JOHNS HOPKINS MATH TOURNAMENT 2021

Individual Round: Probability and Combinatorics

April 8rd, 2021

Instructions

Remember you must be proctored while taking the exam.

This test contains 10 questions to be solved individually in 60 minutes.
All answers will be integers.

Problems are weighted relative to their difficulty, determined by the number of students who solve each
problem.

No outside help is allowed. This includes people, the internet, translators, books, notes, calculators, or
any other computational aid. Similarly, graph paper, rulers, protractors, compasses, and other drawing
aids are not permitted.

If you believe the test contains an error, immediately tell your proctor.

Good luck!
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1.

10.

Dan has a fair 6-sided die with faces labeled 1,2,3,4,+, and —. In order to complete the equation

)

Dan repeatedly rolls his die and fills in a blank with the character he obtained, starting with the
leftmost blank and progressing rightward. The probability that, when all blanks are filled, Dan forms

a true equation, is %, where p an ¢ are relatively prime integers. Find p + q.

. Call a positive integer almost square if it is not a perfect square, but all of its digits are perfect squares.

For example, both 149 and 904 are almost square, but 144 and 936 are not. Find the number of positive
integers less than 1000 that are not almost square.

Let P = (x,y) be the coordinates of a point chosen uniformly at random within the unit square (i.e.
the square with vertices at (0,0),(0,1),(1,0), and (1,1)). The probability that |z — %\ +ly— %| < % is
given by g, where p and ¢ are relatively prime integers. Find p + q.

For positive integers n, let f(n) equal the number of subsets of the first 13 positive integers whose
members sum to n. Compute

86

> f).

n=46

The average of all ten-digit base-ten positive integers dods . . . d1dy that satisfy the property |d; —¢| < 1

for all i € {0,1,...,9} can be written as a common fraction 57 where p and ¢ are relatively prime

integers. Compute the remainder when p + ¢ is divided by 108.

. Gary has 2 children. We know one is a boy born on a Friday. Assume birthing boys and girls are equally

likely, being born on any day of the week is equally likely, and that these properties are independent
of each other, as well as independent from child to child. The probability that both of Gary’s children
are boys can be expressed as { where a and b are relatively prime integers. Find a + 0.

A number line with the integers 1 through 20, from left to right, is drawn. Ten coins are placed along
this number line, with one coin at each odd number on the line. A legal move consists of moving
one coin from its current position to a position of strictly greater value on the number line that is
not already occupied by another coin. How many ways can we perform two legal moves in sequence,
starting from the initial position of the coins? Note: different two-move sequences that result in the
same position are considered distinct.

Each of the 9 cells in a 3 x 3 grid is colored either blue or white with equal probability. The expected
value of the area of the largest square of blue cells contained within the grid is =, where m and n are
relatively prime positive integers. Find m + n.

Let S ={1,2,3,...,26}. Find the number of ways in which S can be partitioned into thirteen subsets
such that the following is satisfied:

e cach subset contains two elements of S, and

e the positive difference between the elements of a subset is 1 or 13.
Let P be a set of nine points in the Cartesian coordinate plane, no three of which lie on the same line.
Call an ordering {Q1,Qa2,...,Qqo} of the points in P special if there exists a point C' in the same plane

such that CQy < CQ2 < --- < CQg. Over all possible sets P, what is the largest possible number of
distinct special orderings of P?
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Probability and Combinatorics Solutions

1. Two cases: Plus and minus sign in the second spot, which each occur with a 1/6 chance. In each
case, there are 6 valid combinations of numbers for the other three places. Each of those combinations
occurs with probability 1/62, so the overall probability is 2 - 6/6* = 1/108, so p + ¢ = .

2. If a positive integer is almost square, then all of its digits must be 0, 1, 4, or 9. Positive integers less than
1000 have 3 digits (in this case, we define two-digit numbers as having a leading 0 and one-digit num-
bers as having 2 leading 0s), and since there are 4 choices for each of these digits, we narrow our search
for almost-squares down to 4> = 64 integers. However, we can further eliminate the integer 0 from
our count, since this integer is not positive and therefore not almost square. We have 63 candidates left.

Now, we employ complementary counting; we find the number of perfect squares less than 1000
whose digits are all perfect squares. A quick check reveals that there are 9 such positive integers
(1,4,9,49,100, 144,400,441, and 900). Thus, there are 63 — 9 = 54 almost squares less than 1000, so
the number of positive integers less than 1000 that are not almost square is 999 — 54 = .

