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23. Let § be the surface of region W. Show that

ffr-ndS: 3 volume ().
s

Explain this geometrically.

8.5 Some Differential Equations of Mechanics and Technology

Isaac Newton reputedly said, “All in nature reduces to differential equations.” This
point of view was paraphrased by Max Planck (see the Historical Note in Section 3.3):
... Present day physics, as far as it is theoretically organized, is completely governed
by a system of space—time differential equations.”

In this section, we apply the central theorems of vector analysis to the derivation of
the differential equations governing heat transfer, electromagnetism, and the motion
of some flwds.

Keep tn mind the importance of these problems in modern technology. For exam-
ple, a good understanding of fluids and the ability to do computations to solve their
governing equations is at the heart of how one builds a modern airplane or designs
a submarine. For instance, the flow of air (the fluid 1n this case) over the wings of
an aircraft is very subtle, even though the governing equations are relatively simple.
We shall derive a slightly idealized form of these equations in this section. Likewise,
the equations of electromagnetism, as we will discuss in the following paragraphs, is
central to the communications industry; wireless, television, and much of the opera-
tion of modern electronic devices, including computers, depends on these and related
fundamental equations.

Conservation Laws

As preparation for deriving the equations of a fluid, let us first discuss an impor-
tant equation that is referred to as a conservation equation. For fluids, it expresses
the conservation of mass; for electromagnetic theory, it expresses the conservation
of charge. We shall apply these ideas to the equation for heat conduction and to
electromagnetism.

Let V(¢,x, y, z) be a C! vector field on R? for each ¢ and let p(z, x, y, z) be a C!
real-valued function. By the law of conservation of mass for V and p, we mean that

the condition
3
- pdV:—ff J-ndS
dt w W

holds for all regions # in R?, where J = pV (see Figure 8.5.1).

If we think of p as a mass density (p could also be a charge density)—that is, the
mass per unit volume—and of V as the velocity field of a fluid, the condition simply
says that the rate of change of total mass in W equals the rate at which mass flows
into W Recall that [, . J-ndS is called the flux of J. We need the following result.
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mass in W=ffpr dx dy dz
J.m = mass flowing

out of W per unit Figure 8.5.1 The rate of change
area per unt time of mass in W equals the rate at
which mass crosses d .

THEOREM 11 For V and p (a smooth vector field and a scalar field on R?), the
law of conservation of mass for V and p is equivalent to the condition

. ap
Jb - = (). 1
divd + Y (1)
That 1s,
; op ;
pdivV4+V-Vp4+ — =0. (1)

ot

Here, div J means that we compute div J for ¢ held fixed, and 8p/d¢ means we
differentiate p with respect to ¢ for x, y, z fixed.

PROOF First, observe that by differentiating under the integral, we get

d a0
— dx dydz = —dxdyd
dtf]:[wpxyz ffwatxyz
f[ J-ndS:fff divIdVv
aw W

by the divergence theorem. Thus, conservation of mass is equivalent to the condition

3
fff (divJ+ —p)dxdydz=0.
" a1

Because this is to hold for all regions W, it is equivalenttodivJ + dp/df = 0. =

and also

The equation div J 4 9p/9¢ = 0 is called the equation of continuity. An inter-
esting remark is that using the change of variables formula, the law of conservation
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of mass may be shown to be equivalent to the condition
d
— dV =0,
i lll.
where W, is the image of }¥ obtained by moving each point in i along flow lines of V
for time ¢. This result is a special case of the transport theorem that we discuss next.
The Transport Theorem

The transport theorem is an interesting application of the divergence theorem that
will be needed in our derivation of the equations of a fluid.

THEORENI 12 Let F be a vector field on R* and denote the flow line of F start-
ing at x after time 7 by ¢(x, ¢). (See the Internet supplement to Section 4.4 for more
information.) Let J(x, ¢) be the Jacobian of the map ¢,: x — ¢(x, ) for 7 fixed. Then

E%J(x, £) = [div F(¢(x, )]J(x, 1).

For a given function f(x, v, z, tyand a region W C R?, the transport equation holds:

& D
d_tff W, fx.y.z,)dxdydz = f[-/;ﬂ (-D—{ +fdivF) dx dydz,

where W, = ¢,(), which is the region moving with the flow, and where

Df—a dt+Vf-F
o =Wt Vf

is the material derivative.

Taking f = 1, Theorem 12 implies that the following assertions are equivalent
(which justifies the use of the term incompressible).

