG).

For a generaK of K, Homy (K, H*V') has a natural structure of pro-
finite set, induced by the collection of finitely generated subobjecfs .of
It also inherits fromH*V an action of the monoi@nd V, so it becomes
an object in the categorS-End V' of profinite End V-sets. IfV; is an
elementary abeliap-group of rankd the above functor is written

Sd - K— (PS- End Vd)0p

with s4(K) = Homg (K, H*V).
This structure is exploited in [6], where it is defined a functor

bdi (738- End Vd)Op — K

as by the formulaby(S) = Homps-gndav, (S, H*Vy). That isbg(S)" is
defined adlomps. gnd v, (S, H"V;) and the unstablel-algebra structure
is induced by that ofH*V;. b;(K) is always aMNil-closed object ofC
with transcendence degree smaller that or equédland the pais,, by are
inverse functors that define an equivalence of the categ@iedind V,
andk,;/MNil, the quotient category of unstablealgebras of transcendence
degree smaller than or equalddoy the full subcategory of nilpotept-al-
gebras.

With this notation, equations (8) and (9) providing the proof of Theo-
rem 4.1 are written

sa(H"(BG)) = Rep(Va,G) = sq( lim H"(BE))
EcA(G)
in the categoryPS- End V, providedd is larger than the rang of any ele-
mentary abelian subgroup of G. Since@EeA(G) H*(BE)is Mil-closed
one identifies

bd o Sd(H*(BG)) = bd Rep(Vd, G) = @ H*(BE)
EcA(G)
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hence the Quillen map with the natural Mdp( BG) — bgosq(H*(BG)).

This pair of functors allows to interpret properties on objects in one of
the categorie®S-End V;; or y/Nil in terms of properties of the corre-
sponding objects in the other category. The concept of noetHenidn -set
is of particular interest to us. It requires the notion on kernel of an element
in an End V-set. We review these concepts and the results that are more
relevant to us in the next paragraph.

4.2. The notion of kernel for an element ofland V' -set

The results under review are all due to Henn, Lannes and Schwartz [6]. Fix
an elementary abelign-group V. An End V-set is a sefS together with

a right action ofEnd V', considered as a monoid under composition. Our
motivating examples are

1. Rep(V,G), for any groupG and

2. Homy (K, H*V), for any unstabled-algebra/.

In both cases, the action Bhd V' is inherited from the natural action dn
The notion of kernel is easily motivated by the first example. In fact if

s € Rep(V, G), the kernel ofs is just defined as its group theoretic kernel.
If we look at all possible factorizations efasta, o € End V

14 ° G
~
1%

we can recoveker s as the maximdter o among all endomorphismsthat
factors. This is what we can generalize to aRyd V-set.

Proposition-Definition 4.3. If S is anEnd V-set ands € S, the kernel
ker s is uniquely characterized by the properties:

1. Foranyt € S anda € End V such thats = ta, ker o C ker s.

2. There are elements € S andag € End V with s = tgag andker ag =
ker s.

We are now interested in the effect on a kernel of an eleméiiéf” and
of amorphism ofind V-sets. In general, we obtain inclusians! (ker s) C
ker(sa) for any element of anEnd V-setS anda € End V, andker s C
ker(ps) for any morphism ofEnd V-setsy: S —— S’ ands € S. The
cases in which the equality holds are linked to finiteness properties.
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Definition 4.4. An End V-setS is called noetherian if

1. Sis finite, and
2. o~ !(ker s) = ker(sa) for any element € S anda € End V.

Definition 4.5. We say that a morphism &nd V-setsp: S — S’ pre-
serves kernels iter s = ker(ps) foranys € S.

As immediate examples we have thBep(V,G) is a noetherian
End V-set as soon aep(V, G) is finite. Thus in particular, for any group
G in the classCy X'. Furthermore, any injection of groups G —— H
induces a morphism dind V-setsp;: Rep(V,G) —— Rep(V, H) that
preserves kernels.

The importance of these concepts in our context comes mainly from the
following results.

Theorem 4.6 (6, 7.1]).

1. If K is a noetherian unstablgl-algebra, thens,;(K) is a noetherian
End V-set.

2. If S is a noetherianEnd V-set, thenb,(S) is a noetherian unstable
A-algebra.

Theorem 4.7 (6,7.8]).Letp: K —— L be amap of unstabld-algebras
andsg(¢): sq(L) — s4(K) the induced morphism @fnd V-sets. Then,

1. If L is finitely generated a&’-module viap, s4(p) preserves kernels.

2. If K andL are noetherian, the transcendence degreg fd ands ()
preserves kernels, thdnis a finitely generatedd-module viap.

