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MOMENT MAPS, SYMPLECTOMORPHISM GROUPS
AND COMPATIBLE COMPLEX STRUCTURES

Miguel Abreu, Gustavo Granja, and Nitu Kitchloo

In this paper, we apply Donaldson’s general moment map frame-
work for the action of a symplectomorphism group on the correspond-
ing space of compatible (almost) complex structures to the case of
rational ruled surfaces. This gives a new approach to understanding
the topology of their symplectomorphism groups, based on a result of
independent interest: the space of compatible integrable complex struc-
tures on any symplectic rational ruled surface is (weakly) contractible.
We also explain how in general, under this condition, there is a direct
relationship between the topology of a symplectomorphism group, the
deformation theory of compatible complex structures and the groups
of complex automorphisms of these complex structures.

1. Introduction

The known results regarding the topology of symplectomorphism groups,
for two-dimensional surfaces and four-dimensional rational ruled surfaces,
indicate a direct relation with the topology of the corresponding groups of
complex automorphisms. The goal of this paper is to formulate this empir-
ical relation more precisely, within a general framework involving infinite
dimensional groups, manifolds and moment maps. This general framework
goes back to Atiyah and Bott [5], was made rigorous and precise in finite
dimensions by Kirwan [18] and was shown to apply to the action of a sym-
plectomorphism group on the corresponding space of compatible (almost)
complex structures by Donaldson [10].

It is usually quite difficult to make this general framework rigorous and
precise in infinite dimensions, and we will make no attempt at that here.
However, its formal application is often very useful as a guide to the results
one should expect and to the approach one might take in proving them. We
will present here two results, Theorems 3.5 and 3.6, that are an example of
this. Their rigorous proofs will appear in [2].
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The paper is organized as follows. In Section 2, we describe the general
moment map framework and how it applies to the action of a symplecto-
morphism group on the corresponding space of compatible (almost) complex
structures. In Section 3, we discuss the particular case of rational ruled sur-
faces, where the geometric picture suggested by the moment map framework
is quite accurate and gives a new approach to understanding the topology of
their symplectomorphism groups. This approach is based on the fact that
the space of compatible integrable complex structures on any symplectic
rational ruled surface is (weakly) contractible (Theorem 3.5). Any time this
condition holds, there should be a direct relationship between the problem
of understanding the topology of the symplectomorphism group and the fol-
lowing two problems: understanding the deformation theory of compatible
complex structures and understanding the topology of the groups of com-
plex automorphisms of these complex structures. This general relation is
explained in Section 4.

2. Moment map geometry

In this section, following [10], we recall a general moment map framework
and how it applies to the action of a symplectomorphism group on the
corresponding space of compatible almost-complex structures.
General framework. Let G be a Lie group, G its Lie algebra, 〈·, ·〉 an inner
product on G invariant under the adjoint action, G∗ the dual Lie algebra
naturally identified with G via 〈·, ·〉 and GC a complexification of G.

Let (X, J,Ω) be a Kähler manifold equipped with an action of G by Kähler
isometries, i.e., a homomorphism

ρ : G −→ Iso(X, J,Ω) = Hol(X, J) ∩ Symp(X, Ω).

Suppose this action satisfies the following two conditions:
(i) the holomorphic action of G on (X, J) extends to a holomorphic action

of GC on (X, J);
(ii) the symplectic action of G on (X, Ω) admits a suitably normalized

equivariant moment map µ : X → G∗.
Then we have the following two general principles.
General Principle I. The complex and symplectic quotients of X by G
are naturally identified. More precisely,

µ−1(0)
G

=
Xs

GC

where Xs ⊂ X is an open, GC-invariant, subset of “stable points.” We
will not define here this notion of stability, the important point being that
it should only depend on the holomorphic geometry of the situation. The
content of this principle is that on each stable GC-orbit, there is a point
p ∈ µ−1(0), unique up to the action of G.
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General Principle II. The map ‖µ‖2 ≡ 〈µ, µ〉 : X → R behaves like
a G-invariant Morse–Bott function, whose critical manifolds compute the
equivariant cohomology H∗

G(X) ≡ H∗(X ×G EG) (over Q and, in good
special cases, also over Z).