3. . In order to visualize the region defined by |z — |+ |y — 4| = 1, let us first set y = 0. Thus, since
ly — 2| = %, = must be 3 in order to force [z — 1| to be 0. Next, we see that as we linearly increase
y from 0 to %, the term |y — %| becomes linearly smaller, and thus x can linearly deviate away from
r = % in both the positive and negative direction. Then, at y = %, ly — %1| = 0, and thus x = 0 or
x = 1. If we continue this process for y = J to y = 1, we find that |z — 3| + |y — 3| = 3 defines a
square rotated 45°, with diagonal lengths 1, and residing inside the unit square. Thus, since the unit
square has area 1, the probability that a point lies within the region we just drew is just the area of
the region defined by |z — 3|+ |y — 1| < 3, or %% = 1 and thus the answer is 1 + 2 = 3.

4. Let S = {1,2,...,13}. Note that ), ¢k = ,lcilk = w = 91. Therefore, for any subset
X C S, wehave Y v k+ D o\ x k=D kesk =91, 50

> k=91-) k.

keS\X keX

Therefore, for every set X C S, exactly one of X or S\ X is a set whose elements have a sum between
46 and 91 inclusive. So, exactly half of all the subsets of S have a sum between 46 and 91. Therefore,
the desired answer is % - 213 minus the number of subsets whose elements have a sum between 87 and
91. This quantity we are subtracting equals the number of subsets whose elements have a sum between
0 and 4. The only such subsets are {}, {1}, {1,2}, {1,3}, {2}, {3}, and {4}, making seven in total.
Thus, the answer is % 28 7 = .

5. We are allowed to select dg from {8,9}, dy from {0,1}, and d; from {i—1,4,i+1} foralli € {1,2,...,8}.
The average we wish to compute is also the expected value of Z?:o d;-10%, where each digit d; is selected
independently per a uniform distribution over its set of possible values. By linearity of expectation,

18753086421

9 9 8
E (Z d; - 101> =Y E(d;)-10' =85-10°+ ) i-10' +0.5-10° = 9376543210.5 = 5
1=0 1=0

=1

Therefore, p + ¢ = 18753086421 + 2 = 18753086423, so dividing p + ¢ by 10° leaves a remainder of
86423 |.

6. . For each child, we care about the child’s sex (i.e. whether the child is a boy or a girl), and what
day of the week the child is born on. Thus, there are 2 x 7 = 14 possible sex/birthday combinations
for a child.

Now, since we know that one of Gary’s children is a boy born on Friday, there are initially 14 possible
combinations for the other child. However, since the boy born on Friday can either be the first or the
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second child, there are a total of 14+ 14 — 1 = 27 possible combinations of children Gary can have such
that one is a boy born on Friday. Note that in the expression above, we subtract 1 because we double
added the case where both of Gary’s children are boys born on Fridays. Of these 27 combinations
of children, we now find only the combinations where both are boys. Since, as mentioned above,
we subtracted 1 case where both children were boys born on Fridays, we find that 14 of these 27
combinations are such that the other child is a girl, and 13 of these 27 combinations are such that the
other child is a boy. Thus, the probability is %, and the answer is 13 4 27 = 40.

7. There are a total of 1 +2 4 --- 4 10 = 55 legal moves from the initial position. If on our first move
we move a coin from some position i to the kth smallest unoccupied position larger than i, for some
k € N, then the resulting game position will generate 55 — k — m legal moves, where m is the number
of coins the moving coin “jumped over” to get to its new position. In particular, m must equal k — 1
by the alternating nature of the coin arrangement in the initial position. From the initial position and
for any k € {1,...,10}, there are exactly 11 — k ways to move a coin to the kth smallest unoccupied
position larger than the coin’s current position, so the total number of sequences of two legal moves is

10 10

> (11-k)(55—k—(k—1)) =2 (11—k)(28—k) =2 (10.11 - 28 —

k=1 k=1

(11+28)-10-11  10-11.21
2 6
— 2(3080 — 2145 + 385) = 2- 1320 =[2640].

8. Let ¢ be a coloring of the grid, let A(c) be the area of the largest square of blue cells contained within
the coloring, and let P(X) denote the probability that event X occurs. We need to compute

P[A(e) = 0](0) + P[A(c) = 1] (1) + [P(A(c) = 4] (4) + P [A(c) = 9] (9),
where P[A(c) = 0] 4+ P[A(c) = 1] + P[A(c) = 4] + P[A(c) = 9] = 1.

There are 2° = 512 possible colorings of the grid, and clearly, P[A(c) = 0] = == and P[A(c) = 9] =

1
512 512°

It now suffices to compute the number of colorings ¢ of the grid such that A(c) = 4. Note that in
order for A(c) = 4 to be satisfied, at least one of the four 2 x 2 subgrids contained within the grid must
be colored fully blue (these subgrids are shown below and are outlined by bold lines).

nilin

C — D

Let A be the event that subgrid A is colored fully blue, and define events B, C, and D similarly. Let
|X| denote the number of colorings that result when event X occurs. By the Principle of Inclusion-
Exclusion, the number of such colorings is

(IA[+ B+ |C] +|DI)
—(JANB|+|[ANC|+|AND|+|BNC|+|BND|+|CnDJ
+([AnBNC|+|AnNnBND|+|ANCND|+|BNCnNDJ)
—2(|JAnBNnCND|.

