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Abstract. We study the structure of classifying spaces of Kač-Moody
groups from a homotopy theoretic point of view. They behave in many
respects as in the compact Lie group case. The modp cohomology algebra
is noetherian and Lannes’T functor computes the modp cohomology of
classifying spaces of centralizers of elementary abelianp-subgroups. Also,
spaces of maps from classifying spaces of finitep-groups to classifying
spaces of Kǎc-Moody groups are described in terms of classifying spaces
of centralizers while the classifying space of a Kač-Moody group itself can
be described as a homotopy colimit of classifying spaces of centralizers of
elementary abelianp-subgroups, up top-completion. We show that these
properties are common to a larger class of groups, also including parabolic
subgroups of Kǎc-Moody groups, and centralizers of finitep-subgroups.

Mathematics Subject Classification (2000):55R35, 55R40, 22E65, 51E24

1. Introduction

The representation theory of compact Lie groups extends naturally to the
representation theory of a class of topological groups known as Kač-Moody
groups [11,10,22]. Apart from simply-connected compact Lie groups, this
class also contains Kač-Moody groups of affine type which are closely re-
lated to loop groups. In particular, Kač-Moody groups may be infinite di-
mensional in nature. The construction of Kač-Moody groups is motivated
by the representation theory of infinite dimensional Lie algebras, and as
such there is little reason to believe that Kač-Moody groups are indeed a
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legitimate extension of the class of simply connected compact Lie groups
from the standpoint of topology. The object of this paper is to establish this
fact. Namely, we intend to prove that the topological properties of Kač-
Moody groups closely mimic those of compact Lie groups. For instance,
thep-primary cohomology of the classifying space of a Kač-Moody group
will be shown to be finitely generated as an algebra. More precisely we have
the following

Theorem A [Theorem 4.8].For any Kǎc-Moody groupG, the modp coho-
mology ringH∗(BG,Fp) is finitely generated as anFp-algebra. Moreover,
if F is a Kǎc-Moody subgroup ofG, thenH∗(BF,Fp) is a finitely generated
H∗(BG,Fp)-module via the restrictionmapH∗(BG,Fp) ✲ H

∗(BF,Fp).

In fact we show that the Krull dimension ofH∗(BG,Fp) is the rank of
the maximal elementary abelianp-group inG (Corollary 4.2). The above
theorem has been verified for affine Kač-Moody groups by A. Kono and
K. Kozima [13–15] by a case-by-case analysis. Our approach is global and
proves this for a much larger class of groups we now describe.

Let X be a class of compactly generated Hausdorff topological groups
and letp be a fixed prime. Motivated by [16] define a new class of topo-
logical groups,K1X , by demanding that a compactly generated, Hausdorff
topological groupG belongs toK1X if and only if there exists a finite
G-CW-complexX with the following two properties:

(i) The isotropy subgroups ofX belong to the classX .
(ii) For every finitep-subgroupπ < G, the fixed point spaceXπ is p-

acyclic.

If a finiteG-CW-complexX satisfies the conditions listed above, we shall
callX aG-p-acyclic complex.

For the rest of this paper we fixX to be the class of compact Lie groups.
Our goal is to understand the algebraic and geometric nature of the groups
belonging to the classK1X . Indeed, we show that groups in the classK1X
share many of the properties enjoyed by compact Lie groups. We show in
Sect. 5 that Kǎc-Moody groups belong toK1X .

Among some of the other results for compact Lie groups that extend to
groups inK1X is the result of Lannes [17] for which we have the general-
ization

Theorem B [Theorem 3.1].For any groupG in the classK1X there is a
natural isomorphism

TV (H∗(BG,Fp))
�✲

∏
ρ∈Rep(V,G)

H∗(BCG(ρ),Fp)
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whereTV stands for the LannesT -functor corresponding to an elementary
abelianp-groupV , andCG(ρ) denotes the centralizer of the representation
ρ in G.

More generally, we extend the result of Dwyer and Zabrodsky [5] on the
nature of the centralizers of finitep-subgroups:

Theorem C [Corollary 3.3].If G is a group inK1X andπ a finitep-group,
then there is a natural homotopy equivalence

∐
ρ∈Rep(π,G)

BCG(ρ)∧
p

�✲ Map(Bπ,BG∧
p ).

Another result that extends to our context is the centralizer decomposition
of Jacowski and McClure [9] for the classifying space at a given prime. We
prove

Theorem D [Theorem 3.4].For a groupG in the classK1X assume that
there exists aG-p-acyclic complex all of whose isotropy groups contain non-
trivial p-torsion, then there exists a naturalp-local homology equivalence

π : hocolim
A∗(G)op

EG×G G/CG(E) ✲ BG

whereA∗(G)denotes theQuillencategoryof (nontrivial) elementaryabelian
subgroups ofG (refer Sect. 3.3).

In Sect. 5 we will show that the adjoint forms of Kač-Moody groups and
their parabolic subgroups, as well as the adjoint forms of the normalizers
of maximal tori admit acyclic complexes all of whose isotropy groups are
of maximal rank (c.f. Remark 5.4). In particular, the above theorem applies
for such groups.

It is worth pointing out that the construction of the classK1X resembles
the construction of P. Kropholler and G. Mislin in [16]. Also related to
the groups inK1X are the (discrete) groups studied by W. Luck in [18].
Consequently, all the results in this article are true for the groups considered
in [18].

We would like to point out to the reader that the groups in the classK1X
do not admit an a priori notion of a maximal torus. In this sense, they differ
from compact Lie groups. Kač-Moody groups, however, retain this notion.
One has a well defined maximal torus for a Kač-Moody group. Moreover,
any two maximal tori within a Kǎc-Moody group are conjugate (c.f. [12]),
and the normalizer of a maximal torus fits into an extension of a discrete
(Weyl) group by the maximal torus. The Weyl group for a Kač-Moody group
is a Coxeter group which is infinite in general.

The authors would like to acknowledge their debt to Haynes Miller for
introducing them to Kǎc-Moody groups, and suggesting that they may be
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studied using the tools of homotopy theory. They would also like to thank
J. Aguad́e, W. Dwyer, H.-W. Henn, L. Saumell and A. Ruı́z for their interest
and numerous useful discussions and observations on the subject. In addi-
tion, they would like to thank B. Oliver and R. Levi for their interest in the
project and their permission in letting us include their material in the second
appendix. And finally, the authors acknowledge the hospitality of Centre de
Recerca Matem̀atica (CRM) for providing the opportunity to conduct this
research.

2. Orbit decompositions

LetH be a subgroup ofG. For a given non trivial finite subgroupπ of G
one may ask how many conjugates ofπ lie inH and among those which are
conjugated withinH. Generally one finds a collection of elementsgλ ∈ G,
such thatg−1

λ πgλ < H and any twog−1
λ πgλ andg−1

λ′ πgλ′ are not conjugated
within H. This might be formalized in the following way.

Fix a finite groupΠ. Induced by the inclusion ofH in G we have

i : Rep(Π,H) ✲ Rep(Π,G) .

Let ρ : Π ✲ G be a representation forG and letπ = ρ(Π) be a finite
subgroup ofG. Now the set{gλ} indexes the counterimagei−1(ρ). Each
gλ providing the representationcg−1

λ
◦ ρ : Π ✲ H.

Next, we letπ act on the orbitG/H. The centralizerCG(π) acts on the
fix point space(G/H)π. Notice thatgH is a fix point in(G/H)π provided
egH = gH for everye ∈ π; that is, if and only ifg−1πg is a subgroup ofH.

On the other hand, given two fix points,gH andg′H, they are in the same
orbit by the action ofCG(π) if and only if there exists a fixedh ∈ H that
conjugatesg−1eg to g′−1eg′ for all e ∈ π. In fact, if g′H = xgH, for some
x ∈ CG(π), thenh = g−1x−1g′ is an element ofH that conjugatesg′−1eg′

to g−1eg for all e ∈ π. Reciprocally, ifh ∈ H giveshg′−1eg′h−1 = g−1eg
for all e ∈ π, thenx = ghg′−1 ∈ CG(π) andxg′H = gH.