Combining these two general principles, one gets the following geometric
picture for the action of G on X:

– The gradient flow of −‖µ‖2 induces an invariant stratification

X = V0 	 V1 	 V2 	 · · · ,

where each Vk is the stable manifold of some critical set Ck of ‖µ‖2.
– Let Ok denote the coadjoint orbit G · ξk ⊂ G∗, where ξk = µ(pk) for

some pk ∈ Ck. Then

Vk

GC

 µ−1(Ok)

G
.

If C0 = µ−1(0), then O0 = {0} and V0 = Xs.
– The equivariant cohomology H∗

G(X) can be computed from H∗
G(Vk),

k = 0, 1, 2, . . . (over Q and, in good special cases, also over Z).

Symplectomorphism groups and compatible complex structures.
Consider a compact symplectic manifold (M, ω), of dimension 2n and assume
that H1(M, R) = 0. Let G ≡ Symp(M, ω) be the symplectomorphism group
of (M, ω). This is an infinite dimensional Lie group whose Lie algebra G can
be identified with the space of functions on M with integral zero:

G = C∞
0 (M) ≡

{
f : M −→ R :

∫
M

f
ωn

n!
= 0

}
.

G has a natural invariant inner product 〈·, ·〉 given by

〈f, g〉 ≡
∫

M
f · g

ωn

n!
,

which will be used to identify G∗ with G.
Consider now the space J (M, ω) of almost complex structures J on M ,

which are compatible with ω, i.e., for which the bilinear form

gJ(·, ·) = ω(·, J ·)
is a Riemannian metric on M . This is the space of sections of a bundle over
M with fiber the contractible symmetric Kähler manifold Sp(2n, R)/U(n) ≡
Siegel upper half space [24]. This fiberwise symmetric Kähler structure,
together with the volume form induced by ω on M , turns J (M, ω) into an
infinite dimensional (contractible) Kähler manifold.

The symplectomorphism group G acts naturally on J (M, ω) by Kähler
isometries:

φ · J ≡ φ∗(J) = dφ ◦ J ◦ dφ−1, ∀φ ∈ G, J ∈ J (M, ω).
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To fit the previous general framework, this action should satisfy conditions
(i) and (ii).

The first (holomorphic) condition poses an immediate problem since there
is no complexification GC of the symplectomorphism group G. However, we
can certainly complexify the Lie algebra G to

GC ≡
{

f : M −→ C :
∫

M
f

ωn

n!
= 0

}

and the infinitesimal action of G on J (M, ω) extends to an action of GC,
since the complex structure on J (M, ω) is integrable. This gives rise to an
integrable complex distribution on J (M, ω) whose leaves play the role of
“connected components of orbits of the group GC.”

In the holomorphic side of General Principles I and II that we want
to apply, GC is not that important when compared with the role played
by its orbits. The geometric meaning of these “GC-orbits” becomes quite
clear if one restricts the actions under consideration to the invariant Kähler
submanifold X of compatible integrable complex structures

X ≡ J int(M, ω) ⊂ J (M, ω),

determined by the vanishing of the Nijenhuis tensor. Here, it follows from
Donaldon’s analysis in [10] that

J, J ′ ∈ X belong to the same “GC-orbit” iff there exists ϕ ∈ Diff(M) such
that

[ϕ∗(ω)] = [ω] ∈ H2(M, R) and ϕ∗(J) = J ′.

This explicit description of a “GC-orbit” is good enough to consider that
the holomorphic action of G = Symp(M, ω) on X = J int(M, ω) satisfies
condition (i).

Regarding condition (ii), Donaldson [10] shows that there always exists
an equivariant and suitably normalized moment map

µ : J (M, ω) −→ G∗ ∼= C∞
0 (M)

for the symplectic action of G on J (M, ω) given by

µ(J) = (Hermitian scalar curvature S(J) of the metric gJ) − d,

where d is the constant defined by

d ·
∫

M

ωn

n!
≡ 2πc1(M) ∧ [ω]n−1(M) =

∫
M

S(J)
ωn

n!
.

