Homework 4 Solutions

1)

Let f(z) = cos(z)— 2. f is a continuous function, f(0) = cos(0)—0 =1 > 0,
and f(%) = cos(§) —1 = —1 < 0. By the intermediate value theorem, there
exists some c in the interval [0, g] for which f(c¢) = 0. Therefore, there exists
some c in the interval [0, Z] for which cos(c) = 2¢.

2)

All polynomials are continuous functions. In particular, the polynomial
p(x) = 2* — 2% — 102 + 1 is a continuous function. p(0) = 1 > 0 and p(1) =
1-1-10+4+1= -9 < 0. By the intermediate value theorem, there exists some
¢ in the interval [0, 1] for which p(c) = 0. Therefore, p has at least one root (a
number ¢ for which p(c) = 0).

(3)

Let w(z) = v/ + 1. Then
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Note that a key step in computing the limit is to multiply and divide by the
conjugate of v/h + 2 — v/2. Also note that the exercise amounts to computing
w’(1) using the limit definition of the derivative.

(4)(a)

Let g(z) = 22 + 1. Then
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The slope of the tangent line at (1,2) is given by the derivative at x = 1.
Thus, m = ¢’(1) = 2. Using the point-slope formula
Yy —yo = m(z — zo),

we determine that the equation of the tangent line to the graph of g(z) at the
point (1,2) is
y—2=2>x-1).

(4)(More Generally)
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= }lzlir%) [2x0 + h] = 2.

The slope of the tangent line at (zg,g(x0)) is given by the derivative at
x = xo. Thus m = ¢'(x9) = 2x9. We determine that the equation of the
tangent line to the graph of g(x) at the point (zg, g(zo)) is

y — g(xo) = 2z0(x — x0).
(5)(a)
Define

B xsin(%) ifx#£0
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To show that f is continuous at x = 0, we should first compute the limit
of f as x tends to 0. To do this, we will use the sandwich theorem (or squeeze
theorem). We know that |Sin9| < 1, and so |sin (%)} < 1. Then |xsin (%)| =
|x| ’Sin (%)| < ‘x| 1= |x‘ for all z € R. Thus
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Then since|z| — 0 as  — 0 and — || — 0 as & — 0, then @sin (1) — 0 as
2 — 0 by the sandwich theorem. Therefore
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lim f(x) = lim zsin (1> = 0= f(0)

and by definition of being continuous at a point, we conclude f is continuous at
x =0.
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The limit of sin () as h — 0 is the same as the limit of sinu as u — oo,
which does not exist. We conclude f is not differentiable at = = 0.