4.3.

We have now the necessary material in order to establish the main result
of this section. The first immediate consequence is that for a géup

in the classkC; X, the MVil-localization of H*(BG), by o sq(H*(BG)) =
@EeA(G) H*(BE) is a noetherian ring, fors;(H*(BG)) =

Homy (H*(BG), H*(Vy)) = Rep(Vy, G) is a noetheriaftnd V-set.

Theorem 4.8. For any groupG in the classK, X, the modp cohomol-
ogy ring H*(BG@) is noetherian. If a subgroup” belongs tokC; X, then
H*(BF) is a finitely generatedHd*(BG)-module via the restriction
H*(BG) — H*(BF).

Proof. Pick a G-p-acyclic complexX. The acyclicity of X provides a
p-equivalence
BG ~ EG xg X .
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Hence we have the associated isotropy spectral sequenég (@G)-
modules corresponding to tlie-spaceX

(10) EY ~ HL(X, HY(BH,)) = H"™(BG)

that computes the cohomology BfG in terms of cohomology rings of the
classifying spaces of its isotropy subgroups. Furthermoretheerm has
a finite number of non-trivial columns hence in collapses at a finite stage
(actuallyE; = [14 H*(BH) whereA denotes the equivariant cells &f).

Next we claim the existence of a sub-algebrak” of H*(BG) which
is noetherian and’-isomorphic toH*(BG). We have already seen that the
Nil-localization of H*(BG), L = @EEA(G)H*(BE)’ is noetherian. If
{z1,..., 2z} is afinite system of generators fér we can find an integer
k for which LP* = <:pﬁ°k, e 7x§k> is contained in the image af;. We can
choose elementg,, ...,y € H*(BG), with gg(y;) = x?k. Of course,
the subalgebra generated by those elements"i(BG) need not be closed
under the Steenrod operations, however in each case the defect will be an
element in the kernel @f; and therefore we will find a large enough integer

I such that the subalgebf& generated byy’fl, e ,yg;l is closed under the
Steenrod operations and is then a sddalgebra ofH*(BG). Moreover,

qc(K) is the subalgebra af generated byt’f“i e xfgk“ and thenkK is
F-isomorphic toL, hence also td7*(BG).

Now if H < G is one of the isotropy groups for the spa&e then
the A-mapK —— H*(BG) — H*(BH) induces, for any elementary
abelianp-groupV/, a diagram ofind V'-sets

Rep(V, H) Rep(V, G)

~ ~

Homy (H*(BH), H'V) — Homy(H*(BG), H*V) = Homy (K, H*V)

SinceRep(V, H) — Rep(V,G) preserves kernels anH*(BH) is
noetherian, we notice thal*(BH) is finitely generated as B-module.

Now the above spectral sequence mightbe considered a spectral sequence
of K-modules by restrictionvi& — H*(BG),anasasuchis hasfinitely
generated; -term; that is,F; is a hoetheriark’-module hence each page
E; is a noetheriari{-module, an thereforél*(BG) is itself a noetherian
K-module, in particular a noetherian algebra.

In order to finish the proof we only need to observe that same argument
as with the isotropy groupd will show that for any subgroup’ of GG, that
belongstothe clags; X', H*( BF') becomes afinitely generatédmodule,
or just a finitely generateff * ( BG)-module. O
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5. Groups related to Kat-Moody groups

As indicated in the introduction, we will show that &&oody groups yield
nontrivial examples of groups in the cla&3.X’. Indeed, it was our desire
to understand the homotopic nature oftkdoody groups in the first place,
that let to this paper. By a KaMoody group, we shall mean the unitary
form of a complex K&-Moody group. Similarly, a parabolic subgroup of
a Kat-Moody group will mean the unitary form of the complex parabolic.
It is our goal to show that groups of the forf/C belong to the class
K1 X, whereP is the parabolic subgroup of some &&loody group and
C < P is a compact central subgroup. L€t be the semisimple factor in
the Levi decomposition oP, so thatP is a split extension of a torus with
Kp. Notice thatK p is equivalent to a K&Moody group. To each group of
the formG = P/C as above, we associaté:aCW-complexX . We begin
by describingX; whenevelG = K is a Ka&&-Moody group of rank.