Note that on X ⊂ J (M, ω), i.e., for integrable J , the Hermitian scalar
curvature S(J) coincides with the usual scalar curvature of the Riemannian
metric gJ .

We have concluded that the Kähler action of G on X satisfies conditions
(i) and (ii) of the general framework, and so General Principles I and II
should apply. What do they say in this context?
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General Principle I says that each stable compatible complex structure
is diffeomorphic to one in µ−1(0), unique up to the action of G. Since

J ∈ µ−1(0) ⇐⇒ µ(J) = 0 ⇐⇒ S(J) = d = constant,

this says that on each diffeomorphism class of stable compatible com-
plex structures there should exist a unique Symp(M, ω)-orbit whose cor-
responding Kähler metric has constant scalar curvature. (See the work of
Donaldson [11–13], exploring this consequence of general principle I.)

General Principle II says that the critical points of

‖µ‖2 : X = J int(M, ω) −→ R, ‖µ‖2(J) =
∫

M
S2(J)

ωn

n!
+ constant,

determine the equivariant cohomology H∗
G(X).

These critical points are, in particular, extremal Kähler metrics in the
sense of Calabi [6, 7]. When extremal Kähler metrics exist, they minimize
‖µ‖2 on the corresponding “GC-orbit” [16] and are conjecturally unique up
to the action of G [8].

In the concrete examples, we will discuss (Riemann surfaces and rational
ruled surfaces) these general principles do hold. Whenever this is the case,
one gets the following geometric picture for the action of G = Symp(M, ω)
on X = J int(M, ω):

– There is a stratification of X of the form

X = V0 	 V1 	 V2 	 · · · .

In this stratification, each Vk contains the set of compatible complex
structures which are diffeomorphic to an extremal one with normalized
scalar curvature in

Ok ≡ coadjoint orbit G · (S(Jk) − d) in C∞
0 (M) ∼= G∗,

where Jk is some critical compatible complex structure in Vk.
– “Vk/GC”≡ {“GC-orbits” in Vk} 
 µ−1(Ok)/G is some moduli space of

complex structures that one might try to understand using methods
from complex geometry (deformation theory).

– Let OJk
denote the “GC-orbit” through some extremal Jk ∈ Vk and

let Kk ≡ Iso(M, ω, Jk) ⊂ G. Then, if the group Hol[ω](M, Jk) of
holomorphic automorphisms which preserve the cohomology class of ω
is the complexification of Kk (this is always the case if the groups are
connected by [7]), then the inclusion

G

Kk

∼= G · Jk ↪→ OJk
=

“GC”
Hol[ω](M, Jk)

is a homotopy equivalence.
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– The equivariant cohomology H∗
G(X) can be computed from H∗

G(Vk),
k = 0, 1, 2, . . . . From the previous two points, each H∗

G(Vk) should
be determined from finite dimensional considerations involving mod-
uli spaces of complex structures and subgroups of isometries in
G = Symp(M, ω). Recall that J (M, ω) is always contractible. If
X = J int(M, ω) ⊂ J (M, ω) is also contractible, then

H∗
G(X) = H∗(BG).

3. Rational ruled surfaces

In this section, we discuss the particular case of rational ruled surfaces,
formulating the precise results suggested by the framework of Section 2.

Symplectic structures. As smooth 4-manifolds, rational ruled surfaces are
S2-bundles over S2. Since π2(B Diff+(S2)) ∼= π2(BSO(3)) ∼= Z/2, there are
only two diffeomorphism types classified by the second Stiefel–Whitney class
of the bundle (the mod 2 reduction of the Euler class): a trivial S2-bundle
over S2 and a non-trivial S2-bundle over S2. Since the story for each of
these is analogous, we will concentrate here on the trivial bundle, i.e.,

M = S2 × S2.

Symplectic structures on S2×S2 are classified by the following theorem [19].

