Johns Hopkins Math Tournament 2020

Individual Round: Algebra and Number Theory

February 8, 2020

Instructions

• <u>DO NOT</u> TURN OVER THIS PAPER UNTIL TOLD TO DO SO.

- This test contains 12 questions to be solved individually in 60 minutes.
- All answers will be integers.
- Only answers written on the appropriate area on the answer sheet will be considered for grading.
- Problems are weighted relative to their difficulty, determined by the number of students who solve each problem.
- No translators, books, notes, slide rules, calculators, abaci, or other computational aids are permitted. Similarly, graph paper, rulers, protractors, compasses, and other drawing aids are not permitted.
- If you believe the test contains an error, immediately tell your proctor and if necessary, report the error to the front desk after the end of your exam.
- Good luck!

- 1. The roots of a quadratic equation $ax^2 + bx + c$ are 3 and 5, and the leading coefficient is 2. What is a + b + c?
- 2. If x is a real number satisfying $\frac{1}{\sqrt{x}} + \frac{2}{1+\sqrt{x}} = 2$, find the value of x. Note that \sqrt{x} denotes the positive square root of x.
- 3. The sum of the squares of the reciprocals of the roots of the equation $x^3 + 2x^2 + 8x + 7 = 0$ can be expressed as $\frac{p}{q}$, where p and q are relatively prime. Find p + q.
- 4. Our base-ten number system is endowed with a neat rule for divisibility by 9: when an integer N is written in base-ten, N is divisible by 9 if and only if the sum of N's digits is divisible by 9. Compute the sum of all positive integers b_{10} between 11_{10} and 99_{10} such that any integer N is divisible by 9 if and only if the sum of N's digits in base b is divisible by 9.
- 5. Compute the value of

$$\sum_{n=2}^{2018} \frac{2}{1 + \log_n(2020 - n)}$$

- 6. Find the last three digits of 99^{99} .
- 7. Let $a_1 = 3$, $a_2 = 8$, and $a_n = \sum_{k=1}^{n-1} a_k$ for n > 2. The value of $\sum_{n=1}^{\infty} \frac{1}{a_n}$ can be written as a common fraction $\frac{p}{a}$. Compute p + q.
- 8. What is the least number of weights required to weigh any integral number of pounds up to 360 pounds if one is allowed to put weights in both pans of a balance?
- 9. The equation $x^3 + 6x 2 = 0$ has exactly one real solution, $x = \sqrt[3]{a} + \sqrt[3]{b}$, where a and b are integers not divisible by the cube of any prime. If a > b, then compute 100a + b.
- 10. For all x > 1, the equation $x^{60} + kx^{27} \ge kx^{30} + 1$ is satisfied. What is the largest possible value of k?
- 11. Given a real number a_1 , recursively generate a sequence $\{a_1, a_2, a_3, \ldots\}$ satisfying

$$a_{n+1} = -\frac{1}{a_n - 1} - \frac{1}{a_n + 1}$$

for all $n \in \mathbb{N}$. Out of all real numbers, how many values of a_1 result in the equality $a_6 = a_1$?

12. Let $f(n) = n^2 - 1$ and $g(n) = (n+1)^3 - (n-1)^3$. Let \times be a binary operation that acts on two ordered pairs, defined by the following rule: $(a, b) \times (c, d) = (ac, ad + bc)$. For integers $n \ge 3$, let

$$(a_n, b_n) = [[[(f(2), g(2)) \times (f(3), g(3))] \times (f(4), g(4))] \times \cdots] \times (f(n), g(n))$$

Determine the smallest n such that $b_n > 2020a_n$.