Let C be the category of subsets of theelement sef1, 2, ...,n} such
that the corresponding standard parabolic subgroup is compact. We define
the morphisms to be usual inclusions of subsets. Consider the functor from
C to topological spaces, which sends the sulbsetthe homogeneous space
K/Pr, where P; denotes the standard parabolic subgroup corresponding
to the subsef. The homotopy colimit of this functor is our choice for the
K-CW-complexX k. Notice that whenevek is of finite type, the category
C has a terminal object and the value of the functor on this object is a
point, hence it is clear that i is contractible. In this special case one can
use Smith theory to show that the spdcéx)™ is acyclic for a finitep-
subgroupr < K. For a noncompact KaMoody group, notice that the
categonyC is a full subcategory of the category of all proper subsets of the
set{1,2,...,n}. Consequently, we can identifyC with a subspace of the
barycentric subdivision of th@: — 1) simplex (the latter being canonically
identified with the classifying space of the poset of all proper subsets of the
set{1,2,...,n}.)

Xg=(K/T x BC)/ ~, (¢T,x) ~ (hT,y) & x=y € A}, sPr=uPy

whereT is the maximal torus of{’ and A denotes the interior of the face
of the (n — 1)-simplex A that corresponds to the subgefThe spaceX is
acyclic and the proof of its acyclicity is similar to the one given in [21]. We
recall the proof briefly.

Let B be the positive Borel subgroup of a complexd<ddloody group
that containds as the unitary form. Consider the skeletal filtratiorfOfT:

Fy(K/T)= ][] BwB/B.
l(w)<k
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Herew denotes the elements of the Weyl grolip, of K. One uses this
filtration to define a filtration ofX i by subcomplexes as follows:

Fip(Xk) = (FR(K/T) x BC)/ ~ .
In[21, Thm. 2,16] it is shown that the obvious map
C: Fk(K/T) x BC — Fk(XK)/Fk_l(XK)

is given by collapsing a subspace to a point and that the associated quotients
are
Fo(Xg)/Fi—1(Xkg) = \/ ¢(BwB/B x BC).
(w)=k

We now proceed to show that the spa¢éBwB/B x BC) are acyclic.
This shows that each filtratiof, (X i ) is acyclic and hence sincgg is a
colimit of such, it is itself acyclic.

Itis straightforward to see that for a givenc W, the spacé(BwB /B x
BC) is a suitable suspension of the quotient spa€¢ BD,, whereD,, C C
is the full subcategory of all subsetsuch thatw is identified with an ele-
ment of lesser length withiid’/1W;. Now notice that’ has an initial object
given by the empty set. Consequentdy is contractible. Hence to show
that{(BwB/B x BC) is acyclic, it is sufficient to show thaD,, is also
contractible. Defind,, to be the sefi € {1,2,...,n} | l(wr;) < l(w)}. It
follows from the general theory of Coxeter groups thaf, is a finite group
and hence that, € D,,. Consider the functaf: D,, — D,, which maps
a subsetl to the subsef N I,,. Notice that this functor provides us with
a zig-zag between the identity functor and the constant functor with value
1. Itfollows thatBD,, is contractible. For future use, we now establish the
acyclicity of various other subcomplexes &f; .

Let .S be any subcomplex ok /7. Let us define a filtration of via

Fy(S) = Fy(K/T)nS = [] BuwB/B
I(w)<k

wherew are elements of// that index the cells in5. One can define a
subcomplexXg of X as

Xs=(SxBC)) ~, (sT,x)~ (ul,y) & x=y e A}, sPr =uPr.

Lemma5.1. Let .S be a subcomplex ok /T, then the subcompleXg of
X is acyclic wheneveX i is acyclic.

Proof. Define a filtration ofX ¢ by subcomplexes

Fk(XS) = Fk(XK) NXg.
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It is straightforward to see that
Fi(Xs)/Feo1(Xs) = \/ ¢((BwB/B x BC).
U(w)=k

Since the spac&g Bw B/ B x BC) are acyclic wheneveX i is contractible,
it follows that the spaces),(Xg) are acyclic and consequently th&g is
acyclic. 0

We now generalize the above construction to the grakijpd the form
P/C whereP is a parabolic subgroup of some &Moody group and”
is a compact subgroup of the centerfinLet K p be the semisimple factor
of P so thatP is a split extension of a torus withk p. Since Kp can be
identified with a K&-Moody group, we define the spadg; to be Xk, .
To see thatX is aG-CW-complex , one only needs to observe that each
homogeneous spacés>/ P; can be written a®/(Q, whereP; is a standard
parabolic inKp and@ < P is a suitable subparabolic that contaifis
If H is an isotropy subgroup of th@ action onX, then it is easy to see
that H < G is a compact Lie group of maximal rank. In particular@Gf
is nontrivial, then every isotropy subgroup of tfyeaction onXs contains
nontrivial p-torsion.

We record the following fact about KavVioody groups to be used in the
following theorem.

