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COHOMOLOGY SPLITTINGS OF STIEFEL MANIFOLDS

NITU KITCHLOO

A

The complex Stiefel manifolds admit a stable decomposition as Thom spaces of certain bundles over
Grassmannians. The purpose of the paper is to identify the splitting in any complex oriented cohomology
theory.

Introduction

The space of k-frames in #n, V
n,k

, admits an obvious free action of the unitary

group U
k
. Consequently one has a principal U

k
-bundle with the total space being V

n,k

and the base space being the Grassmann manifold of k-planes in #n, G
n,k

. Given a

representation ρ of U
k
, one constructs an associated vector bundle over G

n,k
via the

Borel construction on the above principal bundle. Let Gρ

n,k
denote the Thom space of

this bundle. Let U+

n
denote the unitary group with a disjoint base-point. Miller [4]

proves that there is a stable homotopy equivalence

U+

n
F j

n

k=!

G adk
n,k

where ad
k

denotes the adjoint action of U
k

on its Lie algebra. An observation of

naturality allows him to conclude that

U+ F j
¢

k=!

BUadk
k

where U is the infinite unitary group. This splitting can be seen as a special case of

a more general result on the splitting of Stiefel manifolds. Let V
n+t,n

be the Stiefel

manifold of n-frames in #n+t. Miller [4] has shown that there is a stable homotopy

equivalence

V+

n+t,n
F j

n

k=!

G adk
Gtcank

n,k

where ad
k

denotes the adjoint action of U
k

on its Lie algebra and tcan
k

denotes t

copies of the canonical representation can
k
of U

k
on #k. Once we identify V

n+t,n
with

the coset space U
n+t

}U
t
, naturality gives us

U}U+

t
F j

¢

k=!

BUadk
Gtcank

k
.

Notice that the case t¯ 0 is the splitting of the unitary group described earlier.

Another version of these splittings is described in [1]. This paper is self-contained.
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Section 1 recalls the splitting as constructed in [1]. The rest of the paper is devoted to

identifying the above splittings in any complex-oriented cohomology theory. Our

method uses, in an essential way, the description of the multiplication map on U+ in

terms of the splitting of the unitary group.

In Section 3 we describe the stable nature of the multiplication map on the unitary

group. Notice that the diagonal inclusion map U
i
¬U

j
:NU

i+j
is covered by the

obvious map ad
i
G ad

j
:N ad

i+j
. Hence we get a map

BUadi
i

gBUadj
j

MN
µ

BUadi+j

i+j
.

Let us denote the splitting maps by σ
k
:BUadk

k
MNU+. Let E be any complex-oriented

cohomology theory and

M :U+gU+ MNU+

be the multiplication map on the unitary group. We have the following theorem.

T A. The diagram in Figure 1 commutes in Eh *.

BUj
adi∧BUi

adj BUi+j
adi+j

U+∧U+ U+
M

l

ri+jri∧rj

F 1.

In Section 4 we recall the Hopf-algebra structure on Eh *(U+). The following two

theorems are standard. We have chosen to re-prove them for the sake of completeness.

The Hopf-algebra Eh *(U+) is an inverse limit of Hopf-algebras Eh *(U+

n
). The structure

of Eh *(U+

n
) is given by the following.

T B. Eh *(U+

n
) has the structure of an exterior algebra as a graded Hopf-

algebra o�er E*. More precisely, we ha�e Eh *(U+

n
)¯Λ(a(n)

!
, a(n)

"
,… , a(n)

n−"
) where a(n)

i
is

a primiti�e element of homogeneous degree 2i­1. Under the inclusion U
n−"

:NU
n

gi�en by

νPN 0ν0
0

11
in the standard basis, the element a(n)

i
maps to a(n−")

i
for i! n®1 and 0 for i¯ n®1.

Moreo�er, under the splitting map

σ
"
:Σ(#Pn−"

+)¯G ad
"

n,"

MNU+

n

the element a(n)

i
maps to the suspension of the element xi, where x is the orientation in

E#(#Pn−").

There is the analogous result for Stiefel manifolds : the algebra Eh *(U}U+

t
) is an

inverse limit of algebras Eh *(V+

n+t,n
). The structure of Eh *(V+

n+t,n
) is given by the

following theorem.
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T C. Eh *(V+

n+t,n
) can be identified with the subalgebra of Eh *(U+

n+t
) gi�en by

Eh *(V+

n+t,n
)¯Λ(a(n)

t
, a(n)

t+"
,… , a(n)

n−"+t
). Under the map V

n−"+t,n−"
:NV

n+t,n
induced by

U
n−"+t

:NU
n+t

, the element a(n)

i
maps to a(n−")

i
for t% i! n®1­t and 0 for i¯

n®1­t.