Theorem 3.1. If ω is a symplectic form on S2×S2, then it is diffeomorphic
to λσ ⊕ µσ for some real λ, µ > 0, where σ denotes the standard area form
on S2 with

∫
S2 σ = 1.

Since the symplectomorphism group and the space of compatible almost
complex structures are not affected by positive scalings of the symplectic
form and we can switch the two S2-factors, it will suffice to consider sym-
plectic structures of the form

ωλ = λσ ⊕ σ with 1 ≤ λ ∈ R.

From now on, we will use the following notation: Mλ = (S2 × S2, ωλ), 1 ≤
λ ∈ R; Gλ = Symp(Mλ) = symplectomorphisms of Mλ; Jλ = J (Mλ) =
compatible almost complex structures; Xλ = J int(Mλ) = compatible inte-
grable complex structures.

We will also use the following obvious isomorphism:

H2(S2 × S2, Z)
∼=−→ Z ⊕ Z

m[S2 × pt] + n[pt × S2] �−→ (m, n).
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Compatible integrable complex structures. As a complex manifold, a
rational ruled surface is a holomorphic P

1-bundle over P
1. These are the

well-known Hirzebruch surfaces

Hk = P (O ⊕ O(−k)) for some k ∈ N0,

where we write O(−1) for the tautological line bundle over P
1 and P (E) for

the projectivization of a vector bundle E.
Any complex structure J on S2 × S2 is isomorphic to H2k for some

k ∈ N0, while the “odd” Hirzebruch surfaces are diffeomorphic to the
non-trivial S2-bundle over S2 [22]. When (S2 × S2, J) has two embedded
P

1’s with self-intersection 0 and themselves intersecting at one point,
then (S2 × S2, J) ∼= H0. When (S2 × S2, J) has an embedded P

1 with
self-intersection −2k < 0, then (S2 × S2, J) ∼= H2k.

To understand which of these complex structures J can be made compat-
ible with a symplectic form ωλ, for some 1 ≤ λ ∈ R, it is important to note
that the compatibility condition implies that the symplectic form evaluates
positively on any J-holomorphic curve. Hence, for a compatible J ∈ Xλ,
a homology class (m, n) ∈ H2(S2 × S2; Z) can only be represented by a
J-holomorphic curve if λm + n > 0. This rules out embedded curves with
self-intersection less than −2
, where 
 ∈ N0 is such that 
 < λ ≤ 
 + 1. In
particular, the class (1,−k) ∈ H2(S2×S2; Z), with self-intersection −2k, can
only be represented by a J-holomorphic curve for some J ∈ Xλ if λ−k > 0.

This turns out to be the only relevant condition. In fact, we have the
following theorem.

Theorem 3.2. Given 1 ≤ λ ∈ R, there is a stratification of Xλ of the form

Xλ = V0 	 V1 	 · · · 	 V�,

with 
 ∈ N0 such that 
 < λ ≤ 
 + 1 and where:
(i)

Vk ≡ {J ∈ Xλ : (S2 × S2) ∼= H2k}
= {J ∈ Xλ : (1,−k) ∈ H2(M, Z) is represented

by a J-holomorphic sphere}.

(ii) V0 is open and dense in Xλ. For k ≥ 1, Vk has codimension 4k − 2 in
Xλ.

(iii) Vk = Vk 	 Vk+1 	 · · · 	 V�.
(iv) For each k ∈ N0, there is a complex structure Jk ∈ Vk, unique up to the

action of Gλ, for which gλ,k ≡ ωλ(·, Jk·) is an extremal Kähler metric.
(v) Denoting by Kk the Kähler isometry group of (S2 × S2, ωλ, Jk), we

have that

Kk
∼=

{
Z/2 � (SO(3) × SO(3)), if k = 0;
S1 × SO(3), if k ≥ 1.
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(vi) Given J ∈ Vk, there exists ϕ ∈ Diff(S2 × S2) such that

[ϕ∗(ωλ)] = [ωλ] ∈ H2(S2 × S2; R) and ϕ∗(Jk) = J,

so each stratum Vk consists of a unique “GC

λ”-orbit, the orbit through
Jk. Moreover, the inclusion(

Gλ

Kk

)
−→ Vk = OJk

[ψ] �−→ ψ∗(Jk)

is a weak homotopy equivalence.
(vii) Each Vk has a tubular neighborhood NVk ⊂ Xλ, with normal slice given

by
H1(H2k, Θ) ∼= C

2k−1,

where Θ = sheaf of holomorphic vector fields on H2k.
(viii) For k ≥ 1, the representation of Kk

∼= S1 × SO(3) on the normal slice
C

2k−1 at Jk ∈ Vk is the following: S1 acts diagonally and SO(3) acts
irreducibly with highest weight 2(k − 1).