Theorem 5.2. Let K be a K&-Moody group of rank. GivenJ C {1, 2,
...,n}, let P; denote the corresponding standard parabolic subgroup. Let
11 be a finite subgroup aP;, then up to conjugacy withi®;, there exists

a standard parabolic subgroup of finite typg < P; that containslI.

Proof. This is essentially a slight generalization of a theorem of-Re-
terson. In [12] it is shown that any finite subgroup of ackdoody group

can be conjugated into a standard parabolic subgroup of finite type. Their
proof can be easily extended to show that any finite subgroup of a stan-
dard parabolic subgroup; can be conjugated withi#; into a standard
parabolic subgroup of finite typg; < Pj. ad

Theorem 5.3. LetG be any group of the forr?/C' as described above. Let
1T be a finitep-group, and lefp: II —— G be a representation. Then the
spaceg X)” are p-acyclic.

Proof. One may assume that is a standard parabolic subgroup in some
Kat-Moody group. By Theorem 5.2 one may further assume that there exists
a standard parabolic of finite tyge < P such thatp factors through the
compact Lie group)/C < P/C. The semisimple factoKp inside P

can be identified with a KkMoody group and we need only consider the
case wherk p is a noncompact KaMoody group. By definition, we have
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Xe = Xk,.LetPr = KpNQ be the standard compact parabolic subgroup
Pr < Kpandletl' < Kp be the standard maximal torus. Define a filtration
of the space{p /T by finite subcomplexes:

Sk = Pr- Fp(Kp/T)

whereFy(Kp/T) is the standard skeletal filtration &f p /7. Notice that
by assumption the action &f via p on the spacé p /T preserves the finite
subcomplexSy. Since these subcomplexes provide a filtrationigf /T,
the finite complexe$X)s, of Lemma 5.1 provide a filtration oK by
finite subcomplexes which are preserved under the actiéhaf p. From
Lemma 5.1, each spa¢&)s, is acyclic. So by Smith theory, the fixed
point sets(X¢ ), arep-acyclic. Now the result follows by taking direct
limits. O

We will now show that the Weyl groug}’, of a Ka&&-Moody groupk
belongs to the class; X'. As before leC be the category of subsets of the
n-element se{1,2,...,n} such that the corresponding standard parabolic
subgroup is compact. We define the morphisms to be usual inclusions of
subsets. Consider the functor fr@hto topological spaces, which sends the
subset/ to the homogeneous spat¥é/1V;, whereW; denotes the Weyl
group corresponding to the subdgefThe homotopy colimit of this functor
is our choice for théV -spaceXy . An essential difference from the space
Xk is thatXyy is a finite dimensional CW-complex. This is to be expected
sincelV is a discrete group. As before, to show the required properties for
Xw,we may assume th@lt’ is infinite. The proof that showXy is acyclic
is similar to the nondiscrete situation. One identifl§s with the space

Xw=WxBC)/~, (u,z) ~ (v,y) &z =y e A}, uW; =ovW;.

Next, one filters the spac&y, using the length of elements in the Weyl
group. The associated quotients are shown to be contractible for exactly
the same reasons as before. Notice tkat can be considered as a finite
Nk (T)-CW-complex , whereNg (T') is the normalizer of the maximal
torus in K, and is seen to act oy via the projectionNg (T') — W.
This shows thatVg (T") is an element ofC; X'. Notice also that the finite
dimensionality ofXy; forces the acyclicity of Xy/)™ for finite p-groups
< W.

We can extend this construction to normalizers of maximal tori within
groups of the form&z = P/C, whereP is a parabolic subgroup within a
Kac-Moody group and” < P is a compact central subgroup. LEt< G
be the normalizer of the maximal tordy/C'. Let W be the Weyl group
of P. Itis easy to see thdl; is canonically isomorphic to the Weyl group
Wp of the K&&-Moody group given by the semisimple factep < P. We
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defineXy = Xy, to be the spac&yy,,. It is straightforward to check the
details and we leave them to the interested reader.

Remark 5.4.If G is a group of the formP/C considered above, then the
isotropy groups of thé/-action onX ¢ contain a conjugate of the torid§ C.

The same is true for grougs that are normalizers df’/C within P/C.

It follows that, in these cases, all the isotropy subgroups contain nontrivial
p-torsion for any prime. Note that this condition is not true in general for
groupsG that are the Weyl groups @f/C within P/C.

6. Appendix : X-CW-complexes

Spaces that can be obtained by successively “attaching” a finite number of
reasonable spaces are indeed special. In this section we analyze the behavior
of such spaces. Before we begin, we remind the reader that all cohomology
is to be understood with-primary coefficients.