1. divF=0
2. volume (/;) = volume (W)
3. Jx,t)=1

Let ¢, J, F, f be as just defined. There 1s also a vector form of the transport
theorem, namely,

d
= ff " (fF)dx dy dz

=f][ [—%(fF)-FF-V(fF)+(fF)divF:|dxdydz,
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where F - V( f'F) denotes the 3 x 3 derivative matrix D( f F) operating on the column
vector F; in Cartesian coordinates, F - VG is the vector whose ith component is

G’ aG* oG’ aG!
Y F—=F— 4+ Fh——+ B
= ox; ax ay az
We shall leave the proofs of these results, which are extensions of the arguments used
to prove Theorem 11, to the reader (see the exercises).

Derivation of Euler's Equation of a Perfect Fluid

The continuity equation is not sufficient to completely determine the motion of a
fluid—we need other conditions.

The fluids that the continuity equation governs can be compressible. If divV = 0
(incompressible case) and p is constant, equation (1’) follows automatically. But in
general, even for incompressible fluids, the equation is not automatic, because p can
depend on (x, y, z) and ¢. Thus, even if the equation div V = 0 holds, div{pV) # 0
may still be true.

Here we discuss Euler’s equation for a perfect fluid. Consider a nonviscous fluid
moving in space with a velocity field V. When we say that the fluid is perfect, we
mean that if W is any portion of the fluid, forces of pressure act on the boundary of
W along its normal. We assume that the force per unit area acting on dW is —pn,
where p(x, y, z, £} 1s some function called the pressure (see Figure 8.5.2). Thus, the
total pressure force acting on W is

Fyyw = force = -—[f pnds.
3w

A portion of 9/ € /
i The forces excrted on W

by the fluid occur across Figure 8.5.2 The force acting on 0 W per

9 in the direction m. unit area is — pi.

This 1s a vecfor quantity; the ith component of Fsy 1s the integral of the ith
component of pn over the surface 31 (this is therefore the surface integral of a
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real-valued function). If e is any fixed vector in space, we have

Fyw-e= —f] pe-ndS§,
aw

which is the integral of a scalar over 9 /. By the divergence theorem and identity (7)
in the table of vector identities (Section 4.4), we get

E'Faw=—[f div(pE)dxdydz=—ff (gradp) -Edxdydz,
W W

so that

Fyw = -f[] Vpdxdyd:z.
w

Now we apply Newton's second law to a moving region W,. As in the transport
theorem, W, = ¢,(W), where ¢,(x) = ¢(x, t) denotes the flow of V. The rate of change
of momentum of the fluid in W, equals the force acting on it:

d
—fff dexdydz:Fan:f[f Vpdxdydz.

We apply the vector form of the transport theorem to the left-hand side to get

fff [%(pV)+V~V(pV)+pV div V:l dxdydz = —fff Vpdxdyd:z.
W, i

Because W, is arbitrary, this is equivalent to

d i

E(pV) + V. .V(V)+pVdivV=—-Vp.
Simplification using the equation of continuity, namely, formula (1'), gives

Vv
p(gt— +V-VV) = —Vp. (2)

This is Euler’s equation for a perfect fluid. For compressible fluids, p is a given
function of p (for instance, for many gases, p = ApY for constants 4 and y). On the
other hand, if the fluid is incompressible, p is to be determined from the condition
div V = 0. Equations (1) and (2) then govern the motion of the fluid.
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The equations describing the motion of a fluid were first derived by
Leonhard Euler in 1755, in a paper entitied “General Principles of the
Motion of Fluids.” Euler did basic work in mechanics as well as voluminous
work in pure mathematics, a small part of which has already been discussed
in this book; he essentially began the subject of analytical mechanics (as
opposed to the Euclidean geometric methods used by Newton). He 1s
responsible for the equations of a rigid body (equations that apply, for
example, to a tumbling satellite) and the formulation of many basic equations
of mechanics in terms of variational principles; that is, by the methods of
maxima and minima of real-valued functions. Euler wrote the first
comprehensive textbook on calculus and contributed to virtually all branches
of mathematics. He wrote several books and hundreds of research papers
even after he became totally blind, and he was working on a new treatise on
fluid mechanics at the time of his death in 1783. Euler’s equations for a fluid
were eventually modified by Navier and Stokes to include viscous effects; the
resulting Navier-Stokes equations are described in virtually every textbook
on fluid mechanics.” Stokes is, of course, also responsible for developing
Stokes’ theorem, one of the main results discussed in this text!