Proof. Points (i), (ii), (iii), (v) and (vii) follow from standard complex geom-
etry and deformation theory applied to complex structures on S2×S2 [9, I.6].
One needs to check that standard deformation theory can in fact be used
here in the context of compatible complex structures. This, together with
points (vi) and (viii), will be proved in [2]. Point (iv) is proved in [6]. �

This theorem shows that the geometric picture suggested by the moment
map framework of Section 2 is quite accurate for rational ruled surfaces.
It implies, by standard equivariant cohomology theory [2], the following
corollary.

Corollary 3.3. Given 
 ∈ N0 and λ ∈ ]
, 
 + 1], we have that

H∗
Gλ

(Xλ; Z) ∼= H∗(BSO(3)×BSO(3); Z)⊕⊕�
k=1Σ

4k−2H∗(BS1×BSO(3); Z),

where ∼= indicates a group isomorphism.

Compatible almost complex structures. We will now look at the con-
tractible space Jλ of compatible almost complex structures on Mλ =
(S2 × S2, ωλ) for a given 1 ≤ λ ∈ R. Gromov [15] was the first to study
the topology of the symplectomorphism group Gλ by analyzing its natural
action on this space Jλ. He used pseudo-holomorphic curves techniques and
this approach turned out to be quite fruitful [1, 3]. In fact, the action of
Gλ is compatible with a natural geometric stratification of Jλ, analogous
to the one presented in Theorem 3.2 for Xλ ⊂ Jλ. Replacing holomorphic
spheres by pseudo-holomorphic ones, and complex deformation theory by
gluing techniques for pseudo-holomorphic spheres, one can prove the follow-
ing theorem [21].
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Theorem 3.4. Given 1 ≤ λ ∈ R, there is a stratification of the contractible
space Jλ of the form

Jλ = U0 	 U1 	 · · · 	 U�,

with 
 ∈ N0 such that 
 < λ ≤ 
 + 1 and where:
(i)

Uk ≡ {J ∈ Jλ : (1,−k) ∈ H2(M ; Z) is represented

by a J-holomorphic sphere}.

In particular, Vk = Uk ∩ Xλ ⊂ Uk.
(ii) U0 is open and dense in Jλ. For k ≥ 1, Uk has codimension 4k − 2 in

Jλ.
(iii) Uk = Uk 	 Uk+1 	 · · · 	 U�.
(iv) The inclusion (

Gλ

Kk

)
−→ Uk

[ψ] �−→ ψ∗(Jk)

is a weak homotopy equivalence, where Jk ∈ Vk ⊂ Uk and Kk =
Iso(S2 × S2, ωλ, Jk) were characterized in Theorem 3.2. In particu-
lar, the inclusion

Vk −→ Uk

is also a weak homotopy equivalence.
(v) Each Uk has a tubular neighborhood NUk ⊂ Jλ which fibers over Uk

as a ball bundle.
Contractibility of Xλ. Given 
 ∈ N0 and 1 ≤ λ ∈ ]
, 
+1], we can combine
the results of Theorems 3.2 and 3.4 to obtain a finite family of diagrams,
one for each 0 ≤ k ≤ 
, of the form

Fk
��

��

NVk
��

��

Vk ⊂ Xλ

��
Fk

�� NUk
�� Uk ⊂ Jλ

where the vertical arrows are inclusions, the one on the left representing
the identity between the fibers of the tubular neighborhoods over Vk ⊂ Uk.
These diagrams are Gλ-equivariant in a suitable sense. Given that Jλ is
contractible and Vk is weakly homotopy equivalent to Uk, one can use this
finite family of diagrams to prove the following theorem [2].