LetX be any class of spaces such that givein X, and a finitep-groupr

1. H*(Y) andH*(Map(Bm,Y)) are of finite type.

2. The natural maplap(Br,Y),, — Map(Br,Y,") is an equivalence.
Remark 6.1.An example of such a class which will be of interest is the class
X of spaces that are equivalent to a finite disjoint union of the classifying
spaces of compact Lie groups. The justification of this observation is the
content of Sect. 7.

Another example of such a class is the class of spaces equivalent to finite
disjoint unions of the classifying spacesptompact groups.

From now on, fix a clas& that satisfies the above two conditions.

Definition 6.2. A spaceY is aX-CW-complex if there exist a spatg and
a ladder of inclusions

=Y, Cc Yy, Cc Y7, C ... Y=colimY,

nez
JoW

=Y, Cc Y, ¢ Yy C ... Y=colimY,

where the spacés, andY’,, are obtained inductively as homotopy pushouts:
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frn— ?n— =
Iy, Y, x S"7 ' ==Y, Iy, 8" ==Y,

I

HA,,,Ya Xk HA"’* Y,,“

wherer denotes the obvious projection map and the mips andf,,_,
are any maps so that the following diagram commutes:

fT(,—
Iy Y, x S" ' %Y,

W e

fn— —
I, 5" =Y, .

We define the map,, as the canonical map induced by the commutativity
of the above diagram. The spadés$,; « € A,,} are called the:-cells of Y’
and belong tdX. If the total number of cells of” are finite, we shall calt”

a finite X-CW-complex. The spacés, are called the:-skeleta ofY".

Remark 6.3.Roughly speaking, &-CW-complexY is a space over a reg-
ular CW-complexy’, so that the fiber over every point in belongs tax.

Definition 6.4. Define a new clas&! to contain all spaces that are finite
disjoint unions of spaces of the forfMap(B«x,Y ), | Y € X} where
K, p are finitep-groups with the action gf on Map(Bk, Y') induced by an
action onBk.

Theorem 6.5. The class¥! also satisfies the two conditions stated earlier.

Proof. GivenY € X and finitep-groupsm and«, with 7 acting onBk,
consider the fibration

(11) Map(B&k,Y) — Map(Bk,Y ), — Bp.

SinceH*(Map(Bk,Y)) andH*(Bp) are both of finite type, it follows that
so is H*(Map(Bk,Y)s,). Next consider the fibration of mapping spaces
of 11 over a general component:

(12)
Map(Bk, Y )" ——» Map(Bx, Map(B&, Y)np)(p)—= Map(Bm, Bp); .

SinceMap(B#, Y)"™=Map((BK)px, Y), we know that * (Map( Bk, Y)"™)

is of finite type. Clearlyd*(Map(B, Bp)y) is also of finite type, hence

it follows that H*(Map(B, Map(Bk, Y )n,)(y)) is of finite type verifying

the first condition. To verify the second condition, notice that the completion
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of the fibration 12 still remains a fibration. Alternatively, we can complete
the fibration 11 and then consider the mapping spaces. We have a diagram
of fibrations over a general component:

(Map (B, Y )" — (Map(Bm, Map(B&, Y )u,)(s))s — (Map(Bm, Bp)¢))

(Map(Bs, Y)IA,)}”T — Map(Bm, (Map(Bk, Y)hp)ﬁ)(f) — Map(Br, (Bp)g)f

Since Map(Br,Y)"™ = Map((Bk)p-,Y), our assumptions on the
classX imply that the induced map on the fiber is an equivalence. The
induced map on the base is clearly an equivalence. It follows that the map
on the total spaces is also an equivalence, completing the proof. O

Definition 6.6. Given aX-CW-complexY’, and a finitep-groupr, consider
the map

Map(Bm,Y) —2+ Map(Bn,Y).
Let M(Bn,Y) = g, }(Y) be the subspace dap(B,Y) given by the

inverse image of the constant mapsC Map(B,Y).
It is left to the reader to verify thaM (Bx,Y) is a X!-CW-complex

with n-cells{Map(Bm,Y,),a € A,}, and attaching magslap(B, f,,).

Proposition 6.7. Given a finiteX-CW-complex’, let Z = Yp’\. Then for
an elementary abeliap-group V', the natural map

M(BV,Y)h “2% Map(BV, 2)
is an equivalence.

Proof. The skeletal filtration fo-CW-complex es gives rise to a spectral
sequence in cohomology. L&f;"* denote the spectral sequence converging
to the modp cohomology of M(BV,Y) and E;"* the one converging to
H*(Y'). These might be considered as spectral sequences of unstable mod-
ules over the Steenrod algebra (the action is vertical and is induced from the
geometric filtration).