We subtract 2(|]AU BUC U D|) to exclude the case in which 4, B, C, and D are colored fully blue, as
the whole grid would be colored blue as a result, meaning that A(c) = 9; this case is counted 4 times,
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10.

subtracted 6 times, and counted back in 4 times, so subtracting it 2 times would ensure that it will be
excluded from the count. It is routine to compute the number of colorings for each of these cases, and
we obtain

(25 +2°+2°+2%) — (28 4+ 28 422 422 4+ 28 4 2%) + (2t + 2t + 21 +21) —2(1) =94

as the overall number of colorings.

Therefore, P[A(c) = 0] = =5, P[A(c) = 4] = 2%, and P[A(c) = 9] = =13, so it follows that
PlA(e)=1]=1- % = ?ﬂ—g; then, the desired expected value is
1 416 94 1 801
0+ 5+ 5 @) + =5 (9) =

512 512 512 512" 7 512°

Hence, m +n :

We arrange the elements of S into a 2 x 13 grid, as follows:

1123|456 |7]8|9]10]11|12]13
14 15|16 |17 |18 |19 |20 |21 |22 |23 |24 |25 26

Then, a 1 x 2 tile of this grid will consist of two numbers whose positive difference is either 1 or 13
Thus, any tiling of the 2 x 13 grid with 1 x 2 tiles corresponds to a unique desirable partition of S.
The only desirable partition of S that cannot be represented by such a tiling occurs when one member
of the partition is {13,14}. The remainder of such a partition that includes {13, 14} must correspond
to a tiling of the 2 x 13 grid with squares 13 and 14 removed. One can quickly deduce that there is
only one valid way to tile this figure; that the only desirable partition with {13,14} as a member is
{{1,2},{3,4},...,{11,12},{13,14},{15,16},...,{25,26} }.

Therefore, the problem boils down to finding the number of ways to tile a 2 x 13 grid with 1 x 2 tiles
and then adding 1 to this count. More generally, the number of ways to tile a 2 x n grid with 1 x 2
tiles is Fj,4+1, where Fy =0, Fy =1, and F,, = F,,_1 + F,,_» for n > 2 (i.e., the (n 4 1)-th Fibonacci
number); this can be shown via a recursive argument. Therefore, the answer is Fi4 + 1 = .

Arbitrarily label the points in P as Py, Ps, ..., and Py. For distinct indices 4,5 € {1,2,...,9}, let p;;
denote the perpendicular bisector of P,P;. For any two points P; and P;, a third point C' (in the same
plane) is closer to P; than P; if and only if C' and P; lie on the same side of p;;. Similarly, C' is closer
to P; than P; if and only if C and P; lie on the same side of p;;. If we let L = {p;; : 1 <i < j <9} be
the set of all (g) = 36 perpendicular bisectors, then the lines in L partition the plane into disjoint 2-D
regions. Each region corresponds to a unique special ordering {Q1, @2, ...,Qg}, such that a point C
satisfies CQ1 < CQ3 < --- < CQg if and only if C is strictly inside the region. Thus, the number of
distinct special orderings of P equals the number of regions in the partition.

Each triplet of points in P does not lie on a single line (by the assumptions in the problem statement),
so each triplet has a single circumcircle, and the three perpendicular bisectors generated by this triplet
will concur at the circle’s center. This concurrency will limit the number of 2-D regions created by L.
Normally, we can slice the plane into 7 regions if we have three lines that intersect in pairs at three
different points. However, if three lines concur at a single point, then the number of regions is reduced
to 6. In general, each concurrency point of three lines, among a finite collection of many lines in the
plane, removes one 2-D region from the count. This holds because we can “perturb” any one of the
three lines, shifting it by an arbitrarily small amount, so that the three lines no longer concur and
a new triangular region opens up between them. This observation motivates the following approach:
count the maximum possible number of regions that can be created from (g) = 36 lines, and then
subtract the number of points at which three of those lines concur. This optimal number of regions
is feasible because it is definitely possible to ensure that (1) no two lines in L are parallel and (2) no
more than three lines in L concur at any point; in fact, if the points in P are chosen according to some
continuous random distribution, then (1) and (2) will generally hold with probability 1.
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So, we can achieve the minimum (g) = 84 concurrency points, since we can have a distinct circumcenter
for each triplet of points in P and no other lines in L unintentionally passing through the circumcenter.
Also, the maximum number of regions created by n lines is given by w There are (g) = 36
lines in L, so our final count is

1)+2
36(36;”—(2) —=18-37+1 — 84 = 666 — 83 =583

Remark: From our analysis, a general formula for the maximum number of special orderings of a set of
n points in the plane is % ((g) ((Z) + 1) + 2) — (g) These values are documented in sequence A308305
in OEIS.