By this theorem we can view Eh *(U}U+

t
) as a suitably completed exterior algebra

on generators a
i
of homogeneous degree 2i­1 for i& t. It is also shown in Section 4

that Eh *(BUadk
Gtcank

k
) is a free module of rank one over E*(BU

k
) generated by a specific

Thom class u
k
. This Thom class is defined by

u
k
¯σ$

k
(a

k−"+t
ga

k−#+t
g…ga

t
).

where σ
k
:BUadk

Gtcank
k

MNU}U+

t
is the splitting map. Recall that E*(BU

k
) is a power-

series ring in the Conner–Floyd Chern classes c
i

of the universal k-plane bundle

(associated to the standard representation of U
k

on #k).

Let λ be a sequence of integers λ
"
& λ

#
&…& λ

k
& 0. The diagram of λ is defined

as the set of points (i, j ) `:# such that 1% i%k and 1% j% λ
i
. In particular, if λ

"
¯ 0,

we have the ‘empty’ diagram. The conjugate of λ is the sequence λ!

"
& λ!

#
&…&

λ!λ
"

& 0 whose diagram is the transpose of the diagram of λ, or equivalently λ!
i
¯

Card² j :λ
j
& i ´. We have the following theorem.

T D. σ$
k

factors as the projection onto the component of weight k in

the completed exterior algebra, Eh *(U}U+

t
), followed by an isomorphism with

Eh *(BUadk
Gtcank

k
). In terms of the generators specified abo�e

σ$
k
(a

n
"

ga
n
#

g…ga
nk

)¯ u
k
c−t

k
det(c

mi−i+j
)
"
%i,j%n

"
+"−k

, n
"
" n

#
"…" n

k
& t

where the sequence of integers (m
"
,m

#
,… ,m

n
"
+"−k

) is conjugate to the sequence

(n
"
­1®k, n

#
­2®k,… , n

k
). If n

"
­1®k¯ 0, then we define det(c

mi−i+j
)¯ 1. It is to be

understood that c
mi−i+j

¯ 0 whene�er m
i
®i­j! 0.

For example consider the case when t¯ 1, k¯ 3 and n
"
¯ 5, n

#
¯ 3, n

$
¯ 2. In this

case (n
"
­1®k, n

#
­2®k,… , n

k
)¯ (3, 2, 2) and the sequence conjugate to it is

(m
"
,m

#
,… ,m

n
"
+"−k

)¯ (3, 3, 1), so by Theorem D

σ$

$
(a

&
ga

$
ga

#
)¯ u

$
c−"

$
det

I

J
c
#

c
$

c
−"

c
$

c
%

c
!

c
%

c
&

c
"

K

L
¯u

$
c−"

$

I

J
c
#

c
$

0

c
$

0

1

0

0

c
"

K

L
¯u

$
c
$
c
"
.

It is interesting to observe that for Theorem D to make sense, ct

k
must always divide

det(c
mi−i+j

).

The organization of this paper is as follows. In the first few sections we will

identify the splitting for the unitary group in singular cohomology. Towards that end,

Section 2 will contain the proof of the fact that the map σ$
k

factors through the

component of weight k in the exterior algebra Hh *(U+). This is done by analyzing the

eigenspace decomposition in cohomology of the power map on the unitary group. In

Section 3 we interpret the multiplication on the unitary group in terms of the

geometric splitting. Theorem A is proved in this section. Section 4 contains the proofs

of the structure theorems on the E-cohomology of U+ and U}U+

t
that were stated as

Theorems B and C. We also establish the structure of the E-cohomology of

BUadk
Gtcank

k
stated earlier. In Section 5 we begin by establishing Theorem D for the
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special case t¯ 0 using an induction argument that rests on results of Sections 2, 3

and 4. We then invoke a commutative diagram that relates the splitting of U+ with

the splitting of U}U+

t
to obtain Theorem D in full generality. Section 1 contains a

description of the geometric splitting of the unitary group as described in [1]. The

splitting for the Stiefel manifolds can be found in [1] and is omitted from Section 1.

The construction in Section 1 is referred to throughout the paper and readers are

encouraged to acquaint themselves with it. In this paper it will be convenient to work

with reduced cohomology and hence the reader should read the word ‘E-cohomology’

as reduced E-cohomology. We shall, however, make a point to denote reduced

cohomology by Eh * whenever we refer to it symbolically. For reduced singular

cohomology (with integer coefficients) we shall suppress the letter H and call it simply

‘cohomology’.

1. The splitting

Let us identify U
n

as the space of all hermitian inner-product preserving #-linear

endomorphisms of #n. Define a filtration of U
n

by closed sets

F
k
U

n
¯²ψ :Rank(ψ®Id)%k´.