Algebra and Number Theory Solutions

- 1. As the two roots are 3,5, and the leading coefficient is 2, the equation could be written as $2(x-3)(x-5) = 2(x^2 8x + 15) = 2x^2 16x + 30$. So a + b + c = 2 16 + 30 = 16.
- 2. First we can combine the two fractions by finding a common denominator, which is $(1 + \sqrt{x})\sqrt{x} = \sqrt{x} + x$, giving us $\frac{1+3\sqrt{x}}{\sqrt{x}+x} = 2$. We can then multiply the denominator to the right side of the equation and subtract the right side of the equation from the left giving us $-2x + \sqrt{x} + 1 = 0$. This is quadratic in \sqrt{x} and we can thus apply the quadratic equation to get that $\sqrt{x} = 1$. (The note allows us to ignore the negative solution) Thus $x = \boxed{1}$.
- 3. (Quickest solution) We can first generate a polynomial that has roots that equals the reciprocal of roots of the original equation by switching coefficients, doing that we get $7x^3 + 8x^2 + 2x^2 + 1$. Let the sum of the roots be P_1 , and by Vieta's formula we get $P_1 = \frac{-8}{7}$. Let the sum of the squares of the roots be P_2 . Using Newton's sum $(7P_2 + 8P_1 + (2)(2) = 0)$, we get $7P_2 + 8\frac{-8}{7} + 2 \cdot 2 = 0$, $P_2 = \frac{36}{49}$ Better solution: let the roots be a, b, c, we wish to find $(\frac{1}{a})^2 + (\frac{1}{b})^2 + (\frac{1}{c})^2$. This is equivalent to $\frac{(ab+ac+ab)^2 2(a+b+c)(abc)}{abc^2}$, which is $\frac{8^2 2 \cdot (-2) \cdot (-7)}{(-7)^2} = \frac{36}{49}$. Thus, the answer is $36 + 49 = \boxed{85}$.
- 4. The rule for divisibility by 9 works in base ten because $10 \equiv 1 \mod 9$, so $10^k \equiv 1 \mod 9$ for any nonnegative integer k. The value of a generic n-digit whole number $\overline{a_{n-1}a_{n-2}\dots a_1a_0}_{10}$ in base ten is $a_{n-1}10^{n-1} + a_{n-2}10^{n-2} + \dots + a_110^1 + a_010^0$, which is equivalent to $a_{n-1} \cdot 1 + a_{n-2} \cdot 1 + \dots + a_1 \cdot 1 + a_0 \cdot 1$ modulo 9, hence the neat divisibility rule. The same trick works in base b if and only if $b \neq 1$ and $b \equiv 1 \mod 9$. Thus, the sum of all such b between 11_{10} and 99_{10} is $19 + 28 + 37 + \dots + 91 = \sum_{k=2}^{10} (9k+1) = 9 \sum_{k=1}^{10} k = \frac{9 \cdot 10 \cdot 11}{2} = \boxed{495}$.
- 5. The essential observation is $\log_a(b) \cdot \log_b(a) = 1$. Therefore, if we let $f(n) = \log_n(2020 n)$, then $f(2020 n) = \frac{1}{f(n)}$, so

$$\sum_{n=2}^{2018} \frac{2}{1+f(n)} = \sum_{n=2}^{2018} \left(\frac{1}{1+f(n)} + \frac{1}{1+f(2020-n)} \right) = \sum_{n=2}^{2018} \left(\frac{1}{1+f(n)} + \frac{1}{1+1/f(n)} \right) = \sum_{n=2}^{2018} \frac{1+f(n)}{1+f(n)} = \sum_{n=2}^{2018} (1) = 2018 - 2 + 1 = \boxed{2017}.$$

- 6. We can write 99^{99} as $(100 1)^{99}$ and do binomial expansion, so the equation becomes $\binom{99}{0} \cdot 100^0 \cdot (-1)^{99} + \binom{99}{1} \cdot 100^1 \cdot (-1)^{98} + \dots + \binom{99}{99} \cdot 100^{99} \cdot (-1)^0$. But the only items that affect the last three digits are the first two items. A simple computation gives us the answer 899.
- 7. Note that $a_3 = 11$. For integers $n \ge 4$, $a_n = a_{n-1} + \sum_{k=1}^{n-2} a_k = a_{n-1} + a_{n-1} = 2a_{n-1}$. Hence, $a_n = 2^{n-3}a_3$ for $n \ge 3$, so

$$\sum_{n=1}^{\infty} \frac{1}{a_n} = \frac{1}{3} + \frac{1}{8} + \sum_{n=3}^{\infty} \frac{1}{2^{n-3} \cdot 11} = \frac{11}{24} + \frac{1}{11} \sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{11}{24} + \frac{2}{11} = \frac{169}{264}$$

Hence, the answer is 169 + 264 = 433.

8. A quick way to gain some insight is to realize that the setting can be understood as base 3 representation. Using the 6 weights 3^5 , 3^4 , 3^3 , 3^2 , 3^1 , 3^0 , the maximum number we can represent is 364, so they are enough to represent until 360. To prove this is the least number, suppose we have only 5 weights, then because each weight has 3 places to go to: the right side of the pan, the left side, or not on the balance, the maximum number of outcomes is $(3^5 - 1)/2 = 121$, smaller than 360. So the answer is $\boxed{6}$.