Weobtain therefore that theset{gλ} indexes theCG(π)-orbitsof(G/H)π.
The isotropy group of an orbit represented bygλH is CG(π) ∩ gλHg−1

λ ,
and then we obtain an orbit decomposition

(1)
∐
gλ

CG(π)/CG(π) ∩ gλHg−1
λ

∼= (G/H)π

of the fix point set(G/H)π. We are interested in cases whereΠ is a finite
p-group.

Theorem 2.1. LetG be a group in the classK1X and letΠ be a finitep-
group.Then therearefinitelymany representationsρ : Π ✲ G.Moreover,
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given any such representation withπ = ρ(Π) and a compact subgroup
H < G, the decomposition (1) is a homeomorphism ofCG(π)-spaces.

Proof. We pick some choiceX of a G-p-acyclic complex. SinceXπ is
nonempty, we notice that the representationρ factors through some isotropy
group but since there are finitely many isotropy groups and the result is
known for compact Lie groups, there are finitely many choices forρ. It
remains to show that for any compact subgroupH, the decomposition (1)
is a homeomorphism ofCG(π)-spaces. The left hand side of (1) consist of
a finite number of terms:

∐n
i=1CG(π)/CG(π) ∩ giHg−1

i , hence it will be
enough to show thatCG(π)/CG(π)∩giHg−1

i is closed in(G/H)π in order
to see that it is both closed and open.

First,CG(π) is closed inG because its closure still centralizesπ. Also,
by assumption,H is a compact subgroup of G. Hence it easily follows that
CG(π) · giH is a closed subspace ofG. The result follows on projecting
toG/H. ��
Remark 2.2.Notice that the above proof strongly uses the compactness of
the isotropy subgroups of theG-action onX. The above theorem is the
only technical obstruction to extending the results of this paper to the class
K2X = K1(K1X ).

Corollary 2.3. Let G be a group belonging toK1X . Then for any finite
p-groupπ < G, the groupCG(π) also belongs to the classK1X .

Proof. Let X be aG-p-acyclic complex. The groupCG(π) acts on the
p-acyclic spaceXπ. Also, by 2.1, the spaceXπ is a finiteCG(π)-CW-com-
plex.Xπ will serve as ourCG(π)-acyclic complex. It is trivial to verify the
required properties. ��

3. Centralizers of finitep-subgroups

The geometric results in the previous section are used here in order to extend
arguments due to Henn [8,7] that will lead to some important homotopy
theoretic structural theorems for groups in the classK1X .

3.1. The Lannes’T functor

LetG be a group, and letV be a finitep-group. LetX be anyG-space. For
every representationρ : V ✲ G, letCG(ρ) denote the centralizer inG of
the subgroupρ(V ) and letXρ denote the fixed point spaceXρ(V ). Notice
that the spaceXρ has a natural action of the groupCG(ρ) × V whereV
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acts trivially. The group homomorphismCG(ρ) × V ✲ G yields a map
of the homotopy orbit spaces

(ECG(ρ) ×CG(ρ) X
ρ) ×BV

∼= (ECG(ρ) × EV ) ×CG(ρ)×V X
ρ ✲ EG×G X.

On evaluating the above map in cohomology and looking at its adjoint we
get the following map for every representationρ

TV (H∗
G(X)) ✲ H∗

CG(ρ)(X
ρ) .

Theorem 3.1. LetG be an element ofK1X andV an elementary abelian
p-group.

1. LetX be anyG-CW-complex of finite orbit type whose isotropy groups
are all elements ofX . Then the following naturalmap is an isomorphism.

TV (H∗
G(X))

�✲
∏

ρ∈Rep(V,G)

H∗
CG(ρ)(X

ρ) .

2. The following natural map is an isomorphism.

TV (H∗(BG))
�✲

∏
ρ∈Rep(V,G)

H∗(BCG(ρ)) .

Proof. Proof will proceed by induction on the equivariant skeletons ofX.
Notice that the theorem is true for compact Lie groups [8]. An easy induction
argument on the equivariant cells, reduces the proof of part 1 to the case of
a single orbitX = G/H, whereH < G is an element ofX . Let ρ ∈
Rep(V,G) be a representation in the image ofRep(V,H). Fix elements
g1, . . . , gr ∈ G such thatcg−1

i
◦ ρ are the possible factorizations of the

representationρ throughH. By Theorem 2.1 one gets homeomorphisms

r∐
i=1

EG×CH(c
g−1
i

◦ρ) {pt} ∼=
r∐

i=1

EG×CG(ρ) CG(E)/CG(ρ) ∩ giHg−1
i

∼= EG×CG(ρ) (G/H)ρ

that provide the isomorphism

r∏
i=1

H∗(BCH(cg−1
i ◦ρ))

∼= H∗
CG(ρ)((G/H)ρ) .

If we now bring into account all representationsρ ∈ Rep(V,G) that are in
the image ofRep(V,H), the collectionscg−1

i
◦ ρ will exhaust all represen-

tationsσ ∈ Rep(V,H). Notice that for representationsρ ∈ Rep(V,G) that
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are not in the image ofRep(V,H), the space(G/H)ρ is empty. Hence we
have an isomorphism

(2)
∏

σ∈Rep(V,H)

H∗(BCH(σ)) ∼=
∏

ρ∈Rep(V,G)

H∗
CG(ρ)((G/H)ρ) .

Now, TV (H∗
G(G/H)) ∼= TV (H∗(BH)). SinceH is a compact Lie group,

it satisfies the theorem. In particular

(3) TV (H∗(BH)) ∼=
∏

σ∈Rep(V,H)

H∗(BCH(σ)) .

Combining the isomorphisms (2) and (3), we obtain thatG satisfies part 1
of the theorem. The proof is complete once we observe that part 2 of the
theorem is a special case of part 1 when we takeX to be anyG-p-acyclic
complex. ��

3.2. Mapping spaces

LetG be a group, and letπ be a finitep-group. LetX be anyG-space. For
every representationρ : π ✲ G, letCG(ρ) denote the centralizer inG of
the subgroupρ(π) and letXρ denote the fixed point spaceXρ(π). Notice
that the spaceXρ has a natural action of the groupCG(ρ)× π whereπ acts
trivially. The group homomorphismCG(ρ)×π ✲ G yields a map of the
homotopy orbit spaces

(ECG(ρ) ×CG(ρ) X
ρ) ×Bπ

∼= (ECG(ρ) × Eπ) ×CG(ρ)×π X
ρ ✲EG×G X.

On completing this map and then taking the adjoint, we get a map for everyρ

((Xρ)hCG(ρ))
∧
p

✲ Map(Bπ, (XhG)∧
p ) .

Theorem 3.2. LetG be a group in the classK1X andπ a finitep-group.
LetX be anyG-CW-complex of finite orbit type with isotropy subgroups in
X , then the following natural map is a homotopy equivalence.

(4)
∐

ρ∈Rep(π,G)

((Xρ)hCG(ρ))
∧
p

�✲ Map(Bπ, (XhG)∧
p ) .

TakingX to be anyG-p-acyclic complex, we obtain

Corollary 3.3. If G is a group in the classK1X andπ a finitep-group, then
the following natural map is a homotopy equivalence

(5)
∐

ρ∈Rep(π,G)

BCG(ρ)∧
p

�✲ Map(Bπ,BG∧
p ) . ��
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We begin the proof of Theorem 3.2.

Proof. The above result is known in the case whenG is a compact Lie group
[5]. Now consider aG-CW-complex of finite orbit type. It is easy to verify
that the spaceXhG satisfies the conditions of Definition 6.2 in the appendix.
Using the terminology of the appendix,XhG is a finiteX-CW-complex,
whereX is the class consisting of spacesY that are equivalent to finite
disjoint unions of the classifying spaces of compact Lie groups.