Theorem 3.5. Given 1 ≤ λ ∈ R, the space Xλ of compatible integrable
complex structures on (S2 × S2, ωλ) is weakly contractible.

As far as we know, these are the first known examples of dimension greater
than two where the topology of the space of compatible integrable complex
structures is understood.
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Cohomology of BGλ. Theorem 3.5 implies that

H∗
Gλ

(Xλ; Z) ∼= H∗(BGλ; Z).

Combining this isomorphism with Corollary 3.3, we get the following theo-
rem.

Theorem 3.6. Given 
 ∈ N0 and λ ∈ ]
, 
 + 1], we have that

H∗(BGλ; Z) ∼= H∗(BSO(3) × BSO(3); Z)⊕
⊕�

k=1 Σ4k−2H∗(BS1 × BSO(3); Z),

where ∼= indicates a group isomorphism.

Although we used a new point of view, this theorem is not the first result
regarding the topology of BGλ:

– A formula for the rational cohomology ring of BGλ was determined
in [3] for any 1 ≤ λ ∈ R. That formula is incomplete since the relation
that determines it is only correct up to “higher order terms” that have
to be taken into account. See [2] for details regarding this issue.

– The integral cohomology ring of BGλ was determined for λ = 1 in [15]
(where Gromov proves that G1 is homotopy equivalent to SO(3) ×
SO(3)) and for 1 < λ ≤ 2 in [4].

We hope to include in [2] a description of the ring structure of H∗(BGλ; Z)
for any 1 ≤ λ ∈ R.

4. Symplectomorphisms and complex automorphisms

Let (M, ω) be a symplectic manifold and J int(M, ω) the corresponding space
of compatible integrable complex structures. The aim of this section is to
explain how the condition

(1) J int(M, ω) ∼ ∗
that the space of compatible complex structures be contractible, essentially
equates the problem of understanding the topology of Symp(M, ω) with the
following two problems.

• Understanding the (large-scale) deformation theory of complex struc-
tures compatible with ω.

• Understanding the topology of the groups of complex automorphisms
of each of these complex structures.

The same is true if one replaces compatible complex structures by tame
complex structures in which case the deformation theory in question is the
usual deformation theory of Kodaira and Spencer (as the tameness condition
is open).

We should point out straight away that we only know condition (1) to hold
in a few very simple examples: Riemann surfaces (where the condition holds
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because all almost complex structures are integrable) and simple rational
complex surfaces such as P

2 and rational ruled surfaces. The work of Lalonde
and Pinsonnault [20] suggests that condition (1) also holds for blow-ups of
P

2 at two points. It would be very interesting to have some understanding
of the generality of (1).

The reason why (1) equates the problems above is that it establishes a
sort of weak equivalence between two moduli problems—one in symplec-
tic geometry and another in complex geometry. To explain this, we must
first recall some basic facts regarding topological groupoids. The reader is
referred to [17, Section I] for more explanation and details.

Topological groupoids. A topological groupoid is a small topological cat-
egory in which every morphism is invertible. Thus, a topological groupoid
consists of a pair of spaces (O, M) together with some structure maps. O is
the space of objects and M the space of isomorphisms between the objects
in O. The structure maps are ι : O → M assigning the identity isomor-
phism to each object, two maps d0, d1 : M → O assigning to a morphism its
domain and range, a composition map µ : M ×O M → M and an inverse
map c : M → M satisfying the obvious identities.

To a groupoid one can associate the space of isomorphism classes O/I,
which we will call the coarse moduli space, defined as the quotient of O by the
equivalence relation generated by d0(α) ∼ d1(α). Of course, the groupoid
carries much more information than the quotient space.