Evaluation provides a filtration preserving map

ev: BV x M(BV,Y) — Y.

Since both tensoring witli/*(BV'), and Ty are exact functors, we get a
maps of spectral sequences” —— H*(BV) ® M,”" and its adjoint
Ty Ey" —— M;™ . By [17, 3.4.1], our assumptions d&imply that the
evaluation map induces an isomorphism on each¢etif Y

Ty H*(Ya) = H*(Map(BV, Y,))
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Furthermorey,, commutes with finite products, hence the map of spectral
sequences is an isomorphism at the first page, hencdalsg* = M5*.
Since the filtration is finite, we have an isomorphism

(13) Ty H*(Y) = H*M(BV,Y)

induced by the evaluation map. Since all spaces involved are of finite type,
by [17, 3.3.1] we obtain that the md{iy is an equivalence completing the
proof. a

We now recall two results that will be important in the sequel.

Proposition 6.8. [17, 4.2]LetV be an elementary abeligigroup, and let
X be aV-space. Then th&8V -equivariant map

BV x X"V —— Map(BV, Xpv)(1) -

induced by the inclusioX”V' —— Map(BYV, Xnv)a) and the action of
BV on the spacélap(BV, X,y )(1), is @ homeomorphism.

Proposition 6.9. [17, 4.3.1]The following natural map is a homotopy equiv-
alence:

(X — (Xnv)p -
As a consequence of these results we get

Corollary 6.10. Given afiniteX-CW-compleX’, and an extension of finite
p-groups
kK ——>m —ZJp.

Let Bx denote theZ /p-spaceEr /k. Then the following natural map is an
equivalence

M(Br,Y)) —== (M(Br,Y))%/P.

Proof. Notice that the spacé(Bx,Y )z, is aX'-CW-complex. Apply-
ing Proposition 6.7 to the clags', we get the equivalence

Fpz/p
M(BZ/p, M(B’%a Y)hZ/p);g/y\ LZ/’ Map(BZ/p, (M(BKW Y)hZ/p)]/o\) :

Define
B: M(Bm,Y)) x BZ/p — Map(BZ/p, (M(Br,Y ) )hz/p) 1)
to be the map induced by
M(Br,Y);, — Map(BZ/p, (M(B&,Y ) )nzp) )
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and the BZ/p-action onMap(BZ/p, (M(Bk,Y ) )nz/p)a1). One has a
commutative diagram:

M(Br,Y)) x BZ[p

1\/i[ap(BZ/ZL (M (Bﬁa Y)[/)\)hZ/p)(l)

a ¥

BZ/p

(M(BZ/p, M(BK,Y ),3,,)0) (1) —2L5 Map(BZ/p, (M(Br, Y )azsp))) 1) -

whereax is the (cellular) equivalence defined using Proposition 6.8-aisd
the equivalence induced by the map in Proposition 6.9. It followshat
an equivalence. The restriction @fto the fiber over the identity element in
BZ/pis the equivalence we require. This completes the proof. a

We can now use Proposition 6.7 as the induction step in proving the main
theorem of this section.

Theorem 6.11. Given a finiteX-CW-compleX, let Z = YpA. Letw be a
finite p-group, then the natural map

M(Br,Y)) 225 Map(Br, Z)
is an equivalence.

Proof. We will argue by induction on the order af. If 7 is elementary
abelian we are in the situation of Proposition 6.7, hence induction starts.
Assume nowr is a finite p-group and the result is true fgrgroups of

smaller order. We can find an extension

kK —>Tm —Z/p.
Our induction hypothesis apply toand then, ifBx = Ew/x, we have an
equivalence
M(BE,Y), LY Map(Bk, Z)

which isZ/p-equivariant for the induced action &@f/p on Bx. Hence we
obtain an equivalence of homotopy fixed points

h/A /p
(14) (M(Bk,Y), )hZ/p Map (B, Z)"%/P.
Now consider the commutative diagram:
M(Bm,Y)) —2" Map(Br, Z)
hZ/ L
(M(Bk,Y)) )hz/p Map(Bk, Z)"Z/P

where. is the obvious equivalence and the vertical map on the left is the
equivalence from 6.10. It follows thdfs,; is also an equivalence. O
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7. Appendix: Maps from B P to a completed classifying space

The results of this section have been borrowed from a joint work between
C. Broto, R. Levi and B. Oliver.

The main result in this section is a descriptioMdp(B P, BG) when
P isafinitep-group and~ is a compact Lie group. This result is well known,
and proofs of parts of it have been published (c.f. [20]); but a complete proof
doesn’t seem to be written up anywhere.

