Solutions

- 1. 9
- 2. The area cut out of the pizza is $100 \arccos\left(\frac{4}{5}\right) 48$ square inches, so the answer is 3840.
- 3. The answer is $4 \sqrt{3} \frac{2\pi}{3}$. Thus, $4 \times 3 \times 2 \times 3 = \boxed{72}$.
- 4. 14
- 5. 40
- 6. We conclude that $a = \frac{3\sqrt{3}}{2}$, so the answer is 332.
- 7. The desired ratio is 4:25:21, so the answer is $4+25+21=\boxed{50}$
- 8. The locus of all possible locations of P is an arc of a circle, so let's define ω as the circumcircle of $\triangle PBC$. Specifically, a 135° angle inscribed in a circle intercepts a 270° arc, meaning the locus of all P is a 90° arc. Also, note that $\triangle ABC$ is isosceles, with AB = AC. Because the measure of \widehat{BPC} plus the measure of $\angle A$ is 90° + 90° = 180° and because AB = AC, \overline{AB} and \overline{AC} are tangent to ω at B and C, respectively. Reflecting A over line \widehat{BC} gives O, the center of ω . Because ABOC is a square, the radius of ω equals AB and AC. Letting r denote the radius, we have AB = AC = OB = OC = OP = r. If $\triangle PAC$ is isosceles, then either PA = PC or CP = CA.

In the first case, P lies on the perpendicular bisector of \overline{AC} , meaning P lies $\frac{r}{2}$ away from \overline{OC} . Suppose D is the point on \overline{OC} closest to P. $\triangle DPO$ is a right triangle with hypotenuse r and leg $\frac{r}{2}$, so the longer leg is $OD = \frac{r\sqrt{3}}{2}$ by the Pythagorean Theorem. Then, letting M be the midpoint of \overline{AC} , $PM = DC = r\left(\frac{2-\sqrt{3}}{2}\right)$. Therefore, $\tan \angle PAC = \frac{r(2-\sqrt{3})/2}{r/2} = 2 - \sqrt{3}$.

Now, notice that forcing PA = PC in the first case forces PB = PO = r. Therefore, $\triangle PAB$ and $\triangle PAC$ are simultaneously isosceles, and simply interchanging B with C gives us our second case. Doing this makes the new $\angle PAC$ the complement of the old $\angle PAC$ that is now $\angle PAB$. Since $\tan \angle PAB$ is now $2 - \sqrt{3}$, $\tan \angle PAC = \frac{1}{2-\sqrt{3}} = 2 + \sqrt{3}$. Of these two options, $2 + \sqrt{3}$ is the larger value of $\tan \angle PAC$, so we use s = 2, t = 1, and u = 3 to obtain the answer 213.

- 9. Quadrilateral ABEC is cyclic, so $m\angle ABE = 180^{\circ} m\angle ACE$. Since $m\angle ABE$ also equals $180^{\circ} m\angle ABP$, we see that $\angle ABP \cong \angle ACE$ and thus $\triangle ABP \sim \triangle ACQ$ by angle-angle similarity. This means that $\angle BAX \cong \angle CAY$, so BX = CY, and therefore BXCY is an isosceles trapezoid. Since the diagonals of any isosceles trapezoid are equal, $XY = BC = \boxed{69}$.
- 10. Let N be the intersection of the perpendicular bisector of \overline{QR} with \overline{PQ} . Then, NQ = NR and $m\angle Q = m\angle QRN$, so $m\angle PRN = 10^\circ$. Because \overline{NM} is the perpendicular bisector of \overline{QR} , $m\angle NMQ = 90^\circ$, and because $m\angle PMQ = 100^\circ$, $m\angle PMN = 10^\circ$. Observe that $\angle PRN \cong \angle PMN$, so PRMN is cyclic. Then, $m\angle P = 180^\circ m\angle RMN = 90^\circ$, so $m\angle Q + m\angle R = 90^\circ$. Because $m\angle R = m\angle Q + 10^\circ$, we obtain $m\angle Q = \boxed{40^\circ}$.