In many cases, including all those that will concern us, moduli problems
can be described in terms of topological groupoids of the following special
form:

Example 4.1. Let G be a topological group acting on a space X. We define
a groupoid Γ(X, G) with objects O = X and M = G × X. The structure
maps are ι(x) = (1, x), d0(g, x) = x, d1(g, x) = g ·x, µ(g, x, h, g ·x) = (hg, x)
and c(g, x) = (g−1, g ·x). The associated quotient space is the space of orbits
X/G.

Note that Γ(∗, G) can be naturally identified with the topological group G.

Let Γ = (O, M) be a topological groupoid, B be a space and U = {Ui} be
an open cover of B. A 1-cocycle over U with values in Γ is the assignment
to each pair i, j of a map

gij : Ui ∩ Uj −→ M

satisfying the cocycle condition µ(gij , gjk) = gik on triple intersections. In
particular, gii : Ui → M sends each point of Ui to an identity morphism
and hence amounts to an object selection map fi : Ui → O. The cocycle
condition then says that these selections are compatible so that the 1-cocycle
represents a continuous family of objects over B. One defines equivalence
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between 1-cocycles in the obvious way. An equivalence class of 1-cocycles is
called a Γ-structure on X.

Two Γ-structures σi, i = 0, 1, on Y are said to be concordant1 if there
is a Γ-structure σ on Y × [0, 1] such that σ|Y ×0 = σ0 and σ|Y ×1 = σ1. If
Γ = Γ(∗, G) is a topological group, concordance is the same as equality, but
this is generally not the case.

Any topological groupoid Γ has a classifying space BΓ which is a homo-
topy invariant version of the coarse moduli space. It is determined by the
equation

[Y, BΓ] = {concordance classes of Γ − structures on Y }
In the case of Example 4.1, the classifying space of Γ(X, G) is the Borel
construction on the G-space X. That is, if we write EG for a contractible
free G-space, we have

BΓ(X, G) 
 EG ×G X

In particular, if the G-space X consists of a single orbit and H denotes the
isotropy subgroup of one of the points of X, we have

(2) BΓ 
 EG ×G G

H
=

EG
H


 BH

and so the classifying space of the groupoid is the same as the classifying
space of the isotropy group (of any object). If there is more than one orbit,
then the map EG → ∗ still induces a map

π : BΓ −→ X

G

with fibers
π−1(Gx) 
 B Aut(x),

where we have written Aut(x) for the isotropy group of x. Intuitively, this
says that the space BΓ is obtained by gluing the classifying spaces of the
automorphism groups B Aut(x) via the topology of the moduli space X/G,
which one can write

(3) BΓ 

∫

X/G
B Aut(x).

In good situations, this is a precise statement [14, Proposition, p. 183]. Even
if it is not, it still provides a useful guide to understanding the topology of
BΓ. We will see how this plays out in Examples 4.4 and 4.5 below.

We will say that a map φ : Γ1 → Γ2 of topological groupoids is a weak
equivalence if the induced map of classifying spaces

Bφ : BΓ1 → BΓ2

1The term used by Haefliger is homotopic.
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is a weak homotopy equivalence. In the examples we are concerned with,
the source of weak equivalences is the following immediate consequence of
the homotopy invariance of the Borel construction:

Lemma 4.2. If X and Y are G-spaces and f : X → Y is a G-equivariant
map which is a weak equivalence, then the induced map of groupoids Γf :
Γ(X, G) → Γ(Y, G) is a weak equivalence.

Examples of moduli problems. Let M be a compact manifold and G =
Diff+(M) the group of orientation preserving diffeomorphisms of M with
the C∞ topology. Consider the following G-spaces:

(i) The space J int(M) of complex structures on M compatible with some
(unspecified) symplectic form on M .

(ii) The space Ωint(M) of symplectic forms on M .
(iii) The space K int(M) = {(J, ω) ∈ J int(M)×Ωint(M) : J compatible with

ω} of Kähler structures on M .
We will write ΓJ , ΓΩ and ΓK for the associated topological groupoids.