We first note the known result about maps between (uncompleted) clas-
sifying spaces. For any pafF, G’ of topological groupsRep(G, G’) def
Hom(G, G)/ Inn(G’) denotes the set of (continuous) homomorphiéins
G’ modulo conjugation by elements 6. And for any homomorphism

p: G — G, we writeCer (p) B Cor (p(@)) C G
Proposition 7.1. If G andG’ are discrete groups, then the map
B: Rep(G,G') — [BG, BG']
that sends a homomaorphisprto By is a bijection. And for any homomor-

phismp: G G, the product maincl, p): Ce/(p) x G —— G’
induces a homotopy equivalence

BCg(p) — Map(BG, BG')p, .

Proof. The proof is elementary. Classical results about maps to an Eilen-
berg-MacLane space imply that the space of pointed iaps.(BG, BG')

is homotopically discrete and the group of components is naturally isomor-
phic toHom (G, G"). It then follows from the fibre sequence

Map, (BG, BG') — Map(BG, BG') -+ BG

that the set of components of the space of unpointed eps BG, BG')
is naturally isomorphic t®ep(G, G'), and that for each homomorphism
p: G G', Map(BG,BG')p, is aspherical withCqi(p) =
m1 Map(BG, BG,)B/}' O

This result was generalised to the case where the target is the classifying
space of a compact Lie group by Dwyer and Zabrodsky.

Proposition 7.2. [5] Let P be a finitep-group andG a compact Lie group.
Then the map

IR

B: Rep(P,G) — [BP, BG],
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which sends a homomorphis;m P — G to Bp, is a bijection. And for
each homomorphism: P —— G, the product magincl, p): Ca(p) X
P —— Ginduces

BCq(p) — Map(BP, BG)p,

which in turn induces an isomorphism of fundamental groups aifig-tio-
mology groups. O

The description of mapping spackkp(BP, BG;,\) will be shown by
comparing it withMap(B P, BSU (n);,) for some embedding' < SU(n).
The following elementary lemma will be needed.

Lemma 7.3. Fixn > 1, and lety: U(n — 1) — SU(n) be the homomor-
phism which sends a matrix to (6‘ det(OA)fl ) Then for any < Im(yp),
the centralizer off in SU (n) is connected.

Proof. ForanyH < Im(y), the spac€ gy (,,)(H) is a retract o0,y (H)
by the retraction which sends a matrid to its product with
diag(1,...,1,det(A)~1!). (Any such matrix centralizeH by the assump-
tion H < Im(y).) SinceCyy,(H) is connected (a product of unitary
groups),.Csyn)(H) is also connected. 0

The next lemma is a special case of [4, Lemma 10.6]. Recall first that for
a given topological grougs andG-spaceX, the space of homotopy fixed
points is defined as

X" = Mapg(EG, X),

the space of7-equivariant maps from the total space of the univessaln-
dle EGto X.Itcan also be described asthe space of sections of the projection
mapEG xg X — BG.

Lemma 7.4. Fix a fibrationp: E — X with fibre F', a finite groupG, and
amapf: BG — X. Assume there is an action 6f on F, and a map
¢: EG x¢ F — E, such that the following is a homotopy pullback square

EGxocF 2+ E

proj \ p

BG X.
Let Map(BG, E)¢ be the space of those mags: BG — E such that
p o f'~ f. Then the fibration

f

Map(BG,p)s: Map(BG, E); —— Map(BG, X);

has fibre homotopy equivalent F"C.
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Proof. Sincep is a fibration, so isMap(BG, p) ;. The fibre over the ele-
mentf € Map(BG, X) is homeomorphic to the space of sections of the
pullback, hence the space of sections of the Borel Mé&px s F — BG;
and this is the homotopy fixed point sBt<. O

We are now ready to prove Proposition 7.5: to show for gigyoup P
and any compact Lie grou@, thatMap(BP, BG;}) is weakly homotopy
equivalent to the-completion ofMap(BP, BG).

Proposition 7.5. LetG be a compact Lie group. Then for any finikgroup
P, thep-completion maBG —— BG;\ induces a homotopy equivalence

Map(BP, BG)) —~ Map(BP, BG}).

In other words, the map

o)

B: Rep(P,G) —— [BP, BG})],

which sends a homomorphism P — G to Bp, is a bijection; and for
eachp: P — G the product magincl, p): Cq(p) x P —— G induces a
homotopy equivalence

BCg(p);D\ — Map(BP, BG;}\)BP i

Proof of Proposition 7.5Case 1:G simply connected andCg(p) con-
nected. Assume first that7 is connected and simply connected. Liét
denote the homotopy fibre of the completion mag' — BGQ. The ob-
structions to liting a magB P — BG)) to BG lie in H"(BP;m,—1(F))
(alln > 1), and the obstructions to the uniqueness of such liftings (up to ho-
motopy) lie inH"(BP; m,(F)). SinceF is simply connected with uniquely
p-divisible homotopy groups, these obstruction groups all vanish, and hence
[BP, BG] = [BP, BG}).