The proof of the theorem for the case whenX is a single orbitG/H is
an easy consequence of Theorem 2.1 and previously known results about
compact Lie groups [5]. It now follows by induction on the equivariant cells
of X that the natural map

∐
ρ∈Rep(π,G)

((Xρ)hCG(ρ))
∧
p

✲ M(Bπ,XhG)∧
p

is an equivalence, whereM(Bπ,XhG) was defined in the appendix (Defi-
nition 6.6) to be the finiteX1-CW-complex with cellsMap(Bπ,Xα), where
Xα are the cells ofXhG. By the main Theorem 6.11 in the appendix, the
natural map

M(Bπ,XhG)∧
p

✲ Map(Bπ, (XhG)∧
p )

is an equivalence. On composing the two equivalences, the proof is complete.
��

3.3. The centralizers decomposition

For a groupG, the Quillen category forG,A(G), has all elementary abelian
p-subgroups ofG as objects. Morphisms between two objectsE andE′ are
group monomorphismsα : E✲ ✲ E′ for which there existsg ∈ G such
thatα(e) = geg−1 for all e ∈ E. A∗(G) is the full subcategory ofA(G)
consisting of all objects except for the trivial subgroup.

Now letG be an element ofK1X andX anyG-space. IfE is an elemen-
tary abelian subgroup ofG, CG(E) denotes the centralizer inG of E and
XE the fixed point space by the action ofE restricted fromG. Notice that
the spaceXE has a natural action of the groupCG(E) and we can define a
functor

FX : A(G)op ✲ G-Spaces

FX(E) = G×CG(E) X
E .

Here the orbits are taken for the left action ofCG(E) onG ×XE defined
ash · (g, x) = (xh−1, hx), for h ∈ CG(E) and(g, x) ∈ G×XE . The left
action ofG onG×CG(E)X

E is induced by the regular action ofG on itself.
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It is clear that the actionG × X ✲ X induces mapsG ×CG(E)

XE ✲ X, that form a natural transformation fromFX to the constant
functorX hence a natural map

µX : hocolim
A∗(G)op

EG×G FX
✲ EG×G X .

Notice that ifX andXE arep-acyclic,µX is equivalent to the usual
Jackowski-McClure map [9],

π : hocolim
A∗(G)op

EG×G (G/CG(E)) ✲ EG×G {pt} = BG .

Theorem 3.4. LetG be a group in the familyK1X .

1. LetX be anyG-CW-complex with a finite number of equivariant orbits
and such that all isotropy groups are elements ofX . Then the following
natural map is ap-local homology equivalence.

µX : hocolim
A∗(G)op

EG×G FXs
✲ EG×G Xs

whereXs denotes thep-singular locus ofX, i.e. the set of all points in
X which are fixed by some element of orderp.

2. Assume that there exists aG-p-acyclic complexX such thatX = Xs,
then the following natural map is ap-local homology equivalence.

π : hocolim
A∗(G)op

EG×G G/CG(E) ✲ BG .

Proof. It is easy to see thatXs ⊆ X is a subG-CW-complex. The proof
now proceeds by induction on the equivariant skeletons ofXs. Notice again
that the Theorem is true in the case of compact Lie groups [8, 0.1].

The induction step follows the arguments of [8, 2.6] that we just sketch.
Firstly the proof is reduced to the case of a single orbitXs = G/H, where
H < G is an element ofX that contains nontrivialp-torsion. Then we use
Theorem 2.1 in order to obtain

hocolim
E∈A∗(G)op

EG×G (G×CG(E) (G/H)E)� hocolim
E∈A∗(G)op

EG×CG(E) (G/H)E

� hocolim
D∈A∗(H)op

EG×CH(D) {pt}

the last equality following from Theorem 2.1. Now the final space in the
sequence of equivalences above isp-equivalent toBH � EG ×G G/H
sinceH is a compact Lie group.
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It remains to show that (1) implies (2). This is achieved by takingX to be
anyG-p-acyclic complex with the property thatXs = X. ��

4. Cohomology rings

4.1.

Once we have established Theorem 3.1 and the fact that the Quillen category
of a groupG in the classK1X is equivalent to a finite category, we can use
arguments due to Henn, Lannes and Schwartz [6,7] in order to proof our
structure theorems for modp cohomology rings of groups in the classK1X .

Theorem 4.1. For a groupG in the classK1X the Quillen map

(6) qG : H∗(BG) ✲ lim←−
E∈A(G)

H∗(BE)

is anF -isomorphism.

Proof. Classically anF -isomorphism is a homomorphism of algebras for
which both the kernel and the cokernel are nilpotent algebras. In our context
of unstable algebras over the Steenrod algebra, an algebra is nilpotent if
it is nilpotent as an object in the categoryU of unstable modules over the
Steenrod algebra. Recall that an unstableA-moduleN is nilpotent if and only
if HomU (M,H∗V ) = 0 for any elementary abelianp-groupV (c.f. [23]).
It turns out that we only need to show that the induced map
(7)

q�G : HomU


 lim←−

E∈A(G)
H∗(BE), H∗V


 ✲ HomU (H∗(BG), H∗V )

is an isomorphism for any elementary abelianp-groupV . And according to
the linearization principle (c.f. [23, 3.8.6]) it will be enough to checkq�G for
Hom functors in the categoryK of unstableA-algebras.

Now, according to Theorem 3.1 we can write the isomorphisms

(8) HomK(H∗(BG), H∗V ) ∼= HomK(TVH
∗(BG),Fp)

∼= HomK


 ∏

ρ∈Rep(V,G)

H∗(BCG(ρ),Fp)


 ∼= Rep(V,G) .

On the other hand,Rep(V,G) ∼= colimE∈A(G) L(V,E) is the colimit over
the Quillen category of all linear maps fromV to elementary abelian sub-
groupsE of G. Furthermore, the functorK ✲ HomK(K,H∗V ) trans-
forms finite limits into colimits, hence using the fact that the Quillen cate-
goryA(G) for the groupG is equivalent to a finite category, we can state
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isomorphisms

Rep(V,G) ∼= colim
E∈A(G)

L(V,E)

∼= colim
E∈A(G)

HomK(H∗(BE), H∗V )

∼= HomK( lim←−
E∈A(G)

H∗(BE), H∗V ) .(9)

with which we finish the proof. ��
Corollary 4.2. ForagroupG inK1X , the transcendencedegreeofH∗(BG)
coincides with the maximal rank of its elementary abelianp-subgroups.

We have written the proof of Theorem 4.1 in a way that emphasizes the
relevance of the functorK ✲ HomK(K,H∗V ), K an object ofK, in
the investigation of the cohomology ringsH∗(BG).

For a generalK of K, HomK(K,H∗V ) has a natural structure of pro-
finite set, induced by the collection of finitely generated subobjects ofK.
It also inherits fromH∗V an action of the monoidEndV , so it becomes
an object in the categoryPS- EndV of profinite EndV -sets. IfVd is an
elementary abelianp-group of rankd the above functor is written

sd : K ✲ (PS- EndVd)op

with sd(K) = HomK(K,H∗Vd).
This structure is exploited in [6], where it is defined a functor

bd : (PS- EndVd)op ✲ K
as by the formulabd(S) = HomPS- End Vd

(S,H∗Vd). That is bd(S)n is
defined asHomPS- End Vd

(S,HnVd) and the unstableA-algebra structure
is induced by that ofH∗Vd. bd(K) is always aNil-closed object ofK
with transcendence degree smaller that or equal tod and the pairsd, bd are
inverse functors that define an equivalence of the categoriesPS- EndVd

andKd/Nil, the quotient category of unstableA-algebras of transcendence
degree smaller than or equal tod by the full subcategory of nilpotentA-al-
gebras.

