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EXPLAINATION:

The proof of Lemma 4.3 involved an (incorrect) argument to detect characters in irre-
ducible representations after multiplication with the Weyl denominator. However, due
to possible cancellation of terms on multiplication with the Weyl denominator, one may
fail to detect some characters. This makes the statement of Lemma 4.3 incorrect. Con-
sequently, the statement of Claim 4.5 may also be incorrect. All other statements in the
article are unaffected by this error. Claim 4.6 and Theorem 4.7 (which depend on Lemma
4.3 at present) require an alternate proof. These proofs are provided in this erratum.

CORRECTED PROOFS

Given a compact Lie subgroup G ⊆ K(A), the restriction of H may not contain all ir-
reducible representations of G. Let us fix a G-stable Hilbert space L(G) [S]. By defini-
tion, L(G) contains every G-representation infinitely often. So we may fix an equivariant
isometry H ⊆ L(G) (notice that any two isometries are equivariantly isotopic). We may
stabilize fredholm operators onH by the identity operator on the complement to obtain:

St : F(H) −→ F(L(G)).

Let K∗G(X) denote standard equivariant K-theory represented by the space F(L(G)) [S].

Claim 4.6. Let G ⊆ K(A) be a compact subgroup. Then the stabilization map is an injection:

St : AK∗G(S0) −→ K∗G(S0).

Furthermore, given a proper orbit X = K(A)+ ∧G S0 for some compact Lie subgroup G ⊆ K(A),
we have a canonical isomorphism:

K∗K(A)(X) = DRG[β±1],

where β is the Bott class in degree 2, and DRG lies in degree 0. In particular, the odd Dominant
K-cohomology of X is trivial.
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Proof. Let M be a minimal G-invariant complement of H inside L(G), so that H ⊕ M
is an G-stable Hilbert space inside L(G). In particular, M and H share no nonzero G-
representations. On the level of G-fixed points on the space of Fredholm operators, we
have an inclusion:

FG(H⊕M) = FG(H)×FG(M) −→ FG(L(G)).

Moreover, it is easy to see that this map is a homotopy equivalence. Hence, we have an
injection:

St : AK0
G(Sm) = πmFG(H) −→ πmFG(L(G)) = K0

G(Sm).

Furthermore, decomposing H into its irreducible isotypical summands, shows that the
group π0(FG(H)) is free on the irreducible G-summands in H. In other words, it is iso-
morphic to DRG. This gives the identification of K0

K(A)(X) we claimed. �

The following theorem may be seen as a Thom isomorphism theorem for Dominant K-
theory. It would be interesting to know the most general conditions on an equivariant
vector bundle that ensure the existence of a Thom class.

Theorem 4.7. Let G ⊆ K(A) be a subgroup of the form KJ(A) for some J ∈ S(A), and let
r be the rank of K(A). Let g denote the Adjoint representation of KJ(A). Then there exists a
fundamental irreducible representation λ of the Clifford algebra Cliff (g⊗C) that serves as a Thom
class in AKr

G(Sg) (a generator for AK∗G(Sg) as a free module of rank one over DRG), where Sg
denotes the one point compactification of g.

Proof. We begin by giving an explicit description of λ. Fix an invariant inner product B
on g, and let Cliff(g⊗C) denote the corresponding complex Clifford algebra. One has the
triangular decomposition: g⊗C = η+⊕η−⊕h, where η± denote the nilpotent subalgebras.
The inner product extends to a Hermitian inner product on g ⊗ C, which we also denote
B, and for which the triangular decomposition is orthogonal .
Recall that h contains the lattice hZ containing the coroots hi for i ∈ I . Fix a dual set
h∗i ∈ h∗Z. We may decompose η± further into root spaces indexed on the roots generated
by the simple roots in the set J :

η± =
∑
α∈∆±

gα,

where ∆± denotes the positive (resp. negative) roots for KJ(A). Now fix a Weyl element
ρJ , defined by:

ρJ =
∑
j∈J

h∗j .

It is easy to see using character theory that the irreducible G-module LρJ , with highest
weight ρJ belongs toH, and has character:

ch LρJ = eρJ
∏
α∈∆+

(1 + e−α) = eρJ ch Λ∗(η−),

where Λ∗(η−) denotes the exterior algebra on η−. In particular, the vector space LρJ is
naturally Z/2-graded and belongs to H. The exterior algebra Λ∗(η−) can naturally be
identified with the fundamental Clifford module for the Clifford algebra Cliff(η+ ⊕ η−).
Let S(h) denote an irreducible Clifford module for Cliff(h). It is easy to see that the action
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of Cliff(g⊗C) on S(h)⊗Λ∗(η−) extends uniquely to an action of GnCliff(g⊗C) on λ, with
highest weight ρJ , where:

λ = CρJ ⊗ S(h)⊗ Λ∗(η−) = S(h)⊗ LρJ .