Conservation of Energy and the Derivation of the Heat Equation

If T(t, x, y, z) (a C? function) denotes the temperature in a body at time ¢, then VT
represents the temperature gradient: Heat “flows™ with the vector field — V7T = F.
Note that VT points in the direction of increasing I Because heat flows from hot
to cold, we have inserted a minus sign to reflect this physically observable fact. The
energy density, that is, the energy per unit volume, is ¢po 7, where ¢ is a constant
(called the specific heat) and p is the mass density, assumed constant. (We accept
these assertions from elementary physics.) The energy flux vector is defined to be
J = kF, where k 1s a constant called the conductivity.

One now makes the hypothesis that energy is conserved. This means that J and
p = cpoT should obey the law of conservation of mass, with p playing the role of
“mass” (note that it is energy density, not mass); that is,

£ [ v [ e

By Theorem 11, this assertion is equivalent to

9
divI+ 2L —o.
Y

"The Clay Foundation has offered a prize of $1 million to anyone who shows that for the incompressible Navier-Stokes
equations, smeoth data at ¢ = 0 lead to smooth solutions for all ¢ > 0.
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But
divJ = div(—kVT) = —kV?T.
(Recall that V2T = 32T /3x? 4+ 3*T /3y + 82T /9z% and V2 is the Laplace operator.)

Continuing, we have
dp  9d(cpeT) or
i = CPo—-
ot ot ot

Thus, the equation div J + dp/dt = 0 becomes

T k
K grr vt 3)
ot ¢po

where « = k/cpy is called the diffusivity. Equation (3) is the important heat equation.

Just as equations (1) and (2) govern the flow of an ideal fluid, equation (3)
governs the conduction of heat in the following sense. If 7(0, x, y, z) is a given
initial temperature distribution, then a unique 7'(¢, x, y, z) is determined that satisfies
equation (3). In other words, the initial condition at £ = 0 gives the result for # > 0.
Notice that if T does not change with time (the steady-state case), then we must have
V2T = 0 (Laplace’s equation).

Maxwell’s Equations and the Prediction of Radio Waves:
The Communication Revolution Begins

We now return to Maxwells equations, which govern the propagation of electro-
magnetic fields. The form of these equations depends on the physical units one is
employing, and changing units introduces factors like 47 and the velocity of light.
We shall choose the system in which Maxwell’s equations are simplest.

Let E and H be C! functions of (¢, x, y, z) that are vector fields for each ¢.
They satisfy (by definition) Maxwell’s equation with charge density p(t, x, y, z) and
current density J(¢, x, y, z) when the following conditions hold:

V- E = p (Gauss’ law), (4)
V - H = (¢ (no negative sources), (5)
oH
VxE+ 3 = 0 (Faraday’s law), (6)
and
JE .
VxH- = = J (Ampere’s law), (D

Of these laws, equations (4) and (6) were described in integral form in Sections 8.2
and 8.4; historically, they arose in these forms as physically observed laws. Ampeére’s
law was mentioned for a special case in Section 7.2, Example 12.
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Physically, one interprets E as the electric field and H as the magnetic field.
According to the preceding equations, as time 7 progresses, these fields interact with
each other, and with any charges and currents that are present. For example, the
propagation of electromagnetic waves (TV signals, radio waves, light from the sun,
etc.) in a vacuum 1is governed by these equations with J =0 and p = 0.

Because V - H = 0, we can apply Theorem 8 (from Section 8.3) to conclude that
H =V x A for some vector field A. (We are assuming that H is defined on all of
IR? for each time ¢.) The vector field A is not unique, and we canuse A’ = A + V f
equally well for any function (7, x, v, z), because V x V f = 0. (This freedom in
the choice of A is called gauge freedom.) For any such choice of A, we have, by
equation {6),

oH d
0=VXE+—=VxE+ -V xA
at at

dA
=VXEXVx—
at

dA
— V X (E+ .—).
at

Applying Theorem 7 (from Section 8.3), there is a real-valued function ¢ on R such
that

E+ 2~ vy
ar ]

Substituting this equation and H = V x A into equation (7), and using the vector
identity (whose proof we leave as an exercise)