With this notation, equations (8) and (9) providing the proof of Theo-
rem 4.1 are written

sd(H∗(BG)) ∼= Rep(Vd, G) ∼= sd( lim←−
E∈A(G)

H∗(BE))

in the categoryPS- EndV , providedd is larger than the rang of any ele-
mentary abelian subgroupE ofG. Sincelim←−E∈A(G)H

∗(BE) isNil-closed
one identifies

bd ◦ sd(H∗(BG)) ∼= bd Rep(Vd, G) ∼= lim←−
E∈A(G)

H∗(BE)
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hence the Quillen map with the natural mapH∗(BG) ✲ bd◦sd(H∗(BG)).
This pair of functors allows to interpret properties on objects in one of

the categoriesPS- EndVd or Kd/Nil in terms of properties of the corre-
sponding objects in the other category. The concept of noetherianEndV -set
is of particular interest to us. It requires the notion on kernel of an element
in an EndV -set. We review these concepts and the results that are more
relevant to us in the next paragraph.

4.2. The notion of kernel for an element of anEndV -set

The results under review are all due to Henn, Lannes and Schwartz [6]. Fix
an elementary abelianp-groupV . An EndV -set is a setS together with
a right action ofEndV , considered as a monoid under composition. Our
motivating examples are

1. Rep(V,G), for any groupG and

2. HomK(K,H∗V ), for any unstableA-algebraK.

In both cases, the action ofEndV is inherited from the natural action onV .
The notion of kernel is easily motivated by the first example. In fact if

s ∈ Rep(V,G), the kernel ofs is just defined as its group theoretic kernel.
If we look at all possible factorizations ofs astα, α ∈ EndV

V
s ✲ G

❅
❅

❅α ❘ �
�

�
t

✒

V

we can recoverker s as the maximalkerα among all endomorphismsα that
factors. This is what we can generalize to anyEndV -set.

Proposition-Definition 4.3. If S is anEndV -set ands ∈ S, the kernel
ker s is uniquely characterized by the properties:

1. For anyt ∈ S andα ∈ EndV such thats = tα, kerα ⊂ ker s.
2. There are elementst0 ∈ S andα0 ∈ EndV withs = t0α0 andkerα0 =

ker s.

We are now interested in the effect on a kernel of an element ofEndV and
of a morphism ofEndV -sets. In general, we obtain inclusionsα−1(ker s) ⊂
ker(sα) for any elements of anEndV -setS andα ∈ EndV , andker s ⊂
ker(ϕs) for any morphism ofEndV -setsϕ : S ✲ S′ ands ∈ S. The
cases in which the equality holds are linked to finiteness properties.
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Definition 4.4. An EndV -setS is called noetherian if

1. S is finite, and

2. α−1(ker s) = ker(sα) for any elements ∈ S andα ∈ EndV .

Definition 4.5. We say that a morphism ofEndV -setsϕ : S ✲ S′ pre-
serves kernels ifker s = ker(ϕs) for anys ∈ S.

As immediate examples we have thatRep(V,G) is a noetherian
EndV -set as soon asRep(V,G) is finite. Thus in particular, for any group
G in the classK1X . Furthermore, any injection of groupsρ : G✲ ✲ H
induces a morphism ofEndV -setsρ� : Rep(V,G) ✲ Rep(V,H) that
preserves kernels.

The importance of these concepts in our context comes mainly from the
following results.

Theorem 4.6 ([6, 7.1]).

1. If K is a noetherian unstableA-algebra, thensd(K) is a noetherian
EndV -set.

2. If S is a noetherianEndV -set, thenbd(S) is a noetherian unstable
A-algebra.

Theorem 4.7 ([6, 7.8]).Letϕ : K ✲ L be amap of unstableA-algebras
andsd(ϕ) : sd(L) ✲ sd(K) the inducedmorphism ofEndV -sets. Then,

1. If L is finitely generated asK-module viaϕ, sd(ϕ) preserves kernels.
2. IfK andL are noetherian, the transcendence degree ofL isd andsd(ϕ)

preserves kernels, thenL is a finitely generatedK-module viaϕ.

4.3.

We have now the necessary material in order to establish the main result
of this section. The first immediate consequence is that for a groupG
in the classK1X , theNil-localization ofH∗(BG), bd ◦ sd(H∗(BG)) ∼=
lim←−E∈A(G)H

∗(BE) is a noetherian ring, for sd(H∗(BG)) =
HomK(H∗(BG), H∗(Vd)) ∼= Rep(Vd, G) is a noetherianEndV -set.

Theorem 4.8. For any groupG in the classK1X , the modp cohomol-
ogy ringH∗(BG) is noetherian. If a subgroupF belongs toK1X , then
H∗(BF ) is a finitely generatedH∗(BG)-module via the restriction
H∗(BG) ✲ H∗(BF ).

Proof. Pick aG-p-acyclic complexX. The acyclicity ofX provides a
p-equivalence

BG � EG×G X .
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Hence we have the associated isotropy spectral sequence ofH∗(BG)-
modules corresponding to theG-spaceX

(10) Ei,j
2

∼= H i
G(X,Hj(BH∗)) =⇒ H i+j(BG)

that computes the cohomology ofBG in terms of cohomology rings of the
classifying spaces of its isotropy subgroups. Furthermore theE2-term has
a finite number of non-trivial columns hence in collapses at a finite stage
(actuallyE1 ∼= ∏

ΛH
∗(BH) whereΛ denotes the equivariant cells ofX).

Next we claim the existence of a sub-A-algebraK of H∗(BG) which
is noetherian andF -isomorphic toH∗(BG). We have already seen that the
Nil-localization ofH∗(BG), L = lim←−E∈A(G)H

∗(BE), is noetherian. If

{x1, . . . , xs} is a finite system of generators forL, we can find an integer

k for whichLpk
= 〈xpk

1 , . . . , x
pk

s 〉 is contained in the image ofqG. We can

choose elementsy1, . . . , ys ∈ H∗(BG), with qG(yj) = xpk

j . Of course,
the subalgebra generated by those elements inH∗(BG) need not be closed
under the Steenrod operations, however in each case the defect will be an
element in the kernel ofqG and therefore we will find a large enough integer

l such that the subalgebraK generated byypl

1 , . . . , y
pl

s is closed under the
Steenrod operations and is then a sub-A-algebra ofH∗(BG). Moreover,

qG(K) is the subalgebra ofL generated byxpk+l

1 , . . . , xpk+l

s and thenK is
F -isomorphic toL, hence also toH∗(BG).

Now if H < G is one of the isotropy groups for the spaceX, then
theA-mapK ✲ H∗(BG) ✲ H∗(BH) induces, for any elementary
abelianp-groupV , a diagram ofEndV -sets

Rep(V,H) ✲ Rep(V,G)

HomK(H∗(BH), H∗V )

∼=
❄

✲ HomK(H∗(BG), H∗V )

∼=
❄ ∼=✲ HomK(K,H∗V )

Since Rep(V,H) ✲ Rep(V,G) preserves kernels andH∗(BH) is
noetherian, we notice thatH∗(BH) is finitely generated as aK-module.

Now the above spectral sequence might be considered a spectral sequence
ofK-modules by restriction viaK ✲ H∗(BG), an as a such is has finitely
generatedE1-term; that is,E1 is a noetherianK-module hence each page
Ei is a noetherianK-module, an thereforeH∗(BG) is itself a noetherian
K-module, in particular a noetherian algebra.

In order to finish the proof we only need to observe that same argument
as with the isotropy groupsH will show that for any subgroupF ofG, that
belongs to the classK1X ,H∗(BF ) becomes a finitely generatedK-module,
or just a finitely generatedH∗(BG)-module. ��
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5. Groups related to Kǎc-Moody groups

As indicated in the introduction, we will show that Kač-Moody groups yield
nontrivial examples of groups in the classK1X . Indeed, it was our desire
to understand the homotopic nature of Kač-Moody groups in the first place,
that let to this paper. By a Kač-Moody group, we shall mean the unitary
form of a complex Kǎc-Moody group. Similarly, a parabolic subgroup of
a Kǎc-Moody group will mean the unitary form of the complex parabolic.
It is our goal to show that groups of the formP/C belong to the class
K1X , whereP is the parabolic subgroup of some Kač-Moody group and
C < P is a compact central subgroup. LetKP be the semisimple factor in
the Levi decomposition ofP , so thatP is a split extension of a torus with
KP . Notice thatKP is equivalent to a Kǎc-Moody group. To each group of
the formG = P/C as above, we associate aG-CW-complexXG. We begin
by describingXG wheneverG = K is a Kǎc-Moody group of rankn.