9. For completeness, we should first justify that, if p and q are irrational cube roots of rational numbers, then p + q cannot be nonzero and rational. Suppose that p + q = r for some $r \in \mathbb{Q} \setminus \{0\}$. Consider the identity

$$p^{3} + q^{3} - r^{3} + 3pqr = (p+q-r)(p^{2} + q^{2} + r^{2} - pq + pr + qr),$$

which holds even if $p + q \neq r$. In the case p + q = r, the above identity simplifies to

$$p^{3} + q^{3} - r^{3} + 3pqr = 0 \implies pq = \frac{r^{3} - p^{3} - q^{3}}{3r} \in \mathbb{Q}.$$

We assumed p + q to be nonzero and rational, and now that pq is also rational, p and q must be the roots of some quadratic with rational coefficients. Specifically, p and q must follow the form $\frac{r \pm \sqrt{s}}{2}$ for some $s \in \mathbb{Q}_+$. Then,

$$(2p)^{3} = r^{3} \pm 3r^{2}\sqrt{s} + 3rs \pm s\sqrt{s} = r^{3} + 3rs \pm \sqrt{s} \left(3r^{2} + s\right) \in \mathbb{Q}$$

implying \sqrt{s} must be rational. But then p and q must be rational, contradicting the assumption that p and q are irrational.

By direct substitution,

$$a + b + 3\sqrt[3]{ab}\left(\sqrt[3]{a} + \sqrt[3]{b}\right) + 6\sqrt[3]{a} + 6\sqrt[3]{b} - 2 = 0.$$

Because $x = \sqrt[3]{a} + \sqrt[3]{b}$ is irrational, the only way for $(3\sqrt[3]{ab} + 6)x$ to be an integer is if $3\sqrt[3]{ab} + 6 = 0$. This means ab = -8 and

$$x^{3} + 6x - 2 = a + b + (0) - 2 = 0 \implies a + b = 2,$$

yielding the obvious solution a = 4 and b = -2 and the answer 100a + b = 398.

- 10. The equation above could be factored into $(x-1)(x^{59}+x^{58}+\dots+x+1-kx^{27}(x^2+x+1)) \ge 0$. The function is continuous and (x-1) > 0 for x > 1. So for x = 1, $(x^{59}+x^{58}+\dots+x+1-kx^{27}(x^2+x+1)) = 60 3k \ge 0$. Thus $k \ge 20$. Furthermore, when $a, b > 0, a+b \ge 2\sqrt{ab}$. So, for x > 1, $x^{59-n}+x^n \ge 2x^{29.5} \ge 2x^a$ where $a \le 29.5$. Thus, if $k = 20, (x^{59}+x^{58}+\dots+x+1-20x^{27}(x^2+x+1)) \ge 60x^{29.5} 20x^{27}(x^2+x+1) \ge 0$, showing that the inequality holds for all x > 1 when $k = \boxed{20}$.
- 11. Note that

$$a_{n+1} = -\frac{(a_n+1) + (a_n-1)}{(a_n-1)(a_n+1)} = \frac{2a_n}{1-a_n^2}$$

The key observation is that the resulting expression for a_{n+1} resembles the tangent double-angle identity. If we choose θ so that $a_n = \tan \theta$, then $a_{n+1} = \tan 2\theta$. By induction, if we let $a_1 = \tan \theta_1$, then $a_n = \tan \left(2^{n-1}\theta_1\right)$. The equality $a_6 = a_1$ therefore occurs when $\tan \theta_1 = \tan \left(2^{n-1}\theta_1\right) \implies 2^5\theta_1 \equiv \theta_1 \mod \pi \implies 31\theta_1 \equiv 0 \mod \pi$. Taking $\theta_1 = \frac{k\pi}{31}$ for $k \in \{0, 1, \ldots, 30\}$ yields 31 distinct values of a_1 . Because the tangent function has period π , no other values of θ_1 will generate new values of $\tan \theta_1$ other than the 31 values we already have. Thus, there are 31 possible values for a_1 .

12. The key observation is that the operation \times mimics addition of fractions: $\frac{b}{a} + \frac{d}{c} = \frac{ad+bc}{ac}$. Therefore, \times is commutative and associative, and

$$\frac{b_n}{a_n} = \sum_{k=2}^n \frac{g(k)}{f(k)} = \sum_{k=2}^n \frac{(k+1)^3 - (k-1)^3}{k^2 - 1} = \sum_{k=2}^n \left(6 + 4\left(\frac{1}{k-1} - \frac{1}{k+1}\right) \right).$$

The sum $\sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k+1}\right)$ telescopes to $1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n+1}$, so $\frac{b_n}{a_n} = 6(n-1) + 4\left(1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n+1}\right) = 6n - \frac{4(2n+1)}{n(n+1)} \in (6n-1, 6n)$ for $n \ge 8$.

Because 2020 is larger than 8 and not a multiple of 6, the answer is $n = \lfloor 2020/6 \rfloor = 2022/6 = \lfloor 337 \rfloor$