Define

Γ
n,k

¯²(ψ,V ) :ψ r
V

v ¯ Id r
V

v´XU
n
¬G

n,k
. (1.1)

This is a submanifold, and the obvious smooth map π
"
:Γ

n,k
MNU

n
has image equal

to F
k
U

n
. If ψ `F

k
U

n
®F

k−"
U

n
then it has a unique pre-image in Γ

n,k
. Hence this

manifold can be seen as a desingularization of F
k
U

n
. The projection π

#
:Γ

n,k
MNG

n,k

is clearly a fiberbundle. We also have a section

ι :G
n,k

MNΓ
n,k

sending V to (ψ,V ), where

ψ r
V
¯®Id r

V
, ψ r

V
v ¯ Id r

V
v. (1.2)

An equivalent construction of Γ
n,k

is as follows. Let U
k

act on itself by conjugation

µ.ψ¯µψµ−". (1.3)

Write Uc

k
for this U

k
-space.

L 1.1. Γ
n,k

is diffeomorphic o�er G
n,k

to V
n,k

¬
Uk

Uc

k
where V

n,k
is the Stiefel

manifold of k-frames in #n seen as a principal U
k

bundle o�er G
n,k

.

Proof. Map U
n
¬U

k
MNΓ

n,k
by

(α,ψ)PN 0α 0ψ0
0

11α−",αV
!1

where V
!
X#n is the subspace spanned by the first k standard basis vectors. This

passes to a diffeomorphism

U
n
}(1¬U

n−k
)¬

Uk

Uc

k
FΓ

n,k
. *

Notice that the action of U
k
preserves the filtration on Uc

k
, so we obtain a filtration

on V
n,k

¬
Uk

Uc

k
FΓ

n,k
. The projection π

"
:Γ

n,k
MNU

n
is filtration preserving inducing

a relative diffeomorphism

V
n,k

¬
Uk

(Uc

k
,F

k−"
Uc

k
)F (F

k
U

n
,F

k−"
U

n
). (1.4)
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Identifying ad
k

with the space of all skew-hermitian k¬k matrices, we have the

following lemma.

L 1.2. The Cayley transform gi�es a U
k
-equi�ariant diffeomorphism

ad
k
MN

ψ

Uc

k
®F

k−"
Uc

k
, ψ(x)¯ (x}2®1) (x}2­1)−".

Proof. One can easily check that the map yPN 2(1­y) (1®y)−" is the inverse.

*

From (1.4) and Lemma 1.2, we get a homeomorphism

τ
k
:F

k
U

n
}F

k−"
U

n
FG adk

n,k
. (1.5)

Composing the section ι with π
"
gives us an embedding of G

n,k
into the submanifold

F
k
U

n
®F

k−"
U

n
. By Lemma 1.2, this submanifold is a tubular neighborhood of G

n,k

diffeomorphic to E(ad
k
) and τ

k
is the corresponding homeomorphism on the one-

point compactification of these spaces. On composing with the projection and adding

a disjoint basepoint, we get the Pontrjagin–Thom collapse map

h
k
:F

k
U+

n
MNG adk

n,k
.

We are now ready to construct the splitting maps. Let ζ
k

be the space of k¬k

hermitian matrices. We have the well-known polarization identity (refer to the

exercises in [6, p. 136] for a proof).

L 1.3. The smooth map

U
k
¬ζ

k
MN

F

Gl(k,#)ZEnd(#k), (ψ, z)PNψ exp(®z)

is a diffeomorphism onto the set of in�ertible linear maps.

Once we notice that End(#k)F ad
k
G ζ

k
, we have the corresponding collapse map

ad+

k
gζ+

k
MN

σ

U+

k
gζ+

k
(1.6)

where ‘­ ’ denotes the one-point compactification. The above map is compatible with

the adjoint action of U
k

on ad
k

and the conjugation action on ζ
k

and on U
k

(we

suppress the notation ‘c ’ for the latter). Let u :U+

k
MN ad+

k
be the collapsing map onto

U
k
}F

k−"
U

k
identified with ad+

k
via Lemma 1.2. Then the map (ug1) aσ :ad+

k
gζ+

k
MN

ad+

k
gζ+

k
is the collapse map corresponding to the equivariant smooth embedding

ad
k
G ζ

k
MN ad

k
G ζ

k
, (x, z)PN (x}2®1) (x}2­1)−" exp(®z)

whose derivative at (0, 0) is the identity. It is easy to show that the map (ug1) aσ is

equivariantly homotopic to the identity. Thus the map (1.6) serves as the splitting of

the top cell. The rest of the splitting is a ‘fiberwise ’ version of (1.6). Let V
n,k

be seen

as the principal U
k
bundle of k-frames in #n over the Grassmannian, G

n,k
. We have

a fiberwise map between the associated bundles

V
n,k

¬
Uk

(ad+

k
gζ+

k
)MNV

n,k
¬

Uk

(U+

k
gζ+

k
).