Let C be the category of subsets of then-element set{1, 2, . . . , n} such
that the corresponding standard parabolic subgroup is compact. We define
the morphisms to be usual inclusions of subsets. Consider the functor from
C to topological spaces, which sends the subsetI to the homogeneous space
K/PI , wherePI denotes the standard parabolic subgroup corresponding
to the subsetI. The homotopy colimit of this functor is our choice for the
K-CW-complexXK . Notice that wheneverK is of finite type, the category
C has a terminal object and the value of the functor on this object is a
point, hence it is clear thatXK is contractible. In this special case one can
use Smith theory to show that the space(XK)π is acyclic for a finitep-
subgroupπ < K. For a noncompact Kač-Moody group, notice that the
categoryC is a full subcategory of the category of all proper subsets of the
set{1, 2, . . . , n}. Consequently, we can identifyBC with a subspace of the
barycentric subdivision of the(n− 1) simplex (the latter being canonically
identified with the classifying space of the poset of all proper subsets of the
set{1, 2, . . . , n}.)

XK =(K/T ×BC)/ ∼ , (gT, x) ∼ (hT, y) ⇔ x=y ∈ ∆◦
I , sPI =uPI

whereT is the maximal torus ofK and∆◦
I denotes the interior of the face

of the(n− 1)-simplex∆ that corresponds to the subsetI. The spaceX is
acyclic and the proof of its acyclicity is similar to the one given in [21]. We
recall the proof briefly.

Let B be the positive Borel subgroup of a complex Kač-Moody group
that containsK as the unitary form. Consider the skeletal filtration ofK/T :

Fk(K/T ) =
∐

l(w)≤k

BwB/B .
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Herew denotes the elements of the Weyl group,W , of K. One uses this
filtration to define a filtration ofXK by subcomplexes as follows:

Fk(XK) = (Fk(K/T ) ×BC)/ ∼ .

In [21, Thm. 2,16] it is shown that the obvious map

ζ : Fk(K/T ) ×BC ✲ Fk(XK)/Fk−1(XK)

is given by collapsing a subspace to a point and that the associated quotients
are

Fk(XK)/Fk−1(XK) =
∨

l(w)=k

ζ(BwB/B ×BC) .

We now proceed to show that the spacesζ(BwB/B × BC) are acyclic.
This shows that each filtrationFk(XK) is acyclic and hence sinceXK is a
colimit of such, it is itself acyclic.

It is straightforward tosee that foragivenw ∈W , thespaceζ(BwB/B×
BC) is a suitable suspension of the quotient spaceBC/BDw whereDw ⊂ C
is the full subcategory of all subsetsI such thatw is identified with an ele-
ment of lesser length withinW/WI . Now notice thatC has an initial object
given by the empty set. ConsequentlyBC is contractible. Hence to show
thatζ(BwB/B × BC) is acyclic, it is sufficient to show thatBDw is also
contractible. DefineIw to be the set{i ∈ {1, 2, . . . , n} | l(wri) < l(w)}. It
follows from the general theory of Coxeter groups thatWIw is a finite group
and hence thatIw ∈ Dw. Consider the functorF : Dw

✲ Dw which maps
a subsetI to the subsetI ∩ Iw. Notice that this functor provides us with
a zig-zag between the identity functor and the constant functor with value
Iw. It follows thatBDw is contractible. For future use, we now establish the
acyclicity of various other subcomplexes ofXK .

Let S be any subcomplex ofK/T . Let us define a filtration ofS via

Fk(S) = Fk(K/T ) ∩ S =
∐

l(w̄)≤k

Bw̄B/B

wherew̄ are elements ofW that index the cells inS. One can define a
subcomplexXS of XK as

XS = (S ×BC)/ ∼ , (sT, x) ∼ (uT, y) ⇔ x = y ∈ ∆◦
I , sPI = uPI .

Lemma 5.1. Let S be a subcomplex ofK/T , then the subcomplexXS of
XK is acyclic wheneverXK is acyclic.

Proof. Define a filtration ofXS by subcomplexes

Fk(XS) = Fk(XK) ∩XS .
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It is straightforward to see that
Fk(XS)/Fk−1(XS) =

∨
l(w̄)=k

ζ(Bw̄B/B ×BC).

Since the spacesζ(Bw̄B/B×BC) are acyclic wheneverXK is contractible,
it follows that the spacesFk(XS) are acyclic and consequently thatXS is
acyclic. ��

We now generalize the above construction to the groupsG of the form
P/C whereP is a parabolic subgroup of some Kač-Moody group andC
is a compact subgroup of the center inP . LetKP be the semisimple factor
of P so thatP is a split extension of a torus withKP . SinceKP can be
identified with a Kǎc-Moody group, we define the spaceXG to beXKP

.
To see thatXG is aG-CW-complex , one only needs to observe that each
homogeneous spacesKP /PI can be written asP/Q, wherePI is a standard
parabolic inKP andQ < P is a suitable subparabolic that containsC.
If H is an isotropy subgroup of theG action onX, then it is easy to see
thatH < G is a compact Lie group of maximal rank. In particular, ifG
is nontrivial, then every isotropy subgroup of theG action onXG contains
nontrivialp-torsion.

We record the following fact about Kač-Moody groups to be used in the
following theorem.

Theorem 5.2. LetK be a Kǎc-Moody group of rankn. GivenJ ⊆ {1, 2,
. . . , n}, letPJ denote the corresponding standard parabolic subgroup. Let
Π be a finite subgroup ofPJ , then up to conjugacy withinPJ , there exists
a standard parabolic subgroup of finite typePI < PJ that containsΠ.

Proof. This is essentially a slight generalization of a theorem of Kač-Pe-
terson. In [12] it is shown that any finite subgroup of a Kač-Moody group
can be conjugated into a standard parabolic subgroup of finite type. Their
proof can be easily extended to show that any finite subgroup of a stan-
dard parabolic subgroupPJ can be conjugated withinPJ into a standard
parabolic subgroup of finite typePI < PJ . ��
Theorem 5.3. LetG be any group of the formP/C as described above. Let
Π be a finitep-group, and letρ : Π ✲ G be a representation. Then the
spaces(XG)ρ arep-acyclic.

Proof. One may assume thatP is a standard parabolic subgroup in some
Kač-Moody group. By Theorem 5.2 one may further assume that there exists
a standard parabolic of finite typeQ < P such thatρ factors through the
compact Lie groupQ/C < P/C. The semisimple factorKP insideP
can be identified with a Kǎc-Moody group and we need only consider the
case whenKP is a noncompact Kǎc-Moody group. By definition, we have
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XG = XKP
. LetPI = KP ∩Q be the standard compact parabolic subgroup

PI < KP and letT < KP be the standard maximal torus. Define a filtration
of the spaceKP /T by finite subcomplexes:

Sk = PI · Fk(KP /T )

whereFk(KP /T ) is the standard skeletal filtration ofKP /T . Notice that
by assumption the action ofΠ viaρ on the spaceKP /T preserves the finite
subcomplexSk. Since these subcomplexes provide a filtration ofKP /T ,
the finite complexes(XG)Sk

of Lemma 5.1 provide a filtration ofXG by
finite subcomplexes which are preserved under the action ofΠ via ρ. From
Lemma 5.1, each space(XG)Sk

is acyclic. So by Smith theory, the fixed
point sets(XG)ρ

Sk
arep-acyclic. Now the result follows by taking direct

limits. ��
We will now show that the Weyl group,W , of a Kǎc-Moody groupK

belongs to the classK1X . As before letC be the category of subsets of the
n-element set{1, 2, . . . , n} such that the corresponding standard parabolic
subgroup is compact. We define the morphisms to be usual inclusions of
subsets. Consider the functor fromC to topological spaces, which sends the
subsetI to the homogeneous spaceW/WI , whereWI denotes the Weyl
group corresponding to the subsetI. The homotopy colimit of this functor
is our choice for theW -spaceXW . An essential difference from the space
XK is thatXW is a finite dimensional CW-complex. This is to be expected
sinceW is a discrete group. As before, to show the required properties for
XW , we may assume thatW is infinite. The proof that showsXW is acyclic
is similar to the nondiscrete situation. One identifiesXW with the space

XW = (W ×BC)/ ∼ , (u, x) ∼ (v, y) ⇔ x = y ∈ ∆◦
I , uWI = vWI .