V x (VX A) = V(V.A)— V°A,

we get
oE J A
J=VYxH—-—=YXx(VxXA)— —[——"— V¢
ot dt ot
2A 3
— V(V-A)— VA + —— 4+ — (Vo).
( ) +8I2+8t( ¢)
Thus,

2

,. %A 3
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That is,

32A P
VZA—W:FJ+V(V-A+—§). (8)

Again using the equation E 4+ 0A/0f = —V¢ and the equation V - E = p, we obtain

A , 3(V-A)
o=Vl =Vs —V¢_¥)=_v¢ﬂ T

That is,

HV - A
v =—p— 20D, ©)

Now let us exploit the freedom in our choice of A, We impose the “condition”

9
V-A+8—‘f=0. (10)

We must be sure we can do this. Supposing we have a given Ag and a corresponding ¢,
can we choose a new A = Ay + V/ and then a new ¢ such that V- A 4+ 8¢ /9t = 07
With this new A, the new ¢ is ¢y — 3f/3t; we leave verification as an exercise for the
reader. Condition (10) on f then becomes

. g —df/en , . 0y S
0=V-(Ay+Vf)= 5 =Tl H U g
or
#f 3¢y
2 —_ - b —rr
Y~ = (v Ao+ — ) (11)

Thus, to be able to choose A and ¢ satisfying V - A + d¢ /3t = 0, we must be
able to solve equation (11) for f. One can indeed do this under general conditions,
although we do not prove it here. Equation (11) is called the inhomogeneous wave
equation.

If we accept that A and ¢ can be chosen to satisty V- A 4 d¢p /3t = 0, then
equations (8) and (9) for A and ¢ become

32A
V2A - W = —J, (8;)
3¢ )
Vg~ — = —p. (9)
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Conversely, if A and ¢ satisfy the equations VA + 8¢/0t = 0, V2¢ —
3°¢p/0t> = —p, and V?A —3°A/3t? = —J, then E = —V¢ —3A/8¢t and H =
V x A satisfy Maxwell’s equations. This procedure then “reduces” Maxwell’s equa-
tions to a study of the wave equation.®

Since the eighteenth century, solutions to the wave equation have been well
studied (one learns these in most courses on differential equations). To indicate the
wavelike nature of the solutions, for example, observe that for any function f,

¢(r,x,y,z)=f(x _I)

solves the wave equation V¢ — (3°¢/3t?) = 0. This solution just propagates the
graph of f like a wave; thus, one might conjecture that solutions of Maxwell’s equa-
tions are wavelike in nature. Historically, all of this was Maxwell’s great achievement,
and it soon led to Hertz’s discovery of radio waves. To quote from the Feynman Lec-
tures on Physics (Vol. 1I):

From a long view of the history of mankind—seen from, say, ten thousand
years from now—there can be little doubt that the most significant event
of the nineteenth century will be judged as Maxwell’s discovery of the
laws of electrodynamics. The American Civil War will pale into provincial
insignificance in comparison with this important scientific event of the
same decade.

Mathematics again shows its uncanny ability not only to describe but to predict
natural phenomena.

There are other techniques (called Green’s function methods) for dealing with
the basic equations of mechanics and mathematical physics that also rely on vector
calculus. Some of these methods are discussed in the Internet supplement for this
book.

EXERCISES

1. Use a direct argument (or the proof of Theorem 1 in the Internet supplement to Section
4.4) to show that

9
=06, 1) = [div F(@(x, )} (x, 1)

¥There are variations on this procedure. For further details, see, for example, Differential Equations of Applied Mathe-
matics, by G. E D). Duff and D. Naylor, Wiley, New York, 1966, or books on electromagnetic theory, such as Classical
Electrodynamics, by 1. D. Jackson, Wiley, New York, 1962.
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2. Using the change of variables theorem and Exercise 1, show that if f(x,y,z,f)isa
given function and W C R? is any region, then the transport equation holds:

ffW S(x,y,z, t)dxdydz—f[fw( +fd1vF)dxdydz

where W, = ¢,(W), which is the region moving with the flow, and where Df/ Dt = d8f/d¢ +
V f - F is the material derivative.

3. Use the transport equation to show that

d
——f/f pdxdydz=20
dt W,

is equivalent to the law of conservation of mass.

4. Using Exercise 3 and the change of variables theorem, show that p(x, /) can be expressed
in terms of the Jacobian J(x, t) of the flow map ¢(x, ¢) and p(x, 0) by the equation

p(x, )J(x, 1) = p(x, 0).
What can you conclude from this for incompressible flow?