Similarly, for anyi > 0, we obtain isomorphisms of sets of homotopy
classes of pointed maps

Map, (BP, BG) — Map, (BP, BG))

is a homotopy equivalence. This is a particular case of [19, Theorem 1.5].
The corresponding map between unpointed mapping spaces fits in the
diagram of fibrations

Map, (BP, BG) — Map(BP, BG) —— BG

: ]

A A ev A
(15) Map, (BP, BG}) Map(BP, BG),) BG, .
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Since BG, and thereforeBG;,\, are simply connected, by [1, Lemma
[1.5.2(i)], these fibrations remain fibrations afiecompletion, and therefore
we will have finish if we prove that given a homomorphigmP — G
for which Cg(p) is connected, the mapping spaldp(BP, BG)) s, is
p-complete.

Now, we fixahomomorphism: P —— G and assume furthermore that
Cc(p)isconnected. Thefirstobservationisthatinthis ddse(B P, BG) g,
is simply connected by [5] (c.f. Proposition 7.2), and from diagram (15)
we obtain thaMap(BP, BG))) s, is also simply connected. Hence, again
by [1, Lemma 11.5.2(i)],Map(BP, BG))) B, is p-complete if and only if
f2Map(BP, BG}) s, is p-complete.

Let A(BG))) denote the free loop space, anddetA(BG)) — BG), be
evaluation at the basepoint 6f. Let P act onGQ by conjugation induced
via p. Then Lemma 7.4 applies to show that there is a homotopy equivalence

(GNP = fiberg,(Map(BP, A(BG))) -~~~ Map(BP, BG)).

Notice also tha{G})"” ——— 2 Map(BP, BG))g,. By the generalized
Sullivan conjecture (c.f. [2], [3], or [17]}G )" ~ (G*)}. In particular
(G{})hp is p-complete, hence so i8 Map(BP, BG})) ).

Case 2: Now let G be arbitrary, and fix an embeddidg < U(n — 1) <
SU(n) as in Lemma 7.3. Fiy € Hom(P, SU(n)), and letpy, ..., p; be

G-conjugacy class representatives of homomorphisms: G which are
SU (n)-conjugate tg. Consider the following diagram:

0}, Csumy (pi)/ Calps)————1}_ BCg(pi))——————BCsu(m)(p)

|

(SU(n)/G)"F 1%, Map(BP, B'G) s,

Map(BP, BSU(n))s, ,

Here,B'G = ESU(n)/G ~ BG@G, and the action o on SU(n)/G is that
induced byp. Each row is a fibration sequence (Lemma 7.4), and the fibre in
the top row describes th€g(,,) (p) orbit decomposition ofSU(n)/G)".
Furthermore, the maps between the total spaces and base spaces are ho-
motopy equivalences aftercompletion by [5] (c.f. Proposition 7.1). Fur-
thermore, both fibrations remain fibrations aftecompletion because the
base spaces satisfyy Map(BP, BSU(n))p, = mBCgsy ) (P) = 0 by
[5] (c.f. Proposition 7.1) and Lemma 7.3, and then [1, 11.5.2(i)] applies.

It then follows that the map between fibres also induces a homotopy
equivalence

(SUm)/G)")) — ((SU(n)/G)""))

p
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and this combines with the generalized Sullivan conjecture to give a com-
mutative triangle of homotopy equivalences

((SUn)/G)T)
((SU(n)/G)*")" - SUm)/G)g)’”
Now setMap(BP, BG)g; = LI Map(BP, BG)p,,, and consider

the following diagram:

((SUm)/G)"*)" (Map(BP, BG)g,)" (Map(BP, BSU(n))s,),

l l |

((SU(n)/G)p)""" ———— Map(BP, BG))5; —— Map(BP, BSU(n)})z, -

The top row is a fibration sequence as we have argued above. The bottom
row is a fibration sequence by Lemma 7.4, since

(SU(n)/G)) — BGl —— BSU(n))

is a fibration sequence by [1, I1.5.2(i)] again. We have shown that the
map between fibres is a homotopy equivalence. The map between base
spaces is a homotopy equivalence by Case 1; and hence the map between
total spaces is a homotopy equivalence. Upon taking the union over all
p € Rep(P,SU(n)) that factors through < SU(n), this shows that
Map(BP, BG))) ~ Map(BP, BG),,. 0
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