Next, one filters the spaceXW using the length of elements in the Weyl
group. The associated quotients are shown to be contractible for exactly
the same reasons as before. Notice thatXW can be considered as a finite
NK(T )-CW-complex , whereNK(T ) is the normalizer of the maximal
torus inK, and is seen to act onXW via the projectionNK(T ) ✲ W .
This shows thatNK(T ) is an element ofK1X . Notice also that the finite
dimensionality ofXW forces the acyclicity of(XW )π for finite p-groups
π < W .

We can extend this construction to normalizers of maximal tori within
groups of the formG = P/C, whereP is a parabolic subgroup within a
Kač-Moody group andC < P is a compact central subgroup. LetN < G
be the normalizer of the maximal torusT/C. LetWG be the Weyl group
of P . It is easy to see thatWG is canonically isomorphic to the Weyl group
WP of the Kǎc-Moody group given by the semisimple factorKP < P . We
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defineXN = XWG
to be the spaceXWP

. It is straightforward to check the
details and we leave them to the interested reader.

Remark 5.4.If G is a group of the formP/C considered above, then the
isotropy groups of theG-action onXG contain a conjugate of the torusT/C.
The same is true for groupsG that are normalizers ofT/C within P/C.
It follows that, in these cases, all the isotropy subgroups contain nontrivial
p-torsion for any primep. Note that this condition is not true in general for
groupsG that are the Weyl groups ofT/C within P/C.

6. Appendix :X-CW-complexes

Spaces that can be obtained by successively “attaching” a finite number of
reasonable spaces are indeed special. In this section we analyze the behavior
of such spaces. Before we begin, we remind the reader that all cohomology
is to be understood withp-primary coefficients.

LetX be any class of spaces such that givenY in X, and a finitep-groupπ

1. H∗(Y ) andH∗(Map(Bπ, Y )) are of finite type.

2. The natural mapMap(Bπ, Y )∧
p

✲ Map(Bπ, Y ∧
p ) is an equivalence.

Remark 6.1.An example of such a class which will be of interest is the class
X of spaces that are equivalent to a finite disjoint union of the classifying
spaces of compact Lie groups. The justification of this observation is the
content of Sect. 7.

Another example of such a class is the class of spaces equivalent to finite
disjoint unions of the classifying spaces ofp-compact groups.

From now on, fix a classX that satisfies the above two conditions.

Definition 6.2. A spaceY is aX-CW-complex if there exist a spaceY , and
a ladder of inclusions

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ . . . Y = colim
n∈Z

Yn

∅ = Y −1 ⊂ Y 0

g0
❄

⊂ Y 1

g1
❄

⊂ . . . Y

g
❄
= colim

n∈Z

Y n

where the spacesYn andY n are obtained inductively as homotopy pushouts:
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!ΛnYα × Sn−1

π

��

fn−1 �� Yn−1

��

!ΛnS
n−1

π

��

fn−1 �� Y n−1

��
!ΛnYα × ∗ �� Yn !Λn∗ �� Y n ,

whereπ denotes the obvious projection map and the mapsfn−1 andfn−1
are any maps so that the following diagram commutes:

!ΛnYα × Sn−1 fn−1 ��

π2

��

Yn−1

gn−1

��

!ΛnS
n−1

fn−1 �� Y n−1 .

We define the mapgn as the canonical map induced by the commutativity
of the above diagram. The spaces{Yα;α ∈ Λn} are called then-cells ofY
and belong toX. If the total number of cells ofY are finite, we shall callY
a finiteX-CW-complex. The spacesYn are called then-skeleta ofY .

Remark 6.3.Roughly speaking, aX-CW-complexY is a space over a reg-
ular CW-complexY , so that the fiber over every point inY belongs toX.

Definition 6.4. Define a new classX1 to contain all spaces that are finite
disjoint unions of spaces of the form{Map(Bκ, Y )hρ | Y ∈ X} where
κ, ρ are finitep-groups with the action ofρ onMap(Bκ, Y ) induced by an
action onBκ.

Theorem 6.5. The classX1 also satisfies the two conditions stated earlier.

Proof. GivenY ∈ X and finitep-groupsπ andκ, with π acting onBκ,
consider the fibration

(11) Map(Bκ, Y ) ✲ Map(Bκ, Y )hρ
✲ Bρ .

SinceH∗(Map(Bκ, Y )) andH∗(Bρ) are both of finite type, it follows that
so isH∗(Map(Bκ, Y )hρ). Next consider the fibration of mapping spaces
of 11 over a general component:

(12)
Map(Bκ, Y )hπ ✲ Map(Bπ,Map(Bκ, Y )hρ)(f)

✲ Map(Bπ,Bρ)f .

SinceMap(Bκ, Y)hπ=Map((Bκ)hπ, Y ),weknow thatH∗(Map(Bκ, Y)hπ)
is of finite type. ClearlyH∗(Map(Bπ,Bρ)f ) is also of finite type, hence
it follows thatH∗(Map(Bπ,Map(Bκ, Y )hρ)(f)) is of finite type verifying
the first condition. To verify the second condition, notice that the completion
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of the fibration 12 still remains a fibration. Alternatively, we can complete
the fibration 11 and then consider the mapping spaces. We have a diagram
of fibrations over a general component:

(Map(Bκ, Y )hπ)∧p ✲ (Map(Bπ,Map(Bκ, Y )hρ)(f))∧p ✲ (Map(Bπ,Bρ)f )∧p

(Map(Bκ, Y )∧p )
hπ

❄
✲ Map(Bπ, (Map(Bκ, Y )hρ)∧p )(f)

❄
✲ Map(Bπ, (Bρ)∧p )f

❄

SinceMap(Bκ, Y )hπ = Map((Bκ)hπ, Y ), our assumptions on the
classX imply that the induced map on the fiber is an equivalence. The
induced map on the base is clearly an equivalence. It follows that the map
on the total spaces is also an equivalence, completing the proof. ��
Definition 6.6. Given aX-CW-complexY , and a finitep-groupπ, consider
the map

Map(Bπ, Y )
g∗✲ Map(Bπ, Y ) .

Let M(Bπ, Y ) = g−1∗ (Y ) be the subspace ofMap(Bπ, Y ) given by the
inverse image of the constant mapsY ⊆ Map(Bπ, Y ).

It is left to the reader to verify thatM(Bπ, Y ) is a X1-CW-complex
with n-cells{Map(Bπ, Yα), α ∈ Λn}, and attaching mapsMap(Bπ, fn).

Proposition 6.7. Given a finiteX-CW-complexY , let Z = Y ∧
p . Then for

an elementary abelianp-groupV , the natural map

M(BV, Y )∧
p

FBV✲ Map(BV,Z)

is an equivalence.

Proof. The skeletal filtration forX-CW-complex es gives rise to a spectral
sequence in cohomology. LetM∗,∗∗ denote the spectral sequence converging
to the modp cohomology ofM(BV, Y ) andE∗,∗∗ the one converging to
H∗(Y ). These might be considered as spectral sequences of unstable mod-
ules over the Steenrod algebra (the action is vertical and is induced from the
geometric filtration).

Evaluation provides a filtration preserving map

ev : BV ×M(BV, Y ) ✲ Y .