5. Prove the vector form of the transport theorem, namely,

% f f (Pdvdydz = f f fW [%(fF)JrF-V(fF)Jr(fF) divF]dxdydz,

where F - V( fF) denotes the 3 x 3 derivative matrix D ( fF) operating on the column vector
F; in Cartesian coordinates, F - VG is the vector whose ith component is

+ F. + F; ;
i ax 28y oz

E}G" E}G" G’ aG*
EFJ ox;

=1

6. Let V be a vector field with flow ¢(x, #) and let V and p satisfy the law of conservation
of mass. Let W, be the region transported with the flow. Prove the following version of the

transport theorem:
d Df
E‘/[L{' pfdxdydz = fff% pﬁdxdydz.

7. (Bernoulli s law) (a) Let V, p satisfy the law of conservation of mass and equation (2)
(Euler’s equation for a perfect fluid). Suppose V is irrotational and hence that V = V¢ fora
function ¢. Show that if C is a path connecting two points P; and P-, then

(i)l + =0
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[HinT: You may need the vector identity, (V- V)V = %V(||V||2) +(VxV)xV]
(b) If in part (a), V is stationary—that is, 3V /9t = 0—and p is constant, show that

1
vir+ 2
2 P

is constant in space. Deduce that, in this situation, higher pressure is associated with lower

fluid speed.

8. Using Exercise 7, show that if ¢ satisfies Laplace’s equation V¢ = 0, then V = V¢ is a
stationary solution to Euler’s equation for a perfect incompressible fluid with constant density.

9. Verify that Maxwell’s equations imply the equation of continuity for ¥ and p.

10. For a steady-state charge distribution and divergence-free current distribution, the
electric and magnetic fields E(x, y, z) and H(x, y, z) satisfy

VxE=0, V-H=10, V-J=0, V-E=p, and VxH=J.

Here p = p(x, y, z) and J(x, y, z) are assumed to be known. The radiation that the fields
produce through a surface S is determined by a radiation flux density vector field, called the
Poynting vector field,

P=FE xH

(a) If S is a closed surface, show that the radiation flux—that is, the flux of P through

S—is given by
ffP-dS:—fffE-JdV,
s v

where V is the region enclosed by S.
(b) Exampies of such fields are

E(x,yv,z)=zj+ yk and H{x, y,z) = —xyi+ xj + yzk.

In this case, find the flux of the Poynting vector through the hemispherical shell shown in
Figure 8.5.3. (Notice that it is an open surface.)

x2+y2e z2=125

Figure 8.5.3 The surface for Exercise 10.
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(c) The fields of part (b) produce a Poynting vector field passing through the toroidal
surface shown in Figure 8.5.4. What is the flux through this torus?

Figure 8.5.4 The surface for Exercise 10(c).

8.6 Differential Forms

The theory of differential forms provides an elegant way of formulating Green’s,
Stokes’, and Gauss’ theorems as one statement, the fundamental theorem of cal-
culus. The birth of the concept of a differential form is another dramatic example of
how mathematics speaks to mathematicians and drives its own development, These
three theorems are, in reality, generalizations of the fundamental theorem of calculus
of Newton and Leibniz for functions of one variable,

b
[ S'xydx = f(b) - f(a)

to two and three dimensions.

Recall that Bernhard Riemann created the concept of n-dimensional spaces. If
the fundamental theorem of calculus was truly fundamental, then it should generalize
to arbitrary dimensions. But wait! The cross product, and therefore the curl, does not
generalize to higher dimensions, as we remarked in footnote 3, in Section 1.3. Thus,
some new idea is needed.

Recall that Hamilton searched for almost 15 years for his quaternions, which
ultimately led to the discovery of the cross product. What 1s the nonexistence of a
cross product in higher dimensions telling us? If the fundamental theorem of calculus
1s the core concept, this suggests the existence of a mathematical language in which it
can be formulated in #-dimensions. In order to achieve this, mathematicians realized
that they were forced to move away from vectors and on to the discovery of dual
vectors and an entirely new mathematical object, a differential form. In this new
language, all of the theorems of Green, Stokes, and Gauss have the same elegant and
extraordinarily simple form.

Simply and very briefly stated, an expression of the type Pdx + Qdy is a
1-form, or a differential one-form on a region in the xy plane, and F dx dy is a 2-form.
Analogously, one can define the notion of an #-form. There 1s an operation d, which