The projections

J int(M) π1←− K int(M) π2−→ Ωint(M)

are G-equivariant. The fibers of π1 are always convex, so π1 is a weak
equivalence. Lemma 4.2 then says that the groupoids ΓJ and ΓK are
weakly equivalent. Condition (1) is precisely the condition that the fibers
of π2 be contractible. If in addition we know that π2 is surjective, i.e., that
all symplectic structures on M are Kähler, then Lemma 4.2 says that ΓΩ is
also weakly equivalent to ΓJ and ΓK.

Remark 4.3. We can also consider the non-integrable moduli problems
derived from the space J (M) of almost complex structures compatible with
some symplectic form on M and K(M) of almost-Kähler structures. These
groupoids are always weakly equivalent to ΓΩ. In this light, condition (1)
can be seen as the requirement that the inclusions J int(M) → J (M) or
Kint(M) → K(M) induce weak equivalences of topological groupoids.

Now consider the following variation on the previous situation. Fix a
symplectic form ω on M and consider the orbit

X0 = Diff+(M) · ω ⊂ Ωint(M).

Let X1 = π−1
1 (X0) ⊂ K int(M) and X2 = π2(X1) ⊂ J int(M) so that we have

G-equivariant maps
X0

π1←− X1
π2−→ X2

If (1) holds for the symplectic form ω, then as before all three groupoids are
weakly equivalent and using (2) and (3) we have

(4) B Symp(M, ω) 
 BΓ(X0, G) 
 BΓ(X2, G) 

∫

[J ]∈Z
B Aut(J)
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where Z = X2/ Diff+(M) is the coarse moduli space of complex structures
compatible with ω, and Aut(J) is the group of biholomorphisms of the
complex manifold (M, J).

Example 4.4 Elliptic curves. Let M = S1 ×S1 and let ω be the standard
symplectic form. The topology of the diffeomorphism groups of surfaces is
well understood. The inclusion of the affine orientation preserving automor-
phisms of S1 × S1 in Symp(M, ω) is a weak equivalence, i.e.,

SL2(Z) � (S1 × S1) 
 Symp(M, ω).

The complex structures on a torus (which are all compatible with any given
area form) are parametrized by points in the upper half plane up to the action
of SL(2, Z) by fractional linear transformations. Thus the space Z in (4) is
obtained from

Ω = {z ∈ C : − 1
2 ≤ Re(z) ≤ 1

2 , |z| ≥ 1, Im(z) > 0}
by identifying the boundary points through the maps z �→ z+1 and z �→ −1/z.
If Ez denotes the elliptic curve parametrized by z ∈ Ω, we have

AutC(Ez) = Aut(< 1, z >) � Ez

where Aut(< 1, z >) denotes the automorphisms of the lattice generated
by {1, z}. Most lattices have multiplication by −1 as their only non-trivial
automorphism. The exceptions are < 1, i > which has Z/4 as automorphism
group and < 1, eπi/3 > which has Z/6 as automorphism group.

Thus, in this case, (4) says that B Symp(M, ω) can be expressed as the
double mapping cylinder (or homotopy pushout) of the maps

B

(
Z

4
� (S1 × S1)

)
←− B

(
Z

2
� (S1 × S1)

)
−→ B

(
Z

6
� (S1 × S1)

)

which amounts to the familiar decomposition of SL(2, Z) as the amalgam of
Z/4 and Z/6 over Z/2 [23, 1.5.3].

Example 4.5. S2 × S2. Let us resume Section 3 from the point of view
of this section. A theorem of Qin [22] says that any complex structure on
S2×S2 is isomorphic to one of the even Hirzebruch surfaces H2k, with k ≥ 0.
Theorem 3.1 (Lalonde-McDuff) says that any symplectic form on S2 × S2

is, up to scale, diffeomorphic to ωλ = λσ ⊕ σ for some λ ≥ 1. The complex
structures which are compatible with ωλ are the H2k with k < λ. So in this
example, the coarse moduli space Z is a finite set of points (with a non-
Hausdorff topology) and (4) expresses B Symp(M, ωλ) as a union of spaces
with the homotopy type of B AutC(H2k) for the allowable values of k.

The way the different spaces B AutC(H2k) fit together is controlled by
the deformation theory of the complex structures, which in this case is the
usual Kodaira–Spencer theory.
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