Since both tensoring withH∗(BV ), andTV are exact functors, we get a
maps of spectral sequencesE∗,∗∗ ✲ H∗(BV ) ⊗ M∗,∗∗ and its adjoint
TVE

∗,∗∗ ✲ M∗,∗∗ . By [17, 3.4.1], our assumptions onX imply that the
evaluation map induces an isomorphism on each cellYα of Y

TVH
∗(Yα) ∼= H∗(Map(BV, Yα))
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Furthermore,TV commutes with finite products, hence the map of spectral
sequences is an isomorphism at the first page, hence alsoTVE

∗,∗∞ ∼= M∗,∗∞ .
Since the filtration is finite, we have an isomorphism

(13) TVH
∗(Y ) ∼= H∗M(BV, Y )

induced by the evaluation map. Since all spaces involved are of finite type,
by [17, 3.3.1] we obtain that the mapFBV is an equivalence completing the
proof. ��

We now recall two results that will be important in the sequel.

Proposition 6.8. [17, 4.2]LetV be an elementary abelianp-group, and let
X be aV -space. Then theBV -equivariant map

BV ×XhV ✲ Map(BV,XhV )(1) .

induced by the inclusionXhV ✲ Map(BV,XhV )(1) and the action of
BV on the spaceMap(BV,XhV )(1), is a homeomorphism.

Proposition 6.9. [17,4.3.1]The followingnaturalmap isahomotopyequiv-
alence:

(X∧
p )hV

✲ (XhV )∧
p .

As a consequence of these results we get

Corollary 6.10. Given a finiteX-CW-complexY , and an extension of finite
p-groups

κ ✲ π ✲ Z/p .

LetBκ denote theZ/p-spaceEπ/κ. Then the following natural map is an
equivalence

M(Bπ, Y )∧
p

�✲ (M(Bκ, Y )∧
p )hZ/p .

Proof. Notice that the spaceM(Bκ, Y )hZ/p is aX1-CW-complex. Apply-
ing Proposition 6.7 to the classX1, we get the equivalence

M(BZ/p,M(Bκ, Y )hZ/p)
∧
p

FBZ/p✲ Map(BZ/p, (M(Bκ, Y )hZ/p)
∧
p ) .

Define

β : M(Bπ, Y )∧
p ×BZ/p ✲ Map(BZ/p, (M(Bκ, Y )∧

p )hZ/p)(1)

to be the map induced by

M(Bπ, Y )∧
p

✲ Map(BZ/p, (M(Bκ, Y )∧
p )hZ/p)(1)
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and theBZ/p-action onMap(BZ/p, (M(Bκ, Y )∧
p )hZ/p)(1). One has a

commutative diagram:

M(Bπ, Y )∧p ×BZ/p
β ✲ Map(BZ/p, (M(Bκ, Y )∧p )hZ/p)(1)

(M(BZ/p,M(Bκ, Y )hZ/p)
∧
p )(1)

α

❄
FBZ/p✲ Map(BZ/p, (M(Bκ, Y )hZ/p)∧p )(1) .

γ

❄

whereα is the (cellular) equivalence defined using Proposition 6.8 andγ is
the equivalence induced by the map in Proposition 6.9. It follows thatβ is
an equivalence. The restriction ofβ to the fiber over the identity element in
BZ/p is the equivalence we require. This completes the proof. ��
We can now use Proposition 6.7 as the induction step in proving the main
theorem of this section.

Theorem 6.11.Given a finiteX-CW-complexY , let Z = Y ∧
p . Letπ be a

finitep-group, then the natural map

M(Bπ, Y )∧
p

FBπ✲ Map(Bπ,Z)

is an equivalence.

Proof. We will argue by induction on the order ofπ. If π is elementary
abelian we are in the situation of Proposition 6.7, hence induction starts.

Assume nowπ is a finitep-group and the result is true forp-groups of
smaller order. We can find an extension

κ ✲ π ✲ Z/p .

Our induction hypothesis apply toκ and then, ifBκ = Eπ/κ, we have an
equivalence

M(Bκ, Y )∧
p

FBκ✲ Map(Bκ, Z)
which isZ/p-equivariant for the induced action ofZ/p onBκ. Hence we
obtain an equivalence of homotopy fixed points

(14) (M(Bκ, Y )∧
p )hZ/p F

hZ/p
Bκ✲ Map(Bκ, Z)hZ/p .

Now consider the commutative diagram:

M(Bπ, Y )∧p
FBπ ✲ Map(Bπ,Z)

(M(Bκ, Y )∧p )
hZ/p

❄
F

hZ/p
Bκ✲ Map(Bκ, Z)hZ/p

ι
❄

whereι is the obvious equivalence and the vertical map on the left is the
equivalence from 6.10. It follows thatFBπ is also an equivalence. ��
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7. Appendix: Maps from BP to a completed classifying space

The results of this section have been borrowed from a joint work between
C. Broto, R. Levi and B. Oliver.

The main result in this section is a description ofMap(BP,BG∧
p ) when

P is a finitep-group andG is a compact Lie group. This result is well known,
and proofs of parts of it have been published (c.f. [20]); but a complete proof
doesn’t seem to be written up anywhere.

We first note the known result about maps between (uncompleted) clas-

sifying spaces. For any pairG,G′ of topological groups,Rep(G,G′) def=
Hom(G,G′)/ Inn(G′)denotes thesetof (continuous)homomorphismsG→
G′ modulo conjugation by elements ofG′. And for any homomorphism

ρ : G→ G′, we writeCG′(ρ) def= CG′(ρ(G)) ⊆ G′.

Proposition 7.1. If G andG′ are discrete groups, then the map

B : Rep(G,G′) ✲ [BG,BG′]

that sends a homomorphismρ toBρ is a bijection. And for any homomor-
phismρ : G ✲ G′, the product map(incl, ρ) : CG′(ρ) × G ✲ G′
induces a homotopy equivalence

BCG′(ρ) ✲ Map(BG,BG′)Bρ .

Proof. The proof is elementary. Classical results about maps to an Eilen-
berg-MacLane space imply that the space of pointed mapsMap∗(BG,BG′)
is homotopically discrete and the group of components is naturally isomor-
phic toHom(G,G′). It then follows from the fibre sequence

Map∗(BG,BG
′) ✲ Map(BG,BG′)

ev✲ BG

that the set of components of the space of unpointed mapsMap(BG,BG′)
is naturally isomorphic toRep(G,G′), and that for each homomorphism
ρ : G ✲ G′, Map(BG,BG′)Bρ is aspherical withCG′(ρ) ∼=
π1 Map(BG,BG′)Bρ. ��

This result was generalised to the case where the target is the classifying
space of a compact Lie group by Dwyer and Zabrodsky.

Proposition 7.2. [5] LetP be a finitep-group andG a compact Lie group.
Then the map

B : Rep(P,G)
∼=✲ [BP,BG] ,
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which sends a homomorphismρ : P → G to Bρ, is a bijection. And for
each homomorphismρ : P ✲ G, the product map(incl, ρ) : CG(ρ) ×
P ✲ G induces

BCG(ρ) ✲ Map(BP,BG)Bρ

which in turn induces an isomorphism of fundamental groups and ofFp-ho-
mology groups. ��

The description of mapping spacesMap(BP,BG∧
p ) will be shown by

comparing it withMap(BP,BSU(n)∧
p ) for some embeddingG ≤ SU(n).

The following elementary lemma will be needed.

Lemma 7.3. Fix n > 1, and letϕ : U(n− 1) → SU(n) be the homomor-
phism which sends a matrixA to

(
A 0
0 det(A)−1

)
. Then for anyH ≤ Im(ϕ),

the centralizer ofH in SU(n) is connected.

Proof. For anyH ≤ Im(ϕ), the spaceCSU(n)(H) is a retract ofCU(n)(H)
by the retraction which sends a matrixA to its product with
diag(1, . . . , 1,det(A)−1). (Any such matrix centralizesH by the assump-
tion H ≤ Im(ϕ).) SinceCU(n)(H) is connected (a product of unitary
groups),CSU(n)(H) is also connected. ��
The next lemma is a special case of [4, Lemma 10.6]. Recall first that for
a given topological groupG andG-spaceX, the space of homotopy fixed
points is defined as

XhG = MapG(EG,X) ,

the space ofG-equivariant maps from the total space of the universalG-bun-
dleEG toX. It can also be described as the space of sections of the projection
mapEG×G X ✲ BG.