Notice that the associated bundle V
n,k

¬
Uk

ζ
k
can be seen as all pairs ²(V,φ) :V `G

n,k
,

φ r
Vv ¯ 0, φ r

V
is hermitian´. Similarly, the space G

n,k
¬ζ

n
can be seen as all pairs
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∨Gn,k
adk ∨Gm,k

adk

U+
n

f
U+

m

F 2.

hBUk
ad k hBUk

ad k⊕tcan k

U+ U/U+
t

F 3.

²(V,φ) :V `G
n,k

, φ `End(#n) is hermitian´. Clearly, V
n,k

¬
Uk

ζ+

k
can be embedded into

the trivial bundle G
n,k

¬ζ+

n
and the map extended by smashing with the identity on

the complement. After collapsing the section at infinity to a point and identifying

V
n,k

¬
Uk

U
k

with Γ
n,k

, we have an unstable representative for our splitting map:

σ
k
:Σn

#G adk
n,k

MNΣn
#Γ+

n,k
MN

π
"

Σn
#U+

n
. (1.7)

This map clearly factors through F
k
U+

n
and the composition with h

k
:F

k
U+

n
MNGadk

n,k

is easily seen to have a fiberwise homotopy to the identity.

We have therefore constructed a splitting which has an unstable representative

hσ
k
:Σn

# j
n

k=!

Gadk
n,k

MNΣn
#U+

n
. (1.8)

R 1.4. If n%m and f :U
n
MNU

m
is the map given by

ψPN 0ψ0
0

11
in the standard basis, then notice that this construction is natural enough so that the

diagram in Figure 2 commutes, where the top horizontal arrow is the obvious

inclusion.

Remark 1.4 on naturality gives us splittings of the infinite unitary group

j
k&

!

BUadk
k

MNU+. (1.9)

R 1.5. Consider the map

κ :Σ(#Pn−"
+)MNU+

n

defined as follows. Let (s, l ) be any element in Σ(#Pn−"
+), where s is the suspension

coordinate seen as an element in U
"
and l is a line in #n. Define κ(s, l ) to be the unitary

transformation that is given by multiplication with s on the one-dimensional vector

subspace given by l and identity on its complement. It is not hard to show that κ is

homotopic to the map σ
"
. Thus the map σ

"
can be defined unstably.
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R 1.6. Miller [4] and M. Crabb [1] have also constructed stable splittings

of Stiefel manifolds. Let us denote the Stiefel manifold of n-frames in #n+t by V
n+t,n

.

Let can
k

denote the canonical representation of U
k

on #k, then there is a stable

equivalence

V+

n+t,n
F j

n

k=!

G adk
Gtcank

n,k

and using naturality

U}U+

t
F j

¢

k=!

BUadk
Gtcank

k
.

The stably homotopy commutative diagram in Figure 3 follows from the naturality

of the constructions given in [1] where the top horizontal arrow is the obvious

inclusion and the bottom one is the standard projection.

2. The self map

We begin this section with a technical lemma (suggested to us by the referee)

which will be useful at various points in the paper.

L 2.1. Let f :XMNY be a map of torsion-free connecti�e spectra of finite

type such that Hk( f,1)¯ 0. Then for any complex-oriented ring spectrum E, we ha�e

1gf :EgXMNEgY is null. In particular, Ek f¯ 0 and E*f¯ 0.

Proof. Since X and Y are torsion-free spectra, the Atiyah–Hirzebruch spectral

sequence computing MUkX and MUkY collapses (since it injects into its

rationalization). This shows that MUkX and MUkY are free modules over MUk.

From the natural isomorphism 1CMUkX¯MUkCHk(X,1), we see that fk :1C
MUkXMN1CMUkY is trivial. However MUkY was torsion free, and hence

fk :MUkXMNMUkY is also trivial.

A standard argument shows that the functor YPNHom
MUk(MUkX,MUkY )

agrees with the homology theory YPN [X,MUgY ]. From this it follows trivially

that 1gf :MUgXMNMUgY is null. Consequently, for any MU-module spectra E

we also have 1gf :EgXMNEgY is null. In particular, Ek f¯ 0.

Working in the naive category # of E-module spectra, notice that we have the

isomorphism E*X¯#(EgX,E )*. This shows that E*f¯ 0, proving the lemma.*

R 2.2. Notice that given a diagram of torsion-free spectra of finite type

that commutes in homology, Lemma 2.1 says that it commutes in E-cohomology and

E-homology as well, for any complex-oriented ring spectrum E.

Assume for the purposes of this section that Hh *(U+

n
) is an exterior algebra as a

Hopf-algebra. This fact is standard and we shall not prove it.

L 2.3. In cohomology, σ
k
:G adk

n,k
MNU+

n
factors as the projection onto the

component of weight k in the exterior algebra Hh *(U+

n
) followed by an isomorphism with

Hh *(G adk
n,k

).
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The vector space ad
k
of all skew-hermitian matrices with the adjoint action of U

k

admits the following invariant norm. If s ` ad
k

has eigenvalues s
j
, we define

sss¯max
j
rs

j
r. (2.1)

Let D(k) and S(k) be the unit disk and unit sphere in ad
k
. Consider the relative

homeomorphism given by the exponential map

Exp:(D(k),S(k))MN (U
k
,F

k
U

k
) (2.2)

where Exp(s)¯®eπs. Let m be any integer different from ³1. We have the m-power

function, P
m

:U
k
MNU

k
, that raises every matrix to its mth power. Clearly, P

m

commutes with the conjugation action of U
k

on itself and is filtration preserving.

Under the relative homeomorphism Exp, P
m

corresponds to a pointed map

p
m

:D(k)}S(k)MND(k)}S(k) (2.3)

that commutes with the adjoint action of U
k
on D(k)}S(k) and has degree mk. We can

therefore extend p
m

to a self map of G adk
n,k

which we call φ
m
. Similarly P

m
passes to a

fiberwise self map, ρ
m
, of Γ

n,k
.

Notice that φ
m

has the effect of multiplication by mk in cohomology. One should

also note that P
m

has the effect of multiplying the primitives in cohomology by m and

hence multiplies all elements in the homogeneous component of weight k in the

cohomology of U
n
by mk. This tells us that to prove Lemma 2.3, it is sufficient to show

that the diagram in Figure 4 commutes in cohomology.

Gn,k
adk

U+
n

Gn,k
adk

U+
n

rk rk

φm

Pm

F 4.

Recall from (1.7) that σ
k

factors through the map π
"
:Γ+

n,k
MNU+

n
which

commutes with the power maps. Hence the proof of the lemma reduces to showing

the following.

P 2.4. The diagram in Figure 5 commutes in cohomology.

Gn,k
adk Gn,k

adk

C +
n,k

φm

ρm
C +

n,k

F 5.

Proof. Notice that the result is clear for the case k¯ n for dimensional reasons.

The proof for the general case can be packaged in terms of spectral sequences.

Consider the relative Serre spectral sequence with E
#

term given by

H*(G
n,k

;Hh *(ad+

k
)) converging to the cohomology of G adk

n,k
and the spectral sequence
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with E
#

term given by H*(G
n,k

;Hh *(U+

k
)) converging to the cohomology of Γ+

n,k
.

We can set up the diagram in Figure 5 in terms of these spectral sequences. Since

themapbetweenG adk
n,k

andΓ
n,k

isfiberwise,itinducesamapofspectralsequences.Themap

on the E
#

term

Ep,q

#
¯Hp(G

n,k
;Hh q(U+

k
))MNEp,q

#
¯Hp(G

n,k
;Hh q(ad+

k
))

is given by the coefficient homomorphism

Hh q(U+

k
)MNHh q(ad+

k
)

corresponding to the fiberwise splitting of the top cell. The observation at the

beginning of the proof tells us that the diagram of E
#

terms (Figure 6) commutes.

qm*

Hp(Gn,k; H̃q(ad+
k) ) Hp(Gn,k; H̃q(ad+

k) )

Hp(Gn,k; H̃q(U+
k) ) Hp(Gn,k; H̃q(U+

k) )

φm*

F 6.

Consequently, the similar diagram of E¢ terms also commutes. In other words, the

diagram in Figure 5 commutes on the level of associated quotients corresponding to

the E¢ term. To show that it commutes honestly we need to make two observations,

namely, Ep,q
¢ for the cohomology of G adk

n,k
is concentrated in the row q¯k# and the

Ep,q
¢ terms for the cohomology of Γ+

n,k
are zero for q"k#. In particular, this says that

all the elements in Hh *(G adk
n,k

) are detected on the first non-trivial associated quotient

and the map

Hh *(Γ+

n,k
)MNHh *(G adk

n,k
)

factors through the corresponding associated quotient of Hh (Γ+

n,k
). These observations

allow the question of the diagram commuting honestly in cohomology to be verified

on the level of associated quotients. *

R 2.5. Since all maps in Figure 5 were defined fiberwise (after a suitable

suspension), if one could show that the collapse map of (1.6) commutes with the

power maps up to an equivariant stable homotopy, it would imply that the diagram

commutes stably. Unfortunately, this seems far from obvious. We therefore content

ourselves with showing that Figure 5 commutes only in cohomology (and

consequently by Remark 2.2, in any complex-oriented cohomology theory).

3. The multiplication

Notice that the diagonal inclusion map U
i
¬U

j
:NU

i+j
is covered by the obvious

map ad
i
G ad

j
:N ad

i+j
. Hence we get a map

BUadi
i

gBUadj
j

MN
µ

BUadi+j

i+j
. (3.1)

In this section, we propose to show that the multiplication, M, on U+ is compatible

with the above map in the following sense.
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ri∧rj

BUi
adi ∧ BUj

adj BUi+j
adi+j

U+∧U+ U+

ri+j

M

µ

F 7.

r̃i∧r̃j

BUi
adi ∧ BUj

adj BUi+j
adi+j

F̃iU∧ F̃jU

τi+j

l

F̃i+jU
M

F 8.

L 3.1. The diagram in Figure 7 commutes up to stable homotopy, where the

map r
i+j

is the retraction to the splitting map σ
i+j

.

Before we proceed, let us observe that the multiplication is a filtration-preserving

map. In particular, the multiplication on the unitary group induces a map

M :Fh
i
UgFh

j
UMNFh

i+j
U

where we abbreviate F
k
U}F

k−"
U as Fh

k
U. Let us also abbreviate as σh

k
the map

BUadk
k

MN
σ
k

F
k
U+ MNFh

k
U.

Notice that by construction σh
k
is nothing other than τ−"

k
(cf. (1.5)). Let us now begin

with a key proposition.

P 3.2. The diagram in Figure 8 commutes up to homotopy, where τ
k
is

the homeomorphism of (1.5).

Proof. Let us pick our model for BU
k

to be the infinite Grassmannian of

k-planes in #¢. Consider the subspace BU
i,j

¯²(V,W ) `BU
i
¬BU

j
:VvW ´. Let ad

i,j

denote the pullback of the external sum of the adjoint bundles E(ad
i
)¬E(ad

j
) under

the inclusion BU
i,j

:NBU
i
¬BU

j
. By construction the map BU

i,j
MNBU

i+j
given

by (V,W )PNVGW is covered by a bundle map, λ :ad
i,j

MNE(ad
i+j

). The reader

can easily check that the diagram in Figure 9 commutes on the nose, where σ is the

map (σh
i
gσh

j
) a ι and ι is the inclusion BUadi,j

i,j
:NBUadi

i
gBUadj

j
. Now since BU

i,j
is a

r

BUi, j
adi, j BUi+j

adi+j

F̃iU∧ F̃jU

τi+j

k

F̃i+jU
M

F 9.



     467

model for the classifying space of U
i
¬U

j
, there is a deformation retract from

BUadi
i

gBUadj
j

to BUadi,j
i,j

. Figure 9 along with this observation provide us with a proof

of the proposition. *

Proof of Lemma 3.1. The proof is essentially an exercise in diagram chasing.

Consider the diagram in Figure 10.

BUi
adi∧BUj

adj FiU+∧FjU+ M
Fi+jU+

U+U+∧U+ M

F̃iU∧ F̃jU F̃i+jU
M

BUi+j
adi+ j

τi+jr̃i∧r̃j

ri+j(A)

(B)

(C )

ri∧rj

F 10.

The left side of the diagram commutes by definition. Squares (A) and (B)

commute by virtue of the fact that the multiplication on U+ is filtration preserving.

Finally, square (C ) commutes because

τ
k
aσh

k
:BUadk

k
MNFh

k
UMNBUadk

k

is homotopic to the identity map. One can express the outer arrows at the bottom of

the diagram in terms of Proposition 3.2. Comparing this with the outer arrows at the

top of the diagram gives a proof of Lemma 3.1. *

R 3.3. What Lemma 3.1 really identifies is the ‘ top’ component of the

multiplication in terms of the splitting. Lemma 2.3 tells us that this is the only

component that contributes to the multiplication in cohomology: the composite map

BUadi
i

gBUadj
j

MN
σ
i
gσ

j

U+gU+ MN
M

U+ MN
rk

BUadk
k

is zero in cohomology unless k¯ i­j. Using Remark 2.2, we can now deduce the

following.

T 3.4. If E is any complex-oriented cohomology theory, then the diagram

in Figure 11 commutes in E-cohomology.

BUi
adi∧BUj

adj

M
U+U+∧U+

BUi+j
adi+ j

ri∧rj

l

ri+j

F 11.
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4. Some structure theorems

Let E be a complex-oriented cohomology theory. We begin this section by

analyzing the E-cohomology of U+. Let us start with the following theorem.

T 4.1. As a Hopf-algebra Eh *(U+

n
)¯Λ(a(n)

!
, a(n)

"
,… , a(n)

n−"
) where a(n)

i
are

primiti�e elements of homogeneous degree 2i­1. Under the inclusion U
n−"

:NU
n

gi�en by

νPN 0ν0
0

11
in the standard basis, the element a(n)

i
maps to a(n−")

i
for i! n®1 and 0 for i¯ n®1.

Moreo�er, under the splitting map σ
"
, the element a(n)

i
maps to the suspension of the

element xi, where x is the orientation in E#(#Pn−").

Proof. This theorem is well known for cohomology (see for example [5]).

Consider the cohomology suspension

σ :Eh *(BU
n
)MNEh *−"(U

n
) (4.1)

induced by the map ΣU
n
MNBU

n
adjoint to the equivalence U

n
MNΩBU

n
. It is a

standard argument to show that the image of σ consists of primitive elements.

Let P be the subgroup of E*(U
n
) spanned by the elements σ(c

k
), 1%k% n, where

c
k

are the Conner–Floyd Chern classes in Eh *(BU
n
). It is clear that these classes are

compatible under natural transformations of complex-oriented cohomology theories.

As easy argument using the naturality of the Atiyah–Hirzebruch spectral sequence

shows that MU*(U
n
) is an exterior algebra on the classes σ(c

k
). Since E*(U

n
)¯

E*CMU*(U
n
), we deduce that E*(U

n
) is also an exterior algebra on the classes

σ(c
k
). Now, using Remark 1.5 and the Atiyah–Hirzebruch spectral sequence it follows

that the composite map

f :P:NEh *(U+

n
)MN

σ$
"

Eh *(Σ(#Pn−"
+))

is an isomorphism. Thus we may define the element a(n)

i
as f −"(Σxi). The rest of

the theorem is a restatement of the fact that the splitting of U+

n
is natural in n (cf.

Remark 1.4). *

It is easy to see that Eh *(U+)¯ lim"n
Eh *(U+

n
). Thus the graded Hopf-algebra

Eh *(U+) can be viewed as an exterior algebra (suitably completed) on generators a
i
of

degree 2i­1 for i& 0.

Now consider the Stiefel manifold V
n+t,n

. If we identify V
n+t,n

with the space

U
n+t

}U
t
, then it is an easy verification using the Atiyah–Hirzebruch spectral sequence

that the projection map U
n+t

MNV
n+t,n

is monic in E-cohomology and that the

following theorem holds.

T 4.2. Eh *(V+

n+t,n
) can be identified with the subalgebra of Eh *(U+

n+t
) gi�en by

Eh *(V+

n+t,n
)¯Λ(a(n)

t
, a(n)

t+"
,… , a(n)

n−"+t
). Moreo�er, under the inclusion V

n−"+t,n−"
:N

V
n+t,n

induced by U
n−"+t

:NU
n+t

, the element a(n)

i
maps to a(n−")

i
for t% i! n®1­t

and 0 for i¯ n®1­t.
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From Theorem 4.2 we can identify the E-cohomology of U}U+

t
with the

subalgebra of Eh *(U+) generated by a
i
for i& t. Now let us turn to the E-cohomology

of BUadk
Gtcank

k
. We prove the following theorem.

T 4.3. The E-cohomology of BUadk
Gtcank

k
is a free module of rank one o�er

E*(BU
k
) generated by a Thom class u

k
. The Thom class can be gi�en as

u
k
¯σ$

k
(a

k−"+t
ga

k−#+t
g…ga

t
)

where σ
k
:BUadk

Gtcank
k

MNU}U+

t
is the splitting map.

Proof. To show that u
k

serves as a Thom class, one wants to show that i*(u
k
) `

Eh k#+#tk(S adk
Gtcank) is a generator where i :S adk

Gtcank :NBUadk
Gtcank

k
is the inclusion of

the (compactified) fiber. Notice first that if E is singular cohomology then this

theorem is trivial since using Remark 1.6 we already know that σ$
k

is an isomorphism

from the homogeneous component of degree k in the exterior algebra Hh *(U}U+

t
) to

Hh *(BUadk
Gtcank

k
) and every generator in Hh k

#
+#tk(BUadk

Gtcank
k

) serves as a Thom class.

Now consider the Atiyah–Hirzebruch spectral sequence for E*(G adk
Gtcank

m,k
). Invoking

the result for singular cohomology we know that the class in the E
#

term for

E*(G adk
Gtcank

m,k
) representing u

k
restricts to a generator in the E

#
term for E*(S adk

Gtcank).

Since the Atiyah–Hirzebruch spectral sequences collapse at E
#
, it follows that i*(u

k
)

restricts to a generator in Eh k#+#tk(S adk
Gtcank). *

N 4.4. Notice that Theorem 4.3 says that the vector bundle ad
k
G tcan

k
is

oriented in complex-cobordism. It is interesting to observe that ad
k
G tcan

k
need not

possess any complex structure. It need not even be an even-dimensional bundle.

5. The cohomology splitting

In this section we begin by proving the formula stated as Theorem D in the

introduction for the special case t¯ 0. We then invoke the statement of Remark 1.6

to prove it for the general case.

Let T
k

be the standard maximal torus of U
k

given by all diagonal matrices. Let

e
i
, i%k denote the standard one-dimensional complex representation of this torus

given by its i th diagonal entry. It is clear that the restriction of the adjoint

representation, ad
k
, to the maximal torus decomposes as

ad
k
r
Tk

¯kG (e
i
C e$

j
), i! j%k.

The trivial k-dimensional part represents the Lie algebra of the maximal torus itself.

Let x
i
denote the Euler class of the bundle over BT

k
associated to the representation

e
i
. Let us denote the representation G (e

i
C e$

j
) by ρ

k
. Consider the composite map

δ
k
:ΣkBT+

k
MN

Σks
ΣkBTρ

k
k

FBTkGρ
k

k
MNBUadk

k
(5.1)

where s is the inclusion of BT+

k
:NBTρ

k
k

as the zero section. This map is injective in

E-cohomology. Theorem 3.4 can now be rewritten as the following.

L 5.1. The diagram in Figure 12 commutes in E-cohomology where the top

horizontal homeomorphism is induced by the ob�ious diagonal map T
i
¬T

j
MNF T

i+j
of

the standard maximal tori. *
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ΣiBTi
+∧Σ jBTj

+

M
U +U+∧U +

Σ i+jBTi+j
+

(ri ° äi)∧(rj ° äj)

≅

ri + j ° äi+j

F 12.

By Theorem 4.1 the map σ
"
a δ

"
has the effect of mapping the primitives a

i
in

Eh *(U+) to the elements Σxi of Eh *(Σ(#P¢+)). Since Eh *(U+) is an exterior algebra on

these generators, we can now verify the following lemma.

L 5.2. If n
"
" n

#
"…" n

k
& 0, then

(σ
k
a δ

k
)* (a

n
"

ga
n
#

g…ga
nk

)¯Σkdet

I

J

[
xn

"

#

xn
"

"

[
[

xn
"

k

[
xn

#

#

xn
#

"

[
[

xn
#

k

[
[
[

[
[
[

[
[
[

[
[
[

[
xnk

#

xnk

"

[
[

xnk
k

K

L

.

Proof. By Theorem 4.1, the case k¯ 1 is clear. We proceed by induction.

Assuming the result for k®1, let us look at Figure 12 when i¯ 1 and j¯k®1.

Consider the element a
n
"

ga
n
#

g…ga
nk

`Eh *(U+). Since the a
i
are primitives, the

image of this element under the left composite arrow is

3
k

i="

(®1)i−"(σ
"
a δ

"
)* a

ni

C (σ
k−"

a δ
k−"

)* (a
n
"

ga
n
#

g…gaW
ni

g…ga
nk

).

This element of Eh *(Σ(#P¢+))CEh *(Σk−"(BT+

k−"
)) is by assumption

3
k

i="

(®1)i−"Σxni CΣk−"det(xp
i
s

r
)

where (pi

"
, pi

#
,… , pi

k−"
) is the sequence (n

"
, n

#
,… , nW

i
,… , n

k
). However under the

identification ΣiBT+

i
gΣjBT+

j
FΣi+jBT+

i+j
, this expression is nothing other than

Σkdet(xnj
i
) expanded along the top row! *

The above determinant is an alternating polynomial of k variables and hence it

can be written as some symmetric polynomial s
n
"
,n

#
,…,nk

times the element Σkuh
k
where

uh
k

is defined as

uh
k
¯ 0

"
%i!j!%k

(x
i
®x

j
).

Notice that the class Σkuh
k
¯ δ$

k
(u

k
) where u

k
was the Thom class was defined in

Theorem 4.3 for the case t¯ 0. To recover σ
k
, we must first express s

n
"
,n

#
,…,nk

in

terms of the elementary symmetric functions e
i
where 1% i%k and then replace e

i
by

the Conner–Floyd Chern classes c
i
. The symmetric functions s

n
"
,n

#
,…,nk

are called

Schur functions in the literature. They form an additive basis of the symmetric

polynomials if we allow the indexing set, (n
"
, n

#
,… , n

k
), to range over all strictly
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decreasing k-tuples of non-negative integers. A comprehensive treatment on Schur

functions can be found in I. G. Macdonald’s classic, ‘Symmetric functions and Hall

polynomials ’ [3].

Let (m
"
,m

#
,… ,m

n
"
+"−k

) be the sequence conjugate to (n
"
­1®k, n

#
­2®k,… , n

k
).

The Jacobi–Trudi identity states that

s
n
"
,n

#
,…,nk

¯det(e
mi−i+j

)
"
%i,j%n

"
+"−k

.

A proof of this identity can be found in [3, Section I.3]. This fact along with

Lemma 5.2 implies that

σ$
k
(a

n
"

ga
n
#

g…ga
nk

)¯ u
k
det(c

mi−i+j
)
"
%i,j%n

"
+"−k

, n
"
" n

#
"…" n

k
& 0

where u
k
is the Thom class for the bundle ad

k
which restricts to the element Σkuh

k
under

the map σ
k
a δ

k
. The proof of the special case is complete. The proof for the general

case is easily derived from the statement of Remark 1.6 and the injectivity of the

projection map U+ MNU}U+

t
in E-cohomology.
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