The Clifford multiplication parametrized by the base space g, naturally describes λ as an
element in AKr

G(Sg).
We now show that λ is a free generator of rank one for AKr

G(Sg), as a DRG-module. Let Lµ
be an irreducible generator of DRG. Consider the element λ⊗ Lµ ∈ AKr

G(Sg), and restrict
it to AKr

T (ShR), along the action map:

ϕ : G+ ∧T ShR −→ Sg,

where T ⊆ G is the maximal torus. Identifying AKr
T (ShR), with DRT , and using the char-

acter formula, we see that λ⊗ Lµ has virtual character given by:∑
w∈WJ (A)

(−1)wew(ρJ+µ).

This correspondence shows that AKr
G(Sg) contains a subgroup DR+

G generated by positive
dominant characters τ , with the property: {τ ∈ D | τ(hj) > 0, j ∈ J}.

It remains to show that all elements in AKr
G(Sg) are in this subgroup. For this we will

make an explicit computation of AKr
G(Sg) using a homotopy decomposition of Sg as a G-

space as constructed in [CK]. This method of computation uses the Bousfield-Kan spectral
sequence for the cohomology of a homotopy colimit. This spectral sequence will be used
extensively throughout this paper.

It will be more convenient to study the unit sphere S(g) in the representation g. Notice
that one has an equivariant cofiber sequence:

S(g)+ −→ S0 −→ Sg.

Therefore, the calculation of AKG(Sg) will follow from a similar calculation for S(g).

It is shown in [CK] that S(g) is a suspension of the following space (the suspension coor-
dinates correspond to the rank of the center of G):

X(G) := hocolimS(J G/KI(A).

Filtering X(G) by the equivariant skeleta, we get a convergent spectral sequence (En, dn),
|dn| = (n, 1− n), and with E2 term given by:

Ep,∗
2 = lim←−

pAK∗G(G/K•(A)) = lim←−
pDR•[β±1]⇒ AKp

G(X(G)))[β±1],

where β denotes the invertible Bott class, and we have simplified the notation DR• to
denote the functor S 7→ DRKS(A) for S ( J .

Now using character formula, we see that DRS is isomorphic to theWS(A)-invariant char-
acters: DRWS(A)

T . In other words, we have:

DRS = DRWS(A)
T = HomWJ (A)(WJ(A)/WS(A),DRT ).

Consider the WJ(A)-equivariant spherical Davis complex: ΣJ defined as:

ΣJ = hocolimS(JWJ(A)/WS(A).
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It follows that lim←−
pDR• is canonically isomorphic to the equivariant cohomology (as de-

fined in [D2]) of ΣJ ⊂ h, with values in the ring DRT :

lim←−
pDR• = Hp

WJ (A)(ΣJ ,DRT ).

Now recall that the set of dominant weights D has a decomposition indexed by subsets
K ⊆ I :

D =
∐

DK , where DK = {λ ∈ D |λ(hk) = 0, ⇐⇒ k ∈ K}.

Let RK
T denote the ideal in DRT generated by the weights belonging to the subset DK . We

get a corresponding decomposition of DRT as a W (A)-module:

DRT =
⊕

DRK
T , where DRK

T
∼= Z[W (A)/WK(A)]⊗ RK

T .

We therefore have an induced decomposition of the functor DR• =
⊕

DRK
• indexed by

K ⊆ I . On taking derived functors we have:

lim←−
pDR• =

⊕
lim←−

pDRK
• =

⊕
Hp
WJ (A)(ΣJ ,Z[W (A)/WK(A)])⊗ RK

T .

Now the left WJ(A)-space W (A)/WK(A) is a disjoint union over double cosets:

W (A)/WK(A) =
∐

w∈JWK

WJ(A)/WKw(A), where WKw(A) = WJ(A) ∩ wWK(A)w−1.

Since ΣJ is a compact simplicial complex, it is easy to see directly or using [D1, D2] that:

Hp
WJ (A)(ΣJ ,Z[WJ(A)]) = Hp(ΣJ ,Z) = 0, if p 6= {0, |J | − 1}, and = Z if p = {0, |J | − 1}.

In addition, given a non-empty subset Kw ⊆ J ,

Hp
WJ (A)(ΣJ ,Z[WJ(A)/WKw(A)]) = Hp(ΣJ/WKw(A),Z) = 0 if p 6= 0, = Z if p = 0.

The last equality above follows form the fact that ΣJ/WKw(A) is the fundamental domain
of the WKw(A)-action on ΣJ . Hence it is the intersection of ΣJ with a cone that lies in a
half-quadrant. In particular, it is a retract of the cone and therefore contractible.

It follows that the spectral sequence has only two columns p = {0, |J | − 1}, with:

E0,∗
2 =

⊕
{K,JWK}

RK
T [β±1] = DRG[β±1], E

|J |−1,∗
2 =

⊕
{K,JWK}

RK
T [β±1] = DR+

G[β±1],

where JWK is the subset of elements w ∈ JWK for which Kw = ∅. This spectral sequence
must collapse because DRG is detected by the pinch map S(g)+ −→ S0. It follows that
AK∗G(Sg) is isomorphic to DR+

G[β±1], which is what we wanted to show.
�
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