Lemma 7.4. Fix a fibrationp : E → X with fibreF , a finite groupG, and
a mapf : BG → X. Assume there is an action ofG on F , and a map
ϕ : EG×G F → E, such that the following is a homotopy pullback square

EG×G F
ϕ✲ E

BG

proj
❄

f ✲ X .

p

❄

Let Map(BG,E)f be the space of those mapsf ′ : BG → E such that
p ◦ f ′�f . Then the fibration

Map(BG, p)f : Map(BG,E)f −−−−−→ Map(BG,X)f

has fibre homotopy equivalent toF hG.
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Proof. Sincep is a fibration, so isMap(BG, p)f . The fibre over the ele-
mentf ∈ Map(BG,X)f is homeomorphic to the space of sections of the
pullback, hence the space of sections of the Borel mapEG×G F → BG;
and this is the homotopy fixed point setF hG. ��

We are now ready to prove Proposition 7.5: to show for anyp-groupP
and any compact Lie groupG, thatMap(BP,BG∧

p ) is weakly homotopy
equivalent to thep-completion ofMap(BP,BG).

Proposition 7.5. LetG be a compact Lie group. Then for any finitep-group
P , thep-completion mapBG ✲ BG∧

p induces a homotopy equivalence

Map(BP,BG)∧
p

�✲ Map(BP,BG∧
p ).

In other words, the map

B : Rep(P,G)
∼=−−−−−→ [BP,BG∧

p ],

which sends a homomorphismρ : P → G to Bρ, is a bijection; and for
eachρ : P → G the product map(incl, ρ) : CG(ρ) × P ✲ G induces a
homotopy equivalence

BCG(ρ)∧
p −−−−−→ Map(BP,BG∧

p )Bρ .

Proof of Proposition 7.5.Case 1:G simply connected andCG(ρ) con-
nected.Assume first thatG is connected and simply connected. LetF
denote the homotopy fibre of the completion mapBG → BG∧

p . The ob-
structions to lifting a mapBP → BG∧

p to BG lie in Hn(BP ;πn−1(F ))
(all n ≥ 1), and the obstructions to the uniqueness of such liftings (up to ho-
motopy) lie inHn(BP ;πn(F )). SinceF is simply connected with uniquely
p-divisible homotopy groups, these obstruction groups all vanish, and hence
[BP,BG] ∼= [BP,BG∧

p ].
Similarly, for anyi ≥ 0, we obtain isomorphisms of sets of homotopy

classes of pointed maps

Map∗(BP,BG)
�✲ Map∗(BP,BG

∧
p )

is a homotopy equivalence. This is a particular case of [19, Theorem 1.5].
The corresponding map between unpointed mapping spaces fits in the

diagram of fibrations

(15)

Map∗(BP,BG) ✲ Map(BP,BG)
ev✲ BG

Map∗(BP,BG
∧
p )

�
❄

✲ Map(BP,BG∧
p )

❄
ev✲ BG∧

p .
❄
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SinceBG, and thereforeBG∧
p , are simply connected, by [1, Lemma

II.5.2(i)], these fibrations remain fibrations afterp-completion, and therefore
we will have finish if we prove that given a homomorphismρ : P ✲ G
for which CG(ρ) is connected, the mapping spaceMap(BP,BG∧

p )Bρ is
p-complete.

Now, we fix a homomorphismρ : P ✲ Gand assume furthermore that
CG(ρ) is connected.Thefirstobservation is that in this caseMap(BP,BG)Bρ

is simply connected by [5] (c.f. Proposition 7.2), and from diagram (15)
we obtain thatMap(BP,BG∧

p )Bρ is also simply connected. Hence, again
by [1, Lemma II.5.2(i)],Map(BP,BG∧

p )Bρ is p-complete if and only if
ΩMap(BP,BG∧

p )Bρ is p-complete.
LetΛ(BG∧

p ) denote the free loop space, and lete : Λ(BG∧
p ) → BG∧

p be
evaluation at the basepoint ofS1. LetP act onG∧

p by conjugation induced
viaρ. Then Lemma 7.4 applies to show that there is a homotopy equivalence

(G∧
p )hP �✲ fiberBρ

(
Map(BP,Λ(BG∧

p ))
e◦−✲ Map(BP,BG∧

p )
)
.

Notice also that(G∧
p )hP �✲ ΩMap(BP,BG∧

p )Bρ. By the generalized
Sullivan conjecture (c.f. [2], [3], or [17]),(G∧

p )hP � (GP )∧
p . In particular

(G∧
p )hP is p-complete, hence so isΩMap(BP,BG∧

p )Bρ.

Case 2: Now letG be arbitrary, and fix an embeddingG ≤ U(n − 1) ≤
SU(n) as in Lemma 7.3. Fixρ ∈ Hom(P, SU(n)), and letρ1, . . . , ρk be
G-conjugacy class representatives of homomorphismsP → G which are
SU(n)-conjugate toρ. Consider the following diagram:

!k
i=1CSU(n)(ρi)/CG(ρi) ✲!k

i=1BCG(ρi) ✲BCSU(n)(ρ)

(SU(n)/G)hP
❄

✲ !k
i=1 Map(BP,B′G)Bρi

❄
✲Map(BP,BSU(n))Bρ ,

❄

Here,B′G = ESU(n)/G � BG, and the action ofP onSU(n)/G is that
induced byρ. Each row is a fibration sequence (Lemma 7.4), and the fibre in
the top row describes theCSU(n)(ρ) orbit decomposition of(SU(n)/G)P .
Furthermore, the maps between the total spaces and base spaces are ho-
motopy equivalences afterp-completion by [5] (c.f. Proposition 7.1). Fur-
thermore, both fibrations remain fibrations afterp-completion because the
base spaces satisfyπ1 Map(BP,BSU(n))Bρ

∼= π1BCSU(n)(P ) = 0 by
[5] (c.f. Proposition 7.1) and Lemma 7.3, and then [1, II.5.2(i)] applies.

It then follows that the map between fibres also induces a homotopy
equivalence

(
(SU(n)/G)P )∧

p

�✲ (
(SU(n)/G)hP )∧

p
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and this combines with the generalized Sullivan conjecture to give a com-
mutative triangle of homotopy equivalences

(
(SU(n)/G)P

)∧
p

✠�
�

�� ❅
❅

❅
�
❘(

(SU(n)/G)hP
)∧

p

� ✲
(
(SU(n)/G)∧p

)hP
.

Now setMap(BP,BG)Bρ = !k
i=1 Map(BP,BG)Bρi , and consider

the following diagram:

(
(SU(n)/G)hP

)∧
p

✲
(
Map(BP,BG)Bρ

)∧
p

✲
(
Map(BP,BSU(n))Bρ

)∧
p

((SU(n)/G)∧p )
hP

❄
✲ Map(BP,BG∧

p )Bρ

❄
✲ Map(BP,BSU(n)∧p )Bρ .

❄

The top row is a fibration sequence as we have argued above. The bottom
row is a fibration sequence by Lemma 7.4, since

(SU(n)/G)∧
p −−−−→ BG∧

p −−−−→ BSU(n)∧
p

is a fibration sequence by [1, II.5.2(i)] again. We have shown that the
map between fibres is a homotopy equivalence. The map between base
spaces is a homotopy equivalence by Case 1; and hence the map between
total spaces is a homotopy equivalence. Upon taking the union over all
ρ ∈ Rep(P, SU(n)) that factors throughG ≤ SU(n), this shows that
Map(BP,BG∧

p ) � Map(BP,BG)∧
p . ��
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11. V. G. Kǎc: Constructing groups associated to infinite dimensional lie algebras. MSRI
publications4 